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This article reports on the effort to reproduce the results shown in Storage Tradeoffs in a
Collaborative Backup Service for Mobile Devices1, an article published in 2006, more than
thirteen years ago. The article presented the design of the storage layer of such a backup
service. It included an evaluation of the efficiency and performance of several storage
pipelines, which is the experiment we replicate here.
Additionally, this article describes a way to capture the complete dependency graph of
this article and the software and data it refers to, making it fully reproducible, end to
end. Using GNU Guix2, we bridge together code that deploys the software evaluated in
the paper, scripts that run the evaluation and produce plots, and scripts that produce the
final PDF file from LATEXsource and plots. The end result—and the major contribution
of this article—is approximately 400 lines of code that allow Guix to rebuild the whole
article and the experiment it depends on with a well-specified, reproducible software envi-
ronment.

1 Getting the Source Code

The first author s̓ younger self, a PhD student, would follow good practices: the libchop
library3 benchmarked in the article, the article itself, and the benchmarking scripts
were all under version control. Libchop was published as free software, but the other
repositories had never been published, which is not-so-good practice. Thus, the first
task in replicating this analysis was to find the initial repositories.
Luckily, the repositories were found on a dusty hard disk drive. However, they were
repositories for the GNU Arch version control system, also known as tla4—one of the
first free software distributed version control systems, which saw its last release in 2006,
around the time Git started to get momentum.
Having deployed tla, the author was able to convert the following repositories, thanks
to the git archimport command, still distributed with Git:

• https://gitlab.inria.fr/lcourtes-phd/edcc-2006 contains the source of the paper itself—i.e.,
the text and figures, but neither the benchmarking scripts nor the source of lib-
chop. It turned out to not be of any use for this replication.

• https://gitlab.inria.fr/lcourtes-phd/chop-eval contains the scripts used to run the bench-
marks that led to Figure 5 of the paper1.

The code of libchop itself was published as free software in 2007 and continued to evolve
in the following years3. As of this writing, there have been no changes to its source code
since 2016.
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2 Building the Source Code

Libchop is written in C and accessible from Scheme thanks to bindings for GNU Guile,
an implementation of the Scheme programming language. The benchmarking scripts
mentioned above rely on those Scheme bindings.

2.1 Dependencies
In addition to Guile, it has a number of dependencies, among which:

• the GNU DBM key/value database (gdbm);

• the GNU Libgcrypt cryptography library;

• the zlib, bzip2, and lzo compression libraries;

• support for ONC Remote Procedure Calls (RPC), formerly provided as part of the
GNU C Library (glibc), but nowadays available separately as part of TI-RPC;

• G-Wrap, a now defunct binding generator for Guile.

Additionally, libchop uses the GNU “Autotools” as its build system: Autoconf, Automake,
and Libtool.

2.2 Software Deployment as Code
It should come as no surprise that the author, who has been working on reproducible
software deployment issue for several years now, felt the need to address the software
deployment issue using GNU Guix2.
GNU Guix allows users to deploy software in a way similar to popular “package man-
agers” such as Fedoras̓ RPM, Debians̓ APT, or CONDA. Unlike those, it follows a func-
tional deployment paradigm, inherited from Nix5. “Functional” in this context means
that Guix views software build processes as pure functions that take inputs—source
code, build scripts, compilers, libraries—and produce output—libraries, programs. It
arranges so that build processes run in well-defined environments that contain nothing
but the declared inputs. Thus, given the same inputs, deterministic build processes al-
ways produce the same output, bit for bit. Consequently, Guix supports reproducible soft-
ware deployment, which we consider a prerequisite for computational experiments—
the digital counterpart of the pen-and-paper lab book.
Guix can be programmed in Scheme, a language of the Lisp family. It provides high-level
interfaces that allow users to define software packages in a declarative fashion that does
not require familiarity with Scheme6. For the purposes of this replication, the author
wrote definitions of the required packages, as we will see below, as well as definitions
of each of the stages leading to the final PDF file, as will be explained in Section 4.

