
ENVRI-FAIR DELIVERABLE

 ENVRI-FAIR (www.envri-fair.eu) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 824068

D9.3
RIs technical specification

Work Package WP9

Lead partner IFREMER

Status Reviewed

Deliverable type Report

Dissemination level Public

Due date 31-03-2020

Submission date 19-05-2020

Deliverable abstract

The overarching goal of ENVRI-FAIR is that all participating research infrastructures (RIs) will improve

their FAIRness and become ready for connection of their data repositories and services to the European

Open Science Cloud (EOSC). Deliverable 9.1 has reported on the roadmap of the RIs in the marine

subdomain towards improving their FAIRness. It presented the approach of using FAIR questionnaires

(together with WP5) to identify the strengths and weaknesses of each RI and a first indicative set of

activities to improve identified weaknesses or gaps. After formulation in Deliverable D9.2 of

implementation plans for mitigating these gaps during the next phase of the ENVRI-FAIR project, the RIs

in the marine subdomain have specified the technical implementation in this Deliverable D9.3

http://www.envri-fair.eu/

ENVRI-FAIR DELIVERABLE D9.3 2 / 90

DELIVERY SLIP

DELIVERY LOG

Issue Date Comment Author

V 0.1 19-12-2019 Draft with template for Deliverable 9.3 V. Harscoat, T.

Carval

V0.9 06-03-2020 internal review version T. Carval

V0.9 18-03-2020 internal review Z. Zhao

A. Vermeulen

DOCUMENT AMENDMENT PROCEDURE
Amendments, comments and suggestions should be sent to the Project Manager at

manager@envri-fair.eu.

GLOSSARY
A relevant project glossary is included in Appendix 1. The latest version of the master list of the

glossary is available at http://doi.org/10.5281/zenodo.3465753.

PROJECT SUMMARY
ENVRI-FAIR is the connection of the ESFRI Cluster of Environmental Research Infrastructures

(ENVRI) to the European Open Science Cloud (EOSC). Participating research infrastructures (RI) of

the environmental domain cover the subdomains Atmosphere, Marine, Solid Earth and Biodiversity /

Ecosystems and thus the Earth system in its full complexity.

The overarching goal is that at the end of the proposed project, all participating RIs have built a set of

FAIR data services which enhances the efficiency and productivity of researchers, supports innovation,

enables data- and knowledge-based decisions and connects the ENVRI Cluster to the EOSC.

This goal is reached by: (1) well defined community policies and standards on all steps of the data life

cycle, aligned with the wider European policies, as well as with international developments; (2) each

participating RI will have sustainable, transparent and auditable data services, for each step of data life

cycle, compliant to the FAIR principles. (3) the focus of the proposed work is put on the

implementation of prototypes for testing pre-production services at each RI; the catalogue of prepared

services is defined for each RI independently, depending on the maturity of the involved RIs; (4) the

complete set of thematic data services and tools provided by the ENVRI cluster is exposed under the

EOSC catalogue of services.

 Name Partner Organization Date

Main Authors Peter Thijsse

Katrina Exter

Alex Vermeulen

Benjamin Pfeil

Thierry Carval

Ivan Rodero

MARIS

LifeWatch-ERIC

ICOS ERIC

UIB

IFREMER

EMSO ERIC

Contributing Authors Valérie Harscoat Ifremer

Reviewer(s) Alex Vermeulen

Zhiming Zhao

ICOS ERIC

UvA

Approver Andreas Petzold FZJ

mailto:manager@envri-fair.eu
http://doi.org/10.5281/zenodo.3465753

ENVRI-FAIR DELIVERABLE D9.3 3 / 90

TABLE OF CONTENTS

1 Introduction ... 7

1.1 Context ... 7

1.2 Scope .. 7

2 ICOS-marine technical specification ... 9

2.1 Overview .. 9

2.1.1 Scope for the RI ... 9
2.1.2 Summary of the technical implementation ... 9
2.1.3 Planning for delivery .. 10

3 LifeWatch/VLIZ technical specification ... 10

3.1 Overview .. 10

3.1.1 Scope for the RI ... 10
3.1.2 Summary of the technical implementation ... 11
3.1.3 Planning for Delivery ... 11

3.2 IMIS and MDA .. 12

3.2.1 Description ... 12
3.2.2 Features .. 13

3.2.2.1 Feature 1 : Set up formal PID management for metadata... 13
3.2.2.2 Feature 2 : Broaden metadata fields and ontologies ... 13
3.2.2.3 Feature 3 : Broaden metadata schemas... 13
3.2.2.4 Feature 4 : Standardise m2m search webservices... 13
3.2.2.5 Feature 5 : Improve compliance with google datasets search 14
3.2.2.6 Feature 6 : Add a m2m harvesting of IMIS .. 14
3.2.2.7 Feature 7 : M2M interaction with MDA .. 14

3.2.3 External interface ... 14
3.2.4 Nonfunctional requirements ... 15

3.3 LifeWatch ERIC catalogue... 15

3.3.1 Description ... 15
3.3.2 Features .. 16

3.3.2.1 Feature 1 : Ecoportal catalogue of semantic objects .. 16
3.3.2.2 Feature 2 : LifeBlock .. 16
3.3.2.3 Feature 3 : Catalogue interoperability .. 17

3.3.3 External interface ... 17
3.3.4 Nonfunctional requirements ... 17

4 EMSO ERIC technical specification ... 18

4.1 Overview .. 18

4.1.1 Scope for the RI ... 18
4.1.2 Summary of the technical implementation ... 18
4.1.3 Planning for delivery .. 19

4.2 EMSO ERIC API ... 19

4.2.1 Description ... 19
4.2.2 Features .. 20

4.2.2.1 Feature 1: Authentication ... 20
4.2.2.2 Feature 2: Metadata .. 20
4.2.2.3 Feature 3: Vocabulary .. 21
4.2.2.4 Feature 4: Data ... 21
4.2.2.5 External interface ... 21
4.2.2.6 Nonfunctional requirements .. 21

