
R E S C I E N C E C
Reproduction / Ten Years Reproducibility Challenge

[Rp] LOUPE

Nicolas P. Rougier1,2,3, ID
1INRIA Bordeaux Sud-Ouest, Bordeaux, France – 2LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre
National de la Recherche Scientifique, UMR 5800, Talence, France – 3Institut des Maladies Neurodégénératives, Université
de Bordeaux, Centre National de la Recherche Scientifique, UMR 5293, Bordeaux, France

Edited by
Konrad Hinsen ID

Reviewed by
Bruno Levy

Received
01 January 2020

Published
09 June 2020

DOI
10.5281/zenodo.3886628

Abstract Reproduction of N. P. Rougier. “LOUPE.” In: Tremplin Micro 19 (Mar. 1988), pp.
60–61 for the Ten Years Reproducibility Challenge.

Introduction

I publishedmy very first (non‐scientific) article1 in a FrenchMagazine named “Tremplin
Micro” in 1988, 32 years ago. It was a programwritten in Applesoft Basic that zoomed out
a 21×21 pixels area of an image by a factor 4 (not very impressive by 2020 standards). As
written in the original “cover” letter I sent, the zoom was also very slow. At that time, I
was learning 6502 assembler but I was not proficient enough to write the program using
it. Thirty‐two years might appear a relatively small lapse of time compared to Human
history, but for digital computer history, this is actually huge, almost half of its history.
Imagine that the Apple //e was using a 6502 microprocessor with a 8‐bits data bus, had
64Ko of RAM and the speed was barely 1Mhz. The text modes were 40 or 80 columns,
and the video modes include a standard graphic mode (140x96 pixels, 16 colors) or an
impressive high‐resolution mode (280x192 pixels, 6 colors). Despite these apparent lim‐
itations, the Apple //e has been a very popular machine complemented by an extended
software library. For the Ten Years Reproducibility Challenge, I thus decided to try to re‐

Figure 1. Scans of the original magazine TremplinMicro N◦19 (cover page, pages 60 and 61), kindly
provided by the Internet Archive.

run the original program, just for the sake of checking if I could. This includes finding

Copyright © 2020 N.P. Rougier, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Nicolas P. Rougier (Nicolas.Rougier@inria.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/rougier/TYRC-apple.

ReScience C 6.1 (#3) – Rougier 2020 1

https://orcid.org/0000-0002-6972-589X
https://orcid.org/0000-0003-0330-9428
https://rescience.github.io/ten-years/
https://en.wikipedia.org/wiki/Applesoft_BASIC
https://archive.org/details/tremplin_micro_newsletter_issue_19
mailto:Nicolas.Rougier@inria.fr
https://github.com/rougier/TYRC-apple
https://rescience.github.io/

[Rp] LOUPE

the sources (in a usable form), remembering how to load and start a program in Apple‐
soft, producing some original data (image) to test the program, and of course, checking
if it was running as expected.

The soft path (using an Apple //e emulator)

Looking for the sources
I had, of course, lost track of the original sources that were saved on 51/4 floppies and
my only hope was internet. I remembered having stumbled upon the website Abandon‐
ware magazines who collect scans of French Magazine and including “Tremplin Micro”.
(see Retromags for English magazines). Unfortunately, the “Tremplin Micro” collection
was not complete and I could not find the issue where my article has been published.
Fortunately, I soon discovered other sources1 and managed to find the issue 19 (see fig‐
ure 1).

Transcription of the sources
Even before asking how to run the sources, I started transcribing the scan into a usable
form (i.e. a text file) and this is the time I realized I did not know what were the orange
hexadecimal numbers for (at the right of each line). I suspected this was some sort of
checksum for controlling if what you type is correct but I had a hard time finding the
explanation on how to compute them. I finally located the explanation on the page 2 of
issue 10. This requires an additional program that I did not have and I would thus not
be able to control what I type.