2.3 Choosing a Revision
Shouldwe run the latest revision of libchop, dated 2016, or shouldwe rather run the 2006
revision that was used at the time the paper was written? The latest libchop revision is
available as a GNU Guix package. Unfortunately, the benchmarking scripts mentioned
above are stuck in 2006–2007, so to speak: they require libchop programming interfaces
that changed after that time, and they also require interfaces specific to Guile 1.8, the
version that was current at the time (the latest version of Guile today is 3.0.2; it has seen
three major versions since 2006).
The author chose to use libchop, Guile, and G-Wrap from 2006, but reusing as many as
possible of today s̓ software packages apart from these. Building from a source tarball—a
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tar.gz archive—produced by the Autotools (with make dist) is as simple as running
./configure; make. The nice property here is that users do not need to install the
Autotools to do that: all they need is a shell and make, along with the tools needed to
build the software itself.
Unfortunately, no release of libchop had been published as a source tarball back then.
Thus, we had to build it from a version-control checkout, which requires the Autotools
so we can generate the configure script and related files. The author quickly found
out that building the 2006 libchop would also require building versions of Autoconf, Au-
tomake, and Libtool that were current back then since today s̓ versions are incompatible.
Fortunately, the “downgrade cascade” stops here.

Figure 1. Dependency graph for the 2006 revision of libchop.
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The Guix-Past channel for GNUGuix was developed to provide reproducible, unambigu-
ous definitions for all these software packages: https://gitlab.inria.fr/guix-hpc/guix-past. It
provides a 2006 revision of libchop, along with 2006 versions of the aforementioned soft-
ware. This channel can be used with today s̓ Guix, bringing software from the past to
the present. The libchop revision was chosen as dating to right before the submission
of the paper for the European Dependable Computing Conference (EDCC), where it was
eventually presented.
The resulting dependency graph—packages needed to build this libchop revision—is of
coursemore complex. It is shown in Figure 1 for reference (the reader is invited to zoom
in or use a high-resolution printer). It is interesting to see that it is a unique blend of
vintage 2006 packages with 2020 software. Section 4 will get back to this graph.
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Table 1. File sets.

Name Size Files Average Size
Lout (versions 3.20 to 3.29) 76 MiB 5,853 13 KiB
Ogg Vorbis files 32 MiB 10 3 MiB
mbox-formatted mailbox 8 MiB 1 8 MiB

Table 2. Storage pipeline configurations benchmarked.

Config. Single Instance? Chopping Algo. Block Size Input Zipped? Blocks Zipped?
A1 no — — yes —
A2 yes — — yes —
B1 yes Manber s̓ 1024 B no no
B2 yes Manber s̓ 1024 B no yes
B3 yes fixed-size 1024 B no yes
C yes fixed-size 1024 B yes no

3 Running the Benchmarks

Section 4.2 of the original paper1 evaluates the efficiency and computational cost of
several storage pipelines, on different file sets, each involving a variety of compression
techniques.

3.1 Input File Sets
Figure 3 of the original article describes the three file sets used as input of the evaluation.
Of these three file sets, only the first one could be recovered precisely: it is source code
publicly available from https://download.savannah.gnu.org/releases/lout and in the Software
Heritage archive. The two other file sets were not publicly available. With the infor-
mation given in the paper, we decided to use similar file sets, publicly available this
time. For the “Ogg Vorbis” file set, we chose freely-redistributable files available from
https://archive.org/download/nine_inch_nails_the_slip/. For the “mailbox” file set, we chose an
mbox-formatted monthly archive of the guix-devel@gnu.orgmailing list.
Table 1 summarizes the file sets used in this replication. This is an informal description,
but rest assured: Section 4 will explain the “executable specification” of these file sets
that accompanies this article.