ENVRI-FAIR DELIVERABLE D9.3 4 / 90

4.3 ERDDAP Metadata & Data API .. 22

4.3.1 Description ... 22
4.3.2 Features .. 23

4.3.2.1 Feature 1: List datasets ... 23
4.3.2.2 Feature 2: Graph ... 23
4.3.2.3 Feature 3: WMS ... 23
4.3.2.4 Feature 4: Data ... 24
4.3.2.5 Feature 5: Display Metadata ... 24
4.3.2.6 Feature 6: Subscription ... 24

4.3.3 External interface ... 25
4.3.4 Nonfunctional requirements ... 25

5 Euro-Argo technical specification ... 27

5.1 Overview .. 27

5.1.1 Scope for the RI ... 27
5.1.2 Summary of the technical implementation ... 27
5.1.3 Planning for delivery .. 28

5.2 Argo OpenSearch API .. 28

5.2.1 Description ... 28
5.2.2 Features .. 29

5.2.2.1 Feature 1: [GET|POST] /api/floats/search .. 29
5.2.2.2 Feature 2: [GET|POST] /api/profiles/search .. 29

5.2.3 External interface ... 30
5.2.4 Nonfunctional requirements ... 30

5.3 Metadata API .. 31

5.3.1 Description ... 31
5.3.2 Features .. 32

5.4.2.1 Feature 1 : GET /api/floats/count ... 32
5.3.2.1 Feature 2 : GET /api/floats/pages?page={nb}&size={nb} .. 33
5.3.2.2 Feature 3 : GET /api/floats/basic/{wmo} ... 33
5.3.2.3 Feature 4 : GET /api/floats/{wmo} .. 34
5.3.2.4 Feature 5 : POST /api/floats/floats/multi-lines-count ... 35
5.3.2.5 Feature 6 : POST /api/floats/floats/multi-lines-search/pages 36

5.3.3 External interface ... 36
5.3.4 Nonfunctional requirements ... 37

5.4 Argo data API web service ... 37

5.4.1 Description ... 37
5.4.2 Features .. 38

5.4.2.1 Feature 1: GET /api/profiles ... 38
5.4.2.2 Feature 2: GET /api/trajectories ... 39
5.4.2.3 Feature 3: GET /api/timeseries ... 40
5.4.2.4 Feature 4: GET /api/profiles_timelines .. 41
5.4.2.5 Feature 5: GET /api/profiles_parameters ... 42
5.4.2.6 Feature 6: GET /api/timeseries_parameters ... 42

5.4.3 External interface ... 42
5.4.4 Nonfunctional requirements ... 43

5.5 Argo ERDDAP Metadata & Data API ... 43

5.5.1 Description ... 43
5.5.2 Features .. 44

5.5.2.1 Feature 1: List datasets ... 44
5.5.2.2 Feature 2: Graph ... 45
5.5.2.3 Feature 3: WMS ... 45
5.5.2.4 Feature 4: Data ... 45
5.5.2.5 Feature 5: Display Metadata ... 46
5.5.2.6 Feature 6: Subscription ... 46

5.5.3 External interface ... 46

ENVRI-FAIR DELIVERABLE D9.3 5 / 90

5.5.4 Nonfunctional requirements ... 47

5.6 Argo OpenAPI (Swagger) web service .. 48

5.6.1 Description ... 48
5.6.2 Features .. 49

5.6.2.1 Feature 1: GET /api/profiles ... 49
5.6.2.2 Feature 2: GET /api/trajectories ... 50
5.6.2.3 Feature 3: GET /api/timeseries ... 51
5.6.2.4 Feature 4: GET /api/profiles_timelines .. 52
5.6.2.5 Feature 5: GET /api/profiles_parameters ... 52
5.6.2.6 Feature 6: GET /api/timeseries_parameters ... 52

5.6.3 External interface ... 53
5.6.4 Nonfunctional requirements ... 53

5.7 Argo OGC SensorThings API .. 54

5.7.1 Description ... 54
5.7.2 Features .. 55

5.7.2.1 Feature 1: Thing ... 55
5.7.2.2 Feature 2: Location ... 55
5.7.2.3 Feature 3: HistoricalLocation ... 56
5.7.2.4 Feature 4: Datastream ... 57
5.7.2.5 Feature 5: Sensor .. 58
5.7.2.6 Feature 6: ObservedProperty .. 59
5.7.2.7 Feature 7: Observation ... 59
5.7.2.8 Feature 8: FeatureOfInterest ... 61

5.7.3 External interface ... 62
5.7.4 Nonfunctional requirements ... 62

5.8 Argo Vocabulary web services ... 63

5.8.1 Description ... 63
5.8.2 Features .. 65

5.8.2.1 Feature 1: “Argo reference table 3: parameter codes” NVS collection 65
5.8.2.2 Feature 2: “All other Argo reference tables not otherwise specified“ NVS collections

 .. 65
5.8.2.3 Feature 3: “Argo configuration and technical units” NVS collection 66
5.8.2.4 Feature 4: “Argo core configuration parameter names” NVS collection 67
5.8.2.5 Feature 5: “Argo biogeochemical configuration parameter names” NVS collection ... 67
5.8.2.6 Feature 6: “Argo technical names” NVS collection ... 67
5.8.2.7 Feature 7: “Argo standard format tables” NVS collections .. 68
5.8.2.8 Feature 8: “Argo reference table 15: Codes of trajectory measurements performed

within a cycle” NVS collections .. 68
5.8.2.9 Feature 9: Vocab Search Tool .. 68
5.9.2.10 Feature 10: Vocab Editor Tool ... 69
5.8.2.10 Feature 11: Vocab Mapping Visualisation Tool ... 69

5.8.3 External interface ... 70
5.8.4 Nonfunctional requirements ... 71

6 SeaDataNet technical specification ... 72

6.1 Overview .. 72

6.1.1 Scope for the RI ... 72
6.1.2 Summary of the technical implementation plan ... 72
6.1.3 Indicative planning for delivery ... 73

6.2 CDI metadata and data access API ... 74

6.2.1 Description ... 74
6.2.2 New features .. 74

6.2.2.1 Feature 1 : Restful API development ... 74
6.2.2.2 Feature 2 : Add persistency policy ... 75
6.2.2.3 Feature 3 : Add machine readable provenance information ... 75