The second problem was the series of hexadecimal numbers on page 61. The text reads
Don’t forget these few bytes for draw and xdraw. What does that mean? Again, I searched
online for help and found that the way to use these number is to write them directly in
memory. This requires to entering the monitor mode using the call -151 subroutine
(exit with 3DOG or Ctrl + C followed by) and type the actual hexadecimal numbers.
For changing memory, you have to type something like:

] call -151
* 6000.6010: 02 00 06 00 54 00 2D ...
...
* 6050.605D: ...
* Ctrl + C
] BSAVE ”ST.CARRE”,A$6000,L$5D

Since at that time I had no access to amachine, I just copied the bytes using anhex editor
and saved the result in a file named ST.CARRE. At this point, I had the two source files,
it was time to also get some image.

Generating the data (image)
For the data, I could have browsed online for some vintage Apple //e image, but I de‐
cided instead to try to generate my own data in the native format. I targeted the High‐
Resolution Graphics (HGR) mode that has a resolution of 280×192 pixels using 6 colors
(with some restriction on color placement though). The corresponding file format is re‐
ally peculiar and I did not want to write my own converter. Luckily enough, I found the
tohgr converter (available onmac from the appleii homebrew tap). This converter takes

1http://www.apple-iigs.info/revuetremplinmicro.php and https://archive.org/details/tremplin_micro

ReScience C 6.1 (#3) – Rougier 2020 2

https://www.abandonware-magazines.org/
https://www.abandonware-magazines.org/
https://www.retromags.com/
https://archive.org/details/tremplin_micro_newsletter_issue_10/page/n3
https://archive.org/details/tremplin_micro_newsletter_issue_10/page/n3
https://en.wikipedia.org/wiki/Apple_II_graphics
https://en.wikipedia.org/wiki/Apple_II_graphics
http://wsxyz.net/tohgr.html
https://github.com/lifepillar/homebrew-appleii
https://brew.sh/
http://www.apple-iigs.info/revuetremplinmicro.php
https://archive.org/details/tremplin_micro
https://rescience.github.io/

[Rp] LOUPE

care of rescaling and dithering and also produce a PNG image showing the result of the
conversion (see figure 2).

Figure 2. PNG black and white image (left) converted to the HGR format (center: monochrome,
right: color) by the tohgr program using Floyd‐Steinberg dithering.

Running the program
In order to runmy Applesoft Basic program, I immediately thought that I would need an
emulator and this is when I discovered the huge online community that exists around
the apple //e. You have plenty of emulators available and some of them can even be ran
online through the MAME emulator (see for example Karateka by Jordan Mechner or
Ultima I by Richard Garriott). There even exist pure Applesoft Basic emulators2 but it
is not clear how do they interact with the machine hardware. I chose to use the Virtual
][by Gerard Putter who is one of the most complete and versatile apple //e emulator.
More precisely, it allows to mount a folder as a regular disk and this offered me a way
to transfer my transcribed and generated files to the emulated machine. I then load
my text file into memory using command ”LOAD LOUPE.TXT” and it did not work, the
emulated machine choked on loading the file (I realized later that the Applesoft Basic
program were saved in a tokenized format and I should have used the READ command
instead). I then tried to directly type the source on the command line by copy pasting
the source. To do that, I had to transform the source such as to have every code line to fit
on a single line. After doing this, I tried to run the program using the ”RUN” command
and I immediately get my first ”SYNTAX ERROR”message (from a long suite of future
errors) accompanied by the characteristic beep signaling an error. Most probably I did
not transcribed the scan properly and I introduced some errors.

Figure 3. The LOUPE program as originally distributed by the magazine on the accompanying
floppy disks. Left: main menu (LOUPE is choice N), Center: selection of the region to zoom (use
H I J K for moving the region and <space> for zooming out the region), Right: zoom of the

selected region.