3.2 Evaluation Results
Like in the original article, we benchmarked the configurations listed in Table 2. Run-
ning the benchmarking scripts using the libchop revision packaged earlier revealed a
crash for some of the configurations. Fortunately, that problem had been fixed in later
revisions of libchop, and we were able to “backport” a small fix to our revision (most
likely, the bug depended on other factors such as the CPU architecture and libc version
and did not show up back in 2006).
The original benchmarks run on a PowerPC G4machine running GNU/Linux. This time,
we ran them on an x86_64 machine with an Intel i7 CPU at 2.6 GHz (the author play-
fully started looking for a G4 so that even the hardware setup could be replicated, but
eventually gave up). The benchmarking results in Figure 5 of the original paper1 were
squashed in a single, hard-to-read chart. Here we present them as two separate figures:
Figure 2 shows the space savings (ratio of the resulting data size to the input data size)
and Figure 3 shows the throughput of each storage pipeline, for each file set.
The space savings in Figure 2 are about the same as in the original article, with one ex-
ception: the “mailbox” file set has noticeably better space savings in configurations A1
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Figure 2. Ratio of the resulting data size to the input data size (lower is better).
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and C this time. This could be due to the mailbox file chosen in this replication exhibit-
ing more redundancy; or it could be due to today s̓ zlib implementation having different
defaults, such as a larger compression buffer, allowing it to achieve better compression.

Figure 3. Throughput for each storage pipeline and each file set (higher is better).
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The throughput shown in Figure 3 is, not surprisingly, an order of magnitude higher
than that measured on the 2006-era hardware. The CPU cost of configurations relative
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to one another is close to that of the original paper, though less pronounced. For ex-
ample, the throughput for B2 is only half that of A1 in this replication, whereas it was
about a third in the original paper. There can be several factors explaining this, such as
today s̓ compiler producing better code for the implementation of the “chopper” based
on Manber s̓ algorithm in libchop, or very low input/output costs on today s̓ hardware
(using a solid-state device today compared to a spinning hard disk drive back then).
Overall, the analysis in Section 4.2.2 of the original paper remains valid today. The part
of evaluation that relates to the CPU cost is, as we saw, sensitive to changes in the un-
derlying hardware. Nevertheless, the main performance characteristics of the different
configurations observed in 2006 remain valid today.

4 Reproducing this Article

We were able to replicate experimental results obtained thirteen years ago, observing
non-significant variations. Yet, this replication work highlighted the weaknesses of the
original work, which fall into three categories:

1. Lack of a properly referenced public archive of the input data.

2. Gaps in the document authoring pipeline: running the benchmarks was fully au-
tomated thanks to the scripts mentioned earlier, but the figure that appeared in
the 2006 paper was made “by hand” from the output produced by the script.

3. Lack of a way to redeploy the software stack: the 2006 article did not contain refer-
ences to software revisions and version numbers, let alone a way to automatically
deploy the software stack.

This section explains how we addressed, in a rigorous and reproducible way, all these
issues.

4.1 Deploying Software
The original paper lacked references to the software. Figure 1 here provides much infor-
mation, but how useful is it to someone trying to redeploy this software stack? Sure it
contains version and dependency information, but it says nothing about configuration
and build flags, about patches that were applied, and so on. It also lacks information
about dependencies that are considered implicit such as the compiler tool chain. This
calls for a formal and executable specification of the software stack.
As mentioned in Section 2, we defined all the software stack as Guix packages: most
of them pre-existed in the main Guix channel, and old versions that were needed were
added to the new Guix-Past channel. By specifying the commits of Guix and Guix-Past
of interest, one can build the complete software stack of this article. For example, the
instructions below build the 2006 revision of libchop alongwith its dependencies, down-
loading pre-built binaries if they are available:

git clone https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
cd edcc-2006-redone
guix time-machine -C channels.scm -- build libchop@0.0

The file channels.scm above lists the commits of Guix and Guix-Past to be used. Thus,
recording the commit of edcc-2006-redone that was used is all it takes to refer unam-
biguously to this whole software stack.
The key differences compared to a “container image” are provenance tracking and repro-
ducibility. Guix has a complete view of the package dependency graph; for example,
Figure 1 is the result of running:
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guix time-machine -C channels.scm -- graph libchop@0.0 \
| dot -Tpdf > graph.pdf

Furthermore, almost all the packages Guix provides are bit-reproducible: building a
package at different times or on different machines gives the exact same binaries (there
is a small minority of exceptions, often packages that record build timestamps).
Last, each package s̓ source code is automatically looked up in Software Heritage should
its nominal upstream location become unreachable.