6.2.3 External interface ... 75

ENVRI-FAIR DELIVERABLE D9.3 6 / 90

6.2.4 Nonfunctional requirements ... 75

6.3 CDI SPARQL endpoint .. 76

6.3.1 Description ... 76
6.3.2 New features .. 77

6.3.2.1 Feature 1 : SPARQL endpoint development .. 77
6.3.2.2 Feature 2 : Aggregation and mapping to RDF ... 77

6.3.3 External interface ... 77
6.3.4 Nonfunctional requirements ... 77

6.4 Sextant data product catalogue upgrading .. 78

6.4.1 Description ... 78
6.4.2 New features .. 79

6.4.2.1 Feature 1 : Registration of SeaDataNet catalogue in an official registry 79
6.4.2.2 Feature 2 : Add an explicit persistency policy in metadata .. 79
6.4.2.3 Feature 3 : Create access to dataplots via WPS .. 79
6.4.2.4 Feature 4 : Upgrade metadata elements with vocabularies... 79
6.4.2.5 Feature 5 : collect provenance information (QC and processing) 79

6.4.3 External interface ... 80
6.4.4 Nonfunctional requirements ... 80

7 Conclusion ... 81

8 References ... 82

9 Appendices .. 83

9.1 Appendix 1: Glossary ... 83

9.2 Appendix 2: Euro-Argo APIs examples ... 86

ENVRI-FAIR DELIVERABLE D9.3 7 / 90

1 Introduction

1.1 Context
The ENVRI-FAIR project is engaging Research Infrastructures (RIs) in the environmental and Earth

sciences domain covering the subdomains Atmosphere, Marine, Solid Earth and Biodiversity /

Ecosystems. The overarching goal of ENVRI-FAIR is that all participating research infrastructures

(RIs) will improve their FAIRness and become ready for connecting their data repositories and services

to the European Open Science Cloud (EOSC).

WP9 has a focus on the RIs in the Marine subdomain, which is represented in ENVRI-FAIR by Euro-

Argo, EMSO, and the marine component of ICOS and LifeWatch, as these RIs are listed on the ESFRI

roadmap, as well as SeaDataNet as European marine data management infrastructure. The overall aim

of WP9 is to analyse the status and gaps inthe FAIRness of each RI and to implement within each RI

the necessary actions to bridge those gaps. The latter is critical for the Marine subdomain as it will

provide a coherent base for developing the integrated service oriented systems required by a broad

variety of research, regulatory and operational communities.

1.2 Scope
Each RI involved in WP9 has developed an implementation plan (in D9.1) that addresses the results of

their FAIRness self-analysis (D9.2), with the shared objective to improve the FAIRness at the marine

subdomain level as illustrated in the following figure.

Figure 1: Marine sub-domain implementation plan

The Marine subdomain EOVs demonstrator targeted within Task 9.8 (starting end of 2020), is

schematized in figure 1b. It aims to serve data files (step1) answering to requests of the VIP users

termed ‘Integrators’ (SeaDataNet, CMEMS and EMODnet). The integrators will process data

aggregation and product assessment (step 2) on the extracted data. Data files shall contain the PID to

trace provenance and to allow the VIP users to provide feedback on the anomalies detected on data

(step 3).

ENVRI-FAIR DELIVERABLE D9.3 8 / 90

Figure 1b: General schema of the Marine subdomain EOVs demonstrator

The Marine subdomain EOVs demonstrator targeted within Task 9.8 (starting end of 2020), is

schematized in figure 1b. It aims to serve data files (step1) answering to requests of the VIP users

termed ‘Integrators’ (SeaDataNet, CMEMS and EMODnet). The integrators will process data

aggregation and product assessment (step 2) on the extracted data. Datafiles shall contain the PID to

trace provenance and to allow the VIP users to provide feedback on the anomalies detected on data

(step 3).

In the present deliverable D9.3，each RI documents the technical specification of the machine-to-

machine services, interfaces for accessing data and metadata to be implemented at the RI level, and

detailed technical choices, and priorities planned for development.

For each RI, the planned activities for the technical implementation are among:

 The upgrade of existing machine-to-machine services and interfaces, by either improving or

adding features

 The development of newly defined machine-to-machine services and interfaces

 Upgrade of shared (meta)data published via the services to increase Interoperability and

Reusability

To enable the implementation of the targeted demonstrator within task 9.8, the following global pre-

requirements are taken into account:

 Parameters/vocabularies : the minimum to be achieved is the request at Essential Variables

level (Oxygen, Temperature, Salinity) managed in A05 in NVS and the mapping with

SeaDataNet standard vocabularies (P01, P06, P07,…). the NERC Vocabulary Server (NVS)

will allow to “translate” a data request “give me the EOV Oxygen” to the list of parameters in

the vocabularies used by the different RIs in their data (like DOXY1, DOXY2, … for

“Oxygen”).

 Search without authentication and on the landing to download data the user enter the login if

requested

 To allow the machine-to-machine extraction of the data from the RIs data, the RIs have to set

up/enhance metadata and data services, such as APIs.

 A brokering of the user requests to the RI’s APIs or ERDDAP services will be set up. The

broker doesn’t deal with license on data (to be done by the RI data APIs), it deals with « open

and free data » in the Broker and redirects to the individual RIs for not « open and free » data.

The RI API gives visibility to all data through the metadata API.

 The entire datasets containing the parameters requested have to be extracted at RI level

because the context is important in the data aggregation & assessment processing by the VIP

users of the EOVs demonstrator.

 At least the following provenance information has to be present in the data files: the data

provider (operator of the platform, not the RI) and data aggregator (RI). The vocabulary for

this provenance metadata is the EDMO codes for institutions. The citation should also to be

included in the data files.