Then it stroked me (rather lately) than the original magazine certainly had accompany‐
ing floppies to save the time of typing listings for the readers. Consequently, I searched
online for the missing floppies and to my great enjoyment, I located them in one of the
biggest archive for the Apple //e (ftp.apple.asimov.net) that is archived at the Internet

2See for example https://www.calormen.com/jsbasic/

ReScience C 6.1 (#3) – Rougier 2020 3

https://www.mamedev.org/
https://archive.org/details/Karateka_1984_Broderbund
https://en.wikipedia.org/wiki/Jordan_Mechner
https://archive.org/details/Ultima_I_1981_California_Pacific_Computer
https://en.wikipedia.org/wiki/Richard_Garriott
http://www.virtualii.com/
http://www.virtualii.com/
https://mirrors.apple2.org.za/ftp.apple.asimov.net/images/non-english/french/tremplinmicro/tremplinmicro_19_disks.zip
https://mirrors.apple2.org.za
https://archive.org/details/ftp.apple.asimov.net
https://archive.org/details/ftp.apple.asimov.net
https://rescience.github.io/

[Rp] LOUPE

Archive (143Go). The legal status of this archive is not clear but it seems to be somehow
tolerated and Iwas able to located themissing floppy saved in the common and standard
dsk format for emulators. I then inserted the disk into the fake drive and I was able to
run the program I wrote 32 years ago (see figure 3). Here is the full listing (enforcing the
weird and original formatting):

100 HOME
105 DIM A$(22)
110 ONERR GOTO 410
115 HGR: POKE 49234,0
120 SCALE=1: ROT=0: HCOLOR=3
125 PRINT CHR$ (21)
130 X = 140: Y = 80: I = 7
135 POKE 232,0: POKE 233,96
140 PRINT CHR$ (4);”BLOAD ST.C

ARRE”
145 PRINT CHR$ (4);”BLOAD GR0,

A$2000”
150 GOTO 210
155 IF PEEK (- 16384) > 128 T

HEN GOTO 165
160 GOTO 155
165 GET G$
170 XDRAW 1 AT X,Y
175 IF G$ = CHR$ (32) THEN 220
180 IF G$ = ”K” THEN Y = Y + 1
185 IF G$ = ”I” THEN Y = Y - 1
190 IF G$ = ”L” THEN X = X + I
195 IF G$ = ”J” THEN X = X - I
200 IF Y < 0 OR Y > 179 THEN Y

= 0
205 IF X < 0 OR X > 279 THEN X

= 0
210 XDRAW 1 AT X,Y
215 GOTO 165
220 X1 = X / 7
225 HGR2

230 Y2 = 0:X2 = 0
235 FOR L = Y - 21 TO Y:C = X1:

GOSUB 275
240 FOR C = 0 TO 2:PE = PEEK (

PK + C): GOSUB 315:A$(L-(
Y - 21)) = A$ + A$(L -(Y-
21)):NEXT C

245 GOSUB 355
250 NEXT L
255 GOSUB 355
260 :
265 REM ROUTINE D’ADR HGR
270 :
275 A = INT (L / 8)
280 LP = L - A * 8: NG = INT (A

/ 8):NP = A - NG * 8:PK = 4
0 * NG + NP * 120 + LP * 96
0 + C

285 NB = INT (PK / 120):PK = P
K + NB * 8

290 PK = PK + 8192
295 RETURN
300 :
305 REM DEC EN BINAIRE
310 :
315 A$ = ””
320 FOR QW = 1 TO 8
325 GHJ = 2 ^ (8 - QW)
330 IF PE - GHJ > = 0 THEN A$

= A$ + ”1”:PE = PE - GHJ: G
OTO 340

335 A$ = A$ + ”0”
340 NEXT
345 A$ = MID$ (A$,2,7)
350 RETURN
355 I = (L - (Y - 21))
360 IF A$(I) = ”00000000000000

0000000” THEN 385
365 FOR J = 21 TO 1 STEP - 1
370 Z = Z + 1
375 IF MID$ (A$(I),J,1) = ”1”