4.2 Reproducible Computations
Often enough, software deployment is treated as an activity of its own, separate from
computations and from document authoring. But really, this separation is arbitrary: a
software build process is a computation, benchmarks like those discussed in this paper
are computations, and in fact, the process that produced the PDF file you are reading is
yet another computation.
The author set out to describe this whole pipeline as a single dependency graph whose
sink is the LATEX build process that produces this PDF. The end result is that, from a
checkout of the edcc-2006-redone repository, this PDF, and everything it depends on
(software, data sets, benchmarking results, plots) can be produced by running:

guix time-machine -C channels.scm -- build -f article/guix.scm

Thefilesguix.scm andarticle/guix.scmdescribe the dependency graph above lib-
chop. Conceptually, they are similar to amakefile and in fact, part of article/guix.scm
is a translation of the makefile of the ReScience article template. Using the Scheme pro-
gramming interfaces of Guix and its support for code staging, which allows users to write
code staged for eventual execution6, these files describe the dependency graph and, for
each node, its associated build process.
For the purposes of this article, we had to bridge the gap from the benchmarking scripts
to the actual plots by implementing a parser of the script s̓ standard output that would
then feed it to Guile-Charting, the library used to produce the plots. They are chained
together in the top-level guix.scm file. The graph in Figure 1 is also produced auto-
matically as part of the build process, using the channels specified in channels.scm.
Thus, it is guaranteed to describe precisely to the software stack used to produce the
benchmark results in this document.
What about the input data? Guix origin records allow us to declare data that is to be
downloaded, along with the cryptographic hash of its content—a form of content address-
ing, which is the most precise way to refer to data, independently of its storage location
and transport. The three file sets in Figure 1 are encoded as origins and downloaded
if they are not already available locally.

Listing 1. Representation of a content-addressed Git checkout.

(define rescience-template
(origin

(method git-fetch)
(uri (git-reference

(url ”https://github.com/rescience/template”)
(commit ”93ead8f348925aa2c649e2a55c6e16e8f3ab64a5”)))

(sha256
(base32 ”10xrflbkrv6bq92nd169y5jpsv36dk4i6h765026wln7kpyfwk8j”))))

As an example, Listing 1 shows the definition of a Git checkout. The origin form
specifies the expected SHA256 content hash of the checkout; thus, should the upstream
repository be modified in place, Guix reports it and stops. Guix transparently fetches
the specified commit from the Software Heritage archive if the upstream repository is
unavailable and, of course, assuming it has been archived.
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4.3 Discussion
The techniques described above to encode the complete document authoring pipeline
as a fully-specified, executable and reproducible computation, could certainly be ap-
plied to a wide range of scientific articles. We think that, at least conceptually, it could
very much represent the “gold standard” of reproducible scientific articles. Neverthe-
less, there are three points that deserve further discussion: handling input data, dealing
with non-deterministic computations, and dealing with expensive computations.
Our input file sets were easily handled using the standard Guix origin mechanism
because they are relatively small and easily downloaded. This data is copied as content-
addressed items in the “store”, which would be unsuitable or at least inconvenient for
large data sets. Probably some “out-of-band” mechanism would need to be sought for
those data sets—similar to howGit-Annex provides “out-of-band” data storage integrated
with Git. As an example, the developers of the Guix Workflow Language7 (GWL), which
is used for bioinformatics workflows over large data sets, chose to treat each process
and its data outside standard Guix mechanisms.
The second issue is non-deterministic byproducts like the performance data of Figure 3.
That information is inherently non-deterministic: the actual throughput varies from
run to run and frommachine to machine. The functional model implemented in Guix5
is designed for deterministic build processes. While it is entirely possible to include
non-deterministic build processes in the dependency graphwithout any practical issues,
there is some sort of an “impedance mismatch”. It would be interesting to see whether
explicit support for non-deterministic processes would be useful.
Last, the approach does not mesh with long-running computations that require high-
performance computing (HPC) resources. Again, some mechanism is needed to bridge
between these necessarily out-of-band computations and the rest of the framework. The
GWL provides preliminary answers to this question.