ENVRI-FAIR DELIVERABLE D9.3 9 / 90

2 ICOS-marine technical specification

2.1 Overview
2.1.1 Scope for the RI
ICOS provides consistent, long-term and high-quality observations required to understand the present

state and predict future behavior of the global carbon cycle and greenhouse gas emissions. ICOS RI is a

distributed research infrastructure where central facilities (CFs) perform initial quality control, provide

second level QC’ed data from the network and are responsible for the metadata and file content while

the ICOS Carbon Portal is responsible for the technical infrastructure of long-term archival and making

the (meta)data available (see Figure 1). In respect to achieving FAIRness within WP9, ICOS-marine

(University of Bergen) as the CF managing the marine part of ICOS is responsible for achieving

FAIRness of the metadata and data content FAIR, while the ICOS Carbon Portal (University of Lund)

is responsible for the technical implementation and infrastructure.

Figure 1: Scheme of the data flow with ICOS RI

2.1.2 Summary of the technical implementation

FINDABILITY

 Add support for keywords in metadata (present for DOIs)

 Add plain text search in the search portal

 Add schema.org tags in landing pages

 Add support for OAI-PMH metadata exchange

 Add discovery for collections in the search portal

 Improve possibility to find “similar” datasets (based on a given

PID/DOI)

ACCESSIBILITY

 Improve Data license management

 Improve the way to access data object from PID

 Improve, create and update the documentation on the access to data for

automated workflows

INTEROPERABILITY

 Register the ICOS schemas in schema.org

 Improve the controlled vocabularies that are not yet completely

developed and published

 Setup the APIs for data access and subsetting

 Improve support for exporting data & metadata in other formats than

ICOS domain standards

ENVRI-FAIR DELIVERABLE D9.3 10 / 90

REUSABILITY

 Develop the provenance metadata at TC1 level using the templates

developed in ENVRIplus and expose this through CP2

 Add optional metadata that links to measurement protocols and articles.

 Implementation of mapping to metadata schemes compliant with UN

SDG (United Nations Sustainable Development Goal Methodology)

methodology 14.3.1

2.1.3 Planning for delivery
Almost all improvements listed in 2.1.2 will be implemented by month 24.

In parallel, the marine community will develop the required standards that need to be added under the

last point of Interoperability. After this is completed, the implementation of the metadata conversion to

marine community standards will require 6 additional months.

Building support for other formats will need more detailed planning after the specifications have

become clear.

Deadlines for delivery:

 M24: Content and metadata compliant at OTC and CP

 M36: Implementation of ICOS RI services

3 LifeWatch/VLIZ technical specification

3.1 Overview
3.1.1 Scope for the RI
LifeWatch ERIC is a European Infrastructure Consortium providing e-Science research facilities to

scientists. As a federated network, LifeWatch is serviced by a wide range of institutes and data centres

and serves a wide range of users. E-services providing access to data and tools, are a large part of what

we do.

LifeWatch has various data providers and data centres that host node-specific catalogues and datasets.

As one of these LifeWatch data centres, VLIZ hosts the metadata and datasets for LifeWatch Belgium,

and hosts much of the marine LifeWatch data from Belgium. Numerous data systems used by

LifeWatch are hosted by VLIZ: EurOBIS, EMODnet, WoRMS, and Marine Regions, all of which rely

on the Marine Data Archive (MDA) and Integrated Marine Information System (IMIS). The IMIS

datasets catalogue and the MDA are therefore the main focus of LifeWatch in WP9.

The LifeWatch ERIC catalogue is a new development effort for WP9 that will be released in the

second half of 2020. It will be a centralised catalogue for metadata records for all LifeWatch data,

services, and tools. Hence, this catalogue will also be a focus of the LifeWatch work in the ENVRI-

FAIR project. It will be carried out mostly in WP11, but will also be in collaboration with WP9, and

specifically in this report.

The focus for FAIRness improvements for the VLIZ data systems, as identified in D9.1 and D9.2, will

be on the back-end (to improve the machine interoperability) and on metadata and data layer (to

improve the completeness and standardisation of the contents), as illustrated in the diagram below.

(Human) user interfaces and everything focused on the user experience is of scope for this report.

1
 TC: Thematic Centre

2
 CP: Carbon Portal

ENVRI-FAIR DELIVERABLE D9.3 11 / 90

Figure 2: Focus of FAIRness actions for Lifewatch/VLIZ

The LifeWatch ERIC metadata catalogue is currently under construction. The catalogue will harvest

only metadata records from the various LifeWatch member data providers, and from other RIs, in a

machine2machine way. Most LifeWatch (meta)data are already provided in interoperable formats

because they are currently also accessible via data explorers and other e-tools on www.lifewatch.eu and

the individual LifeWatch country sites (e.g. www.lifewatch.be).

3.1.2 Summary of the technical implementation
The Integrated Marine Information System (IMIS) is the metadata catalogue of VLIZ that is used by

LifeWatch Marine/Belgium. The Marine Data Archive is the VLIZ archive that contains much of

LifeWatch Belgium data and is the starting point for all LifeWatch VLIZ dataset management. Via its

link to IMIS, the archived data is made public and accessible. These services are also used by the other

RIs, institutes and projects that VLIZ works with/on.

The focus of the work of VLIZ on making our services more FAIR and cloud compatible will be on

IMIS and the MDA. The work to be done is detailed in Sec. 3.2. In summary, we will be:

implementing more direct and standardised machine2machine interfaces to IMIS and an intermediate

m2m interface to the MDA; updating and expanding the IMIS metadata schemas. We are also working

on improving the completeness of the contents of our metadata records and updating the the IMIS

search and submit UIs, but these activities are not part of this report.

While developing the LifeWatch ERIC catalogue is still on-going, we aim to build FAIRness in from

the start. The catalogue will harvest all records from the LifeWatch node catalogues, hence

machine2machine interfaces will be part of its remit from the beginning. It will also connect to

LifeWatch Virtual Research Environments. A “LifeWatch EML metadata profile” is being developed

to standardise the vocabularies used while accommodating the wide range of LifeWatch science. The

LifeWatch EcoPortal will be used to map between all vocabularies within the metadata records that

will be added to the catalogue. The details of the work to do are given in Sec. 3.3.

3.1.3 Planning for Delivery
The LifeWatch ERIC catalogue exists already but is not yet much populated.

 Work on developing a LifeWatch profile in the metadata schema (EML 2.2.0), on adding

semantic resources, and on technical protocols and metadata mappings for harvesting

activities, is taking place in the spring and summer of 2020.