THEN XDRAW 2 AT Z * 6,40 +
(I * 5)

380 NEXT J
385 Z = 0
390 RETURN
395 :
400 REM FIN
405 :
410 CALL - 198: GET R$
415 POKE 49236,0: POKE 49235,0
420 HOME : VTAB 22: PRINT ”(M)E

NU (A)PPLESOFT (E)NCORE ”;:
GET R$:

425 IF R$ = ”M” OR R$ = ”m” THE
N PRINT CHR$(4) ”RUN MENU”

430 IF R$ = ”E” OR R$ = ”e” THE
N RUN

435 IF R$ < > ”A” AND R$ < >
”a” THEN 410

440 HOME: TEXT

Making a floppy image
The last step in my journey was to make a bootable floppy image that could be used by
a neophyte user. This took me some time to find the relevant command (INIT HELLO)
for making a bootable disk (that executes the HELLO program when booted). With the
help of the Virtual][emulator, it was then easy to convert the mounted folder into a dsk
image which is one the standard disk format for the Apple //e. The image is provided
in the GitHub repository and can be ran with the excellent Apple//jse emulator by Will
Scullin. You should obtain the results shown on figure 4.

Figure 4. Screenshots of the final floppy image with the LOUPE program. The image can be used
with most Apple //e emulators.

The hard path (using a vintage apple //e machine)

Once I’ve produced the disk image, I decided I could try to write it onto a real floppy
since it happens that I’ve a vintage Apple //e machine in my office. First thing to do was
to find a 51/4 floppy drive that can be connected through amodern interface such as USB.
Surprisingly enough, there are none, or at least, I did not find them. The solution was
then to connect one of the external drive of theApple //e to theUSBport using an external
controller. I found the Applesauce floppy drive controller with the associated software

ReScience C 6.1 (#3) – Rougier 2020 4

https://mirrors.apple2.org.za/ftp.apple.asimov.net/images/non-english/french/tremplinmicro/
http://fileformats.archiveteam.org/wiki/DSK_(Apple_II)
https://www.scullinsteel.com/apple/e
https://en.wikipedia.org/wiki/History_of_the_floppy_disk
https://applesaucefdc.com/
https://rescience.github.io/

[Rp] LOUPE

to be among the best (and probably one of the most expensive) solution. Second step
was to acquire “brand new” floppy disks and again, I was surprised, but this time, by the
plethora of vintage floppies you can buy online. I bought a box of 10 floppies dated back
to 1992. I then wrote the image to one floppy (three times in a row because the floppy
were quite old) and I booted the machine with the floppy. The final result is shown on
figure 5.

Figure 5. The original LOUPE program running on a vintage Apple //e with brand new data

Of course, and because I now had a usable drive, I search thoroughly for my original
floppies and eventually found them. Even after having spent 30 years in a non‐heated
attic while being loosely protected,most of themwere still readable. I found the original
sources of the LOUPE program as well as earlier versions using a primitive versioning
system (LOUPE1.BAS and LOUPE2.BAS, etc).

I can now declare my challenge completed and successful!

Usage
If you want to quickly test the program, go to the Apple2JS emulator website and load
the disk image available from https://github.com/rougier/TYRC-apple and follows on‐screen
instructions.

Discussion

Even though the original article was not scientific, the experience was nonetheless chal‐
lenging, interesting and instructive. Challenging because I barely remembered most of
the commands I used to type all night long 32 years ago but, as soon as I started to play
again with the emulator, I rapidly recover most of my old habits. For the rest, there are
the various pieces of documentation you can easily find online, from the scan of the
original documentations accompanying the Apple //e, the various books that have been
written on the matter, the various Wikipedia dedicated pages and the incredibly large
number of resources that have been written by Apple enthusiasts. Taken together, this
represents a precious knowledge for the future.