5 Related Work

Software engineering around “reproducible research” in a broad sense is a fast-moving
field. Researchers interested in reproducibility these days are often familiar with tools
such as Docker, Jupyter, and Org-Mode. This section explains how Guix and the tech-
nique described in Section 4 relates to these other tools and approaches.
First, it is worth noting that these tools are not concerned with supporting reproducible
computations in general: Docker focuses on software deploymentwhereas Jupyter Note-
book focuses on document authoring. Conversely, our work in this article is about
achieving reproducibility and provenance tracking end to end.
Docker and similar “container tools”, such as Singularity, really combine two tools: one
to build “application bundles” (or “container images”), and one to run the software con-
tained in such bundles. The latter is a thin layer above virtualization mechanisms built
into the kernel Linux (in particular “namespaces”), which provides much welcome flex-
ibility to users. The former is about provisioning those container images, and we think
it hinders provenance tracking and reproducibility.
As an example, the “source code” of a container image built with Docker is a “Docker
file”. Docker files start by importing an existing container image, which contains pre-
built software. This starting point already loses the connection to source code. Docker
files go on by listing commands to run to install additional software in the image. Those
commands typically download additional pre-built binaries from external servers. Con-
sequently, the result of those commands depends on external state; it may vary over
time, or even fail. In other words, Docker files describe non-reproducible computations
and are opaque.
At the other end of the spectrum, Jupyter Notebook and Jupyter Lab support literate
programming, like Org-Mode. Users can write documents that interleave a narrative
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and code snippets; Jupyter takes care of evaluating those code snippets and presenting
their result in the document. Jupyter focuses on document authoring, leaving software
deployment as an exercise for the user. For example, to evaluate a Jupyter notebook that
contains Python code using the NumPy library, the user must install the right version
of Python and NumPy. A common approach is to ship Docker containers that contain
Jupyter Notebook and all the necessary dependencies, often delegating it to services
such as https://mybinder.org/. With Guix-Jupyter, we proposed a different approach where
users annotate notebooks with information about their software dependencies, which
Guix automatically deploys in a reproducible fashion8.
End-to-end documentation authoring pipelines have previously been explored from dif-
ferent angles notably with ActivePapers framework9, Maneage10,11, by combining liter-
ate programmingwithOrg-Mode and version controlwithGit12, andby combining scien-
tific pipelines and a LATEXpipeline in Docker images13. Maneage is one of the few efforts
to consider software deployment as part of the broader scientific authoring pipeline.
However, software deployed with Maneage relies on host software such as a compila-
tion tool chain, making it non-self-contained; it also lacks the provenance tracking and
reproducibility benefits that come with the functional deployment model implemented
in Guix. Reconciler13 connects the scientific software workflow to the document au-
thoring pipeline through two distinct Docker images. It provides a way to check that
the end result (the PDF) is bit-for-bit reproducible. Guix can check for the reproducibil-
ity of each computation—package builds, benchmark runs, LATEXpipeline—through its
--check command-line option.

6 Conclusion

We are glad to report that we were able to replicate the experimental results that appear
in our thirteen-year-old article and that its conclusions in this area still hold1. But really,
truth be told, the replication was also an excuse to prototype an end-to-end reproducible
scientific pipeline—from source code to PDF.
We hope our work could serve as the basis of a template for reproducible papers in the
spirit of Maneage. We are aware that, in its current form, our reproducible pipeline
requires a relatively high level of Guix expertise—although, to be fair, it should be com-
paredwith thewide variety of programming languages and tools conventionally used for
similar purposes. We think that, with more experience, common build processes and
idioms could be factorized as libraries and high-level programming constructs, making
it more approachable.
This articlewas built fromcommitcf110733aa03c2cf9c1051bb6a2c1ae8562c35c2
of the edcc-2006-redone repository. It is interesting to see that this single Git com-
mit identifier, which can be looked up on Software Heritage, is enough to refer to whole
pipeline leading to this article! We look forward to a futurewhere reproducible scientific
pipelines become commonplace.
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