 However, these are continuous developments that will continue through 2020 and 2021.

 Work on connecting the catalogue to a blockchain is ongoing, with a first working version

expected in the autumn of 2020.

We are still in the planning stages of our work for IMIS and the MDA, and it is difficult at present to

commit to specific deadlines. In addition, we have some technical questions about how D9.8 will

http://www.lifewatch.eu/
http://www.lifewatch.eu/
http://www.lifewatch.be/
http://www.lifewatch.be/
http://www.vliz.be/en/integrated-marine-information-system

ENVRI-FAIR DELIVERABLE D9.3 12 / 90

proceed, and the answers to these questions will have an impact on our priorities and on particular

solutions we may choose for some of the features listed in Sec. 3.2. However, we can state the

following:

 We will focus at first on what is necessary for the LifeWatch ERIC catalogue to be able to

harvest records from IMIS (feature 6 in Sec 3.2). Discussions on this will begin in May

(lockdown delay) and will start soon after (~M15 of ENVRI-FAIR).

 We are aiming to complete our improvement to the IMIS m2m searchability (feature 4), in

particular to match the requirements of D9.8, by M24 of ENVRI-FAIR.

 IMIS will adopt the EML 2.2.0 metadata schema from LifeWatch ERIC, once they have

completed their ”LW EML profile”. Modifying that profile to work for the broader IMIS

database, and mapping the database to EML 2.2.0, is expected to begin in the summer 2020

(~M16) and take a year (feature 3).

 Improving the contents of our metadata records and adding new fields (e.g. provenance) is

continuous work for 2020 and 2021 (feature 2).

 The other features of Sec. 3.2 are of a lower priority but our aim is for ~M30.

3.2 IMIS and MDA
3.2.1 Description

SERVICE

PERSPECTIVE

IMIS is a metadata catalogue for datasets, publications, institutes, persons

and projects. IMIS is a data system on top of a relational database, with

web and MicrosoftAccess interfaces.

The metadata records are always distributed in html and XML, and

additionally in EML schema and JSON format.

Next to the IMIS interfaces, limited to registered users for entering

records, the “metasubmit” web form allows anyone to provide metadata

record information and linked datasets to the system.

The records in IMIS can be accessed via a search interface or web services.

The APIs behind the catalogue search and the metasubmit form are open

access, and are also used by the projects and systems that use IMIS as their

catalogue.

Data are linked in IMIS records as PIDs (DOIs or URIs), so the data can be

accessed no matter where they are actually archived.. Through DataCite

VLIZ can provide DOIs for the metadata record (and hence the linked

data). IMIS records without a DOI can be accessed via their (IMIS) URI

instead.

FEATURES

To improve the FAIRness, IMIS needs to

1. Set up a formal PID management for metadata: F

2. Broaden metadata fields and ontologies: F,I,R

3. Broaden metadata schemas: F,I

4. Standardise m2m search webservice: F,A

5. Improve compliance with google datasets search: F

6. Add a m2m harvesting of IMIS: A

7. M2M interaction with MDA: A

USER OVERVIEW

IMIS is used by systems such as EurOBIS, WoRMS, Marine Regions, by

RIs such as EMBRC and LifeWatch (Belgium), and by individual

scientific institutes and scientists.

TECHNOLOGIES PHP, MS SQL

OPERATING

ENVIRONMENT

 MS SQL Server on MS Windows Server

 PHP on Apache web server

CONSTRAINTS

Metadata offered in chosen metadata formats.

Harvesting from IMIS and MDA is still under investigation.

While adding m2m capabilities, we have to remain operational in our

existing services.

ENVRI-FAIR DELIVERABLE D9.3 13 / 90

DOCUMENTATION
User and policy documentation to be placed on website (HTML, PDF).

Human rather than machine-actionable

ASSUMPTIONS/

DEPENDENCIES
Harvester must be able to process offered metadata formats.

3.2.2 Features

3.2.2.1 Feature 1 : Set up formal PID management for metadata

DESCRIPTION AND

PRIORITY

Set up PID management for the metadata records in IMIS:

 Formalise our policy for persistence,uniqueness, and for versioning.

 Add -formatted PID (URI or DOI) of the metadata record, to the

metadata record itself.

 Ditto for the PID to the linked data.

USE CASES None

ADDITIONAL

REQUIREMENTS

Add to the policy documentation

3.2.2.2 Feature 2 : Broaden metadata fields and ontologies

DESCRIPTION AND

PRIORITY

FAIR recommendations for new metadata fields, such as those serving

provenance, will be added as necessary.

Ontologies used will be updated as new incoming data have broader

requirements.

USE CASES

Data types coming in now are much broader than in the past: bioinformatics

data combining biological, physical, chemical, and genetic in a single data

set require broader range of ontologies and semantic support in the metadata

ADDITIONAL

REQUIREMENTS

Need to check recommendations on FAIR requirements on provenance

metadata to come from the various EOSC/FAIR projects.

Will need to match existing records to new ontologies.

3.2.2.3 Feature 3 : Broaden metadata schemas

DESCRIPTION AND

PRIORITY

Metadata schemas provided will be broadened, potentially adding DataCite

metadata schema.dopt JSON-LD. Updating to EML 2.2.0.

USE CASES

The FAIR community uses these types, EML 2.2.0 offers support for

multiple ontologies in a single record.

IMIS webservices will use these schemas in their results.

ADDITIONAL

REQUIREMENTS

Mapping between old and new schemas for non-common fields may be

necessary. Mapping from IMIS database to the metadata schema will be

necessary.

3.2.2.4 Feature 4 : Standardise m2m search webservices

DESCRIPTION AND

PRIORITY

Looking at solutions for m2m searches on IMIS.

IMIS has a REST-based webservice for searching in IMIS on a range of

metadata fields. We will enhance this by applying the metadata schemas

(Feature 3) to the results, by adding machine-friendly features (e.g.

pagination), and broadening the fields searched.

The work done for Feature 6 will have some impact here, as the technical

solutions for searchability of our catalogue may be updated as we improve

its harvestability.