It was also quite interesting, as well as really surprising, to discover that hardware is
still being developed for this 40 years old (but quite) robust machine. For example,

ReScience C 6.1 (#3) – Rougier 2020 5

https://www.scullinsteel.com/apple2/
https://github.com/rougier/TYRC-apple
https://rescience.github.io/

[Rp] LOUPE

the floppy drive controller I’ve acquired has been released in 2018 and website such as
a2heaven.com are still developing news cards for the hobbyists. Furthermore, the ma‐
chine in my office is working like a charm and most of the floppies I tried to run have
been working without a glitch. It seems that floppy disks area actually quite a reliable
storage medium. According to the Software Preservation Society, their lifespan ranges
from 10 to 30 years depending on storage condition2. From my own experience, I can
only confirm these numbers.

The whole experience has been also quite instructive when compared to modern re‐
search practices. Despite minor problems, my experience has been rather smooth (and
fun) and I think themain reason for such smoothness lies in the closed and frozennature
of the target. Applesoft Basic was proprietary and there have been only two versions, the
first one was on tape and available with the original Apple II while the second andmore
widespread version was either built into the ROMof (since the][+) or available with DOS
3.3 and ProDOS’s BASIC.SYSTEM. This means the syntax of the Applesoft Basic never re‐
ally changed over (almost) 15 years, from 1979 to 1993 when Apple stopped shipping the
Apple II. Same is true for the 6502 microprocessor that only evolved to the 65C02 with
the Apple IIc but remains largely compatible with the 6502. Such stability undoubtedly
gave time to developpers to really exploit themachine and pushed it to its limits. See for
example the Mining Bitcoin on an Apple II, a highly impractical guide. If you compare
this non‐evolutive platform to the current situation of programming languages (where
it is not rare to have several minor releases in a year with potential deprecations), you
cannot help to think that doing the same challenge ten years from now will be much
more difficult.

Finally, I cannot help to compare Applesoft Basic with the Python language whose ver‐
sion 2 will hit end of life on January 1, 2020. Of course, we’ve been warned a long time
ago and we had plenty of time to prepare for the change. But still, it will undoubtedly
break things in the short term and probably evenmore things in the long term. And yet,
this end of lifemight be a good thing for Science becausewe nowhave at our disposal an
advanced programming language that is guaranteed not to evolve anymore (i.e. Python
2.7). We may very well have a modern equivalent of the late Applesoft Basic that proved
itself to be a highly fertile ground for development. Of course, we won’t benefit from the
latest andmost advanced features of Python 3, but do we really need them? Considering
myself as a Scientific Python expert, I know that I’m not using 90% of the Python 3 new
features and I suspect I’m not the only one. Overall, a dead language such a Python 2
might represent a real opportunity for Science. Who knows?

Resources

Here is a partial list of resources I’ve used during the Challlenge:
• Virtual][: application that emulates the vintage Apple II computer (Mac).
• Applesauce: floppy drive controller for Apple][5.25″ drive (Mac).
• Apple II disk browser: browser content of disk images.
• ftp.apple.asimov.net: main repository of disk images for the Apple 2.
• tohgr: convert images in PNG/JPG format to Apple II images.

References

1. N. P. Rougier. “LOUPE.” In: Tremplin Micro 19 (Mar. 1988), pp. 60–61.
2. H. Lowood, D. Monnens, Z. Vowell, J. E. Ruggill, K. S. McAllister, and A. Armstrong. “Before It’s Too Late: A

Digital Game Preservation White Paper.” In: American Journal of Play 2.2 (Oct. 2009).

ReScience C 6.1 (#3) – Rougier 2020 6

https://www.a2heaven.com
http://www.softpres.org/
https://retroconnector.com/mining-bitcoin-on-an-apple-ii-a-highly-impractical-guide/
http://www.virtualii.com/
https://applesaucefdc.com/
https://github.com/dmolony/DiskBrowser
https://mirrors.apple2.org.za/ftp.apple.asimov.net/
http://wsxyz.net/tohgr.html
https://rescience.github.io/