ENVRI-FAIR DELIVERABLE D9.3 14 / 90

USE CASES

ENVRI-FAIR D9.8 and the m2m search it will require. Harvesting IMIS

records into the LifeWatch ERIC catalogue (this will be the first focus of

this work).

ADDITIONAL

REQUIREMENTS

Working together with the LifeWatch ERIC catalogue to define the

methods, and hence this is a community effort.

It would be useful to know more about how D9.8 will be carried out, as its

technical requirements may have an impact on our work for Feature 4 and 6.

3.2.2.5 Feature 5 : Improve compliance with google datasets search

DESCRIPTION AND

PRIORITY

Improve compliance with google dataset search to improve visibility of

IMIS records via third party web-searches.

Timeline: This has a low priority and will be done as time allows.

USE CASES Users can search via google for what we have.

ADDITIONAL

REQUIREMENTS
We need google to accept all the parts of bioschemas.org.

3.2.2.6 Feature 6 : Add a m2m harvesting of IMIS

DESCRIPTION AND

PRIORITY

Making IMIS m2m harvestable will require

● System core update to keep track of updates and changes

● Enhance search webservice to account for modified-since

parameter

● Either applying a community-standard catalogue (including a

harvesting protocol; e.g. GeoNetwork, IPT…), r extending OAI-

PMH to the IMIS datasets catalogue (IMIS publications catalogue

already has this).

USE CASES
M2M interoperability (metadata harvesting), e.g. from LifeWatch ERIC

catalogue

ADDITIONAL

REQUIREMENTS

It would be useful to know what other WP9 members are doing here, as

input to our decision-making process.

3.2.2.7 Feature 7 : M2M interaction with MDA

DESCRIPTION AND

PRIORITY

Allow programmable usage of the MDA’s core functions:

 Building a service that implements an API so users of the MDA can

run in a session (post log-in)

 Bulk adding/retrieving of files to folders (in-house use),

USE CASES
Direct upload of data to the MDA, e.g. from the VLIZ research vessel’s data

systems

ADDITIONAL

REQUIREMENTS
None

3.2.3 External interface

USER INTERFACE
IMIS is accessed externally via a web page, both for the search page and the

metasubmit form. UI is available to be added to other websites.

ENVRI-FAIR DELIVERABLE D9.3 15 / 90

SOFTWARE

INTERFACE

Limited (to the most used fields) web input interface for publications

MS-Access input interface reflecting all database fields

HARDWARE

INTERFACE
Web server to SQL server interactions for searches and input

COMMUNICATION

INTERFACE

Communication via web requests (m2m), limited to instruction set (OAI-

PMH).

3.2.4 Nonfunctional requirements

USABILITY None

OPERATIONAL
 MS SQL Server on MS Windows Server

 PHP on Apache web server

PERFORMANCE Time-out settings set to support quick responses

SECURITY

The VLIZ servers and network are set up redundantly, secured and actively

monitored. Backups are taken on a daily basis (GFS set up), with copies on

several (geographically separated) locations

OTHER

REQUIREMENTS
None

3.3 LifeWatch ERIC catalogue
3.3.1 Description

SERVICE

PERSPECTIVE

The LifeWatch ERIC catalogue will provide metadata records for all

LifeWatch data objects (data, services, e-tools). The catalogue will harvest

records from the individual LifeWatch data centres, as well as from other

RIs and individuals.

The catalogue will be based on Geonetwork, and will store metadata

records for data, services, and e-tools. For metadata records from the LW

nodes, the datasets will be archived by those LW nodes, i.e. the data

owners. For records provided by others, the datasets can also be archived

by LW.

A metadata record can be created via a direct entry form (web-based). The

harvesting from other catalogues will be done via a m2m interface (both

still under development).

The catalogue’s search functionality will provide semantic support via the

EcoPortal (still under development).

FEATURES

List main features with brief description.

These are the unique features of this catalogue that will focus on machine

to machine FAIRness

1. EcoPortal (http://ecoportal.lifewatchitaly.eu/): a catalogue of

semantic objects : F,I,R

2. LifeBlock (a blockchain): to connect the catalogue to LifeWatch

workflows and VREs, and to track provenance throughout the

data/software use-cycle: R

3. Catalogue interoperability: to allow m2m harvesting to and from

the catalogue: A,I

http://ecoportal.lifewatchitaly.eu/

ENVRI-FAIR DELIVERABLE D9.3 16 / 90

USER OVERVIEW

The LifeWatch data centres and institutes will archive all their metadata

records in this catalogue.

LifeWatch virtual research environments will access to and from this

catalogue, via a blockchain system (LifeBlock).

Scientists, research organisations, and industry will use the catalogue to

access the data produced by LifeWatch (e.g. tracking data, long-term

monitoring, surveys, etc), as they do already with the individual LW node

catalogues.

We will also interact with other RIs to share records.

TECHNOLOGIES
Java, Geonetwork and NCBO technologies, Ruby on Rails, BlockChain,

relational database and triple stores

OPERATING

ENVIRONMENT
Docker (and also see above)

CONSTRAINTS None

DOCUMENTATION

User and policy documentation to be placed on website (HTML, PDF)

Human rather than machine-actionable (although a machine-actional DMP

is a possibility)

ASSUMPTIONS/

DEPENDENCIES
None

3.3.2 Features

3.3.2.1 Feature 1 : Ecoportal catalogue of semantic objects

DESCRIPTION AND

PRIORITY

The goal is to collect all the semantic objects used by LifeWatch and the

ecological community.

This is an important tool for the findability of terms and will be useful for

the mapping between/alignment of the different approaches from the data

providers.

EcoPortal exists already, but we need to populate it with new semantic

resources, and to transfer and publish them in the catalogue.

This is a continuous deployment; a new version will be released every few

months.

USE CASES

To map between an ontology used by one data provider and a one used by

the ERIC catalogue.

To allow use of multiple controlled vocabularies in the catalogue search

function.

To be used in the metadata-population process.

ADDITIONAL

REQUIREMENTS
None

3.3.2.2 Feature 2 : LifeBlock

DESCRIPTION AND

PRIORITY

LifeBlock is a blockchain technology. It will allow the tracking of the use of

data objects through their entire use cycle, thus ensuring accountability and

provenance. Because it also replicates data and allows for versioning, it will

also provide security against data loss. It will also be used for controlling

access to data objects where necessary.

The LifeBlock will need to connect to the catalogue and the VREs, and its

development is therefore linked to these. Aiming for a working version in

Oct. 2020.

USE CASES
Data are taken from LW ERIC catalogue, worked on in a LW VRE, and then

read back: full provenance information is carried by the LifeBlock

ENVRI-FAIR DELIVERABLE D9.3 17 / 90

ADDITIONAL

REQUIREMENTS
None

3.3.2.3 Feature 3 : Catalogue interoperability

DESCRIPTION AND

PRIORITY

The LifeWatch ERIC catalogue will need to harvest from its distributed data

providers, will need to ingest metadata records created by individuals, and

will need to connect to the LifeBlock to create metadata records. It also

needs to harvest from and to external RIs.

It will use OAI-PMH, Restful APIs, and other technologies.

Version 1 of the catalogue exists. We have started discussions with VLIZ on

harvesting from IMIS. This has been delayed by the lockdowns but will

continue in May.

A next version of the catalogue with a more mature LW EML profile will be

released in June, and testing of the harvesting protocols and metadata

mapping should begin then.

USE CASES See above

ADDITIONAL

REQUIREMENTS
None

3.3.3 External interface

USER INTERFACE

A web based user interface is still under development.

LifeWatch.eu will provide links to the catalogue, and will host the policy

and related documentation.

SOFTWARE

INTERFACE

The database will be populated with backoffice of Geonetwork (via the

web)

We will use Eclipse if it is necessary to modify Geonetwork

Harvesting will probably be done using Restful API or other m2m

interfaces: these are currently under development

HARDWARE

INTERFACE
None

COMMUNICATION

INTERFACE
LifeWatch helpdesk system (https://www.lifewatch.eu/web/guest/help-desk)

3.3.4 Nonfunctional requirements

USABILITY Useability, e.g. the UI, is done via Geonetwork

OPERATIONAL None

PERFORMANCE This is done via Geonetwork.

SECURITY

Identify external policies and regulations impacting safety requirements.

LifeBlock will handle security with respect to AAAI, data replication, and

use tracking

OTHER

REQUIREMENTS
None

https://www.lifewatch.eu/web/guest/help-desk

ENVRI-FAIR DELIVERABLE D9.3 18 / 90

4 EMSO ERIC technical specification

4.1 Overview
4.1.1 Scope for the RI
EMSO ERIC’s implementation plan for adopting FAIR (Findable, Accessible, Interoperable, Reusable)

practices follows standard engineering practices and focuses on efficiency for delivering the targeted

EMSO ERIC’s deliverables in WP9 of the ENVRI-FAIR H2020 project.

EMSO ERIC’s activities in ENVRI-FAIR WP9 are coordinated by EMSO ERIC Central Management

Office (CMO); however, the EMSO ERIC data service group, which includes participants from all

EMSO ERIC regional facilities, will participate in the implementation plan described in this document.

The implementation plan addresses multiple objectives, including bridging the current gaps for the

adoption of FAIR principles in EMSO ERIC, which requires significant developments and

enhancements as opposed to other RIs. A key issue for achieving the desired level of adoption of FAIR

principles is a continuous self-assessment/evaluation with respect to requirements, e.g., test comparing

against collections of maturity indicators developed by GO FAIR.

Figure 2: Illustration of focus of FAIRness activities

4.1.2 Summary of the technical implementation

FINDABILITY

 Deployment of software tools with data discovery capabilities that are

widely used in the marine domain (e.g., ERDDAP, THREDDS)

 Deployment of a (refactored) metadata catalog including both core

meta-data parameters and agreed additional parameters based on an

assessment of the metadata catalog against FAIR principles (emphasis

on metadata enrichment).

 Evaluation of metadata for discovering EMSO ERIC data using search

engines.

 Registration of the EMSO ERIC in research data repositories (e.g.,

re3data.org).

ACCESSIBILITY

 Deployment of a (refactored) machine-to-machine (RESTful) API.

 Deployment of mechanisms for file-based discovery and access.

 Implementation of mechanisms for file-based data integrity.

 Development of a user database using standard tools and anonymization

tools for sensitive data, when possible.

ENVRI-FAIR DELIVERABLE D9.3 19 / 90

INTEROPERABILITY

 Integration of federated identity management capabilities.

 Investigation of mechanisms for certification of repositories (e.g.,

CoreTrustSeal requirements).

 Deployment of the harmonization subsystem based on OceanSites.

REUSABILITY

 Engagement with EOSC-Hub for EMSO ERIC integration in EOSC.

 Initial scalability tests for EMSO-ERIC’s integration in EOSC.
 Engagement with a provider of persistent identifiers.

 Incorporation of capabilities for PID management in the harmonization

subsystem processes.

 Investigation of appropriate granularity and versioning of dynamic

datasets according to best practices.

 Investigation of mechanisms for adding provenance information as part

of the harmonization subsystem processes.

4.1.3 Planning for delivery

Harmonization subsystem, file-based access mechanism, RESTful API and engagement

with providers of persistent identifiers.

M15

Refinement of harmonization subsystem and RESTful API, PID management, mechanisms

for file-base data integrity, AAI mechanisms.

M18

Refinement of harmonization subsystem and other components, implementation of DAP

services (e.g., ERDDAP), search engine capabilities, registration of EMSO ERIC

repository.

M27

Refinement of harmonization subsystem and other components, Investigation of

mechanisms for provenance data management and repository certification, documentation.

M36

4.2 EMSO ERIC API
4.2.1 Description

SERVICE

PERSPECTIVE

The EMSO-ERIC machine-to-machine interface has been developed to provide

programmatic access to harmonized EMSO ERIC data and metadata via a

Swagger-based RESTful Application Programming Interface (API) according to

ENVRI-FAIR FAIRness requirements.

This interface allows authenticated users to access EMSO ERIC data and

metadata through JSON-based requests.

The API provides ways for discovering and accessing data and metadata

provided by different EMSO ERIC Regional Facilities. Data is harmonized

through the harmonization subsystem using OceanSites specifications.

FEATURES

The EMSO ERIC RESTful API currently provides a number of endpoints as

detailed in the Features chapter. The API returns the data, metadata and other

related information requested by the user in JSON via HTTP:

 POST /auth/login

 GET /metadata

 GET /metadata/{id_metadata}

 GET /vocabulary

 GET /vocabulary/{vocabulary_id}

 GET /data

USER OVERVIEW
This API is accessible through token-based authentication. It is intended for

communication between machines and building services on top of it, e.g., data

ENVRI-FAIR DELIVERABLE D9.3 20 / 90

portals and virtual research environments.

TECHNOLOGIES

Main technologies and standards used:

1. Restful API

2. JSON

OPERATING

ENVIRONMENT
The EMSO ERIC API is currently deployed in EGI resources.

CONSTRAINTS The RESTful API requires authentication. A data policy has to be accepted.

DOCUMENTATION
A swagger is accessible. It lists the available functionalities and allows testing

the different queries offered.

ASSUMPTIONS/

DEPENDENCIES
N/A

4.2.2 Features

4.2.2.1 Feature 1: Authentication

DESCRIPTION

AND PRIORITY
Provides a token upon successful authentication

USE CASES

Before using the EMSO ERIC API, it is needed to obtain an account.

The following request provides a valid token given a valid combination of email

and password. The token is refreshed every time this request is executed.

curl -X POST "http://api.emso.eu/auth/login" -H "Content-Type:

application/json" -d "{ \"email\": \"WRITE_HERE_YOUR_EMAIL\",

\"password\": \"WRITE_HERE_YOUR_PASSWORD\"}" `

ADDITIONAL

REQUIREMENTS
Federated authentication options to be explored according to EOSC guidelines.

4.2.2.2 Feature 2: Metadata

DESCRIPTION

AND PRIORITY

Provides a list of metadata entries.

Provides information related to a specific metadata entry.

USE CASES

Get the complete metadata from EMSO ERIC observatory selected by the end-

user and display the meta-data in a web page.

The following request provides the metadata information associated with the

datasets available in the system:

curl -X GET "http://api.emso.eu/metadata/" -H "Authorization:

WRITE_HERE_YOUR_TOKEN"

The response includes a list of elements, each of them can be identified with the

parameter "id".

With the following request users can obtain metadata information for id

"OBSEA_2014-01-19T00:00:00Z".

curl -X GET "http://api.emso.eu/metadata/OBSEA_2014-01-19T00:00:00Z" -H

"Authorization: WRITE_HERE_YOUR_ TOKEN" -H "Content-Type:

application/json"

ADDITIONAL

REQUIREMENTS
N/A

ENVRI-FAIR DELIVERABLE D9.3 21 / 90

4.2.2.3 Feature 3: Vocabulary

DESCRIPTION

AND PRIORITY

Provides a list of available vocabulary words.

Provides the vocabulary from an ID.

USE CASES

The user/client service asks the service for the standar name, units and other

relevant information of the vocabulary used.

The following example provides the vocabulary of sea water temperature.

curl -X GET "http://api.emso.eu/vocabulary/TEMP" -H "Authorization:

WRITE_HERE_YOUR_TOKEN" -H "Content-Type: application/json"

ADDITIONAL

REQUIREMENTS
N/A

4.2.2.4 Feature 4: Data

DESCRIPTION

AND PRIORITY
Provides a list of data structures.

USE CASES

All datasets : the user/client service asks the service for the full list of the

datasets existing on the service.

List by parameters (e.g., variable, observatory) : the user/client service provides

parameters existing in the datasets (e.g., variables). The service provides then a

list of existing values among all the datasets that meet the specified parameters.

The following example provides sea water temperature data (“parameters”:

[“temp”]) from OBSEA (“platform_code: “OBSEA”). This example requests

only two data points (\"_size\": \"2\").

curl -X GET "http://api.emso.eu/data/" -H "Authorization:

WRITE_HERE_YOUR_TOKEN" -H "Content-Type: application/json" -d "{

\"parameters\": \"temp\" , \"platform_code\": \"OBSEA\" , \"_size\": \"2\"}"

ADDITIONAL

REQUIREMENTS
N/A

4.2.2.5 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service.

SOFTWARE

INTERFACE
Restful API

HARDWARE

INTERFACE
N/A

COMMUNICATION

INTERFACE
HTTP

4.2.2.6 Nonfunctional requirements

USABILITY
A cloud-based monitoring service checks the uptime of the service.

Upon failure, an alert message is sent to the service operator.

OPERATIONAL N/A

PERFORMANCE
The API is proposed for services such as data portals and virtual research

environments.

http://api.emso.eu/vocabulary/TEMP

ENVRI-FAIR DELIVERABLE D9.3 22 / 90

SECURITY The service is deployed and operated following best practises.

OTHER

REQUIREMENTS
N/A

4.3 ERDDAP Metadata & Data API
4.3.1 Description

SERVICE

PERSPECTIVE

The service provides metadata and data from various sources. The service

gathers decentralized data in order to provide search, visualization and subset

capabilities on multiple datasets.

FEATURES

 List datasets: provides a list of the datasets described on this server

and/or others.

 Graph: creates data plots or maps on selected parameters .

 WMS: provides map service for gridded datasets.

 Data: provides subsetting capabilities into a variety of output formats.

 Display metadata: displays the metadata of the dataset and its

variables.

 Subscription: lets the user subscribe to an alert each time a specific

dataset changes .

USER

OVERVIEW

Users can be developers, data managers as well as people who want to easily

discover the dataset.

TECHNOLOGIES Java + Apache Tomcat (JVM)

OPERATING

ENVIRONMENT

The service is operated on a Linux platform (Debian).

The service is in a Docker container including Java, Tomcat.

CONSTRAINTS
Erddap is an open source software developed at NOAA. While it is easy to write

new features, predicting release cycle is not easy.

DOCUMENTATI

ON

The documentation is split towards different actors :

Users & developers :

 https://coastwatch.pfeg.noaa.gov/erddap/tabledap/d

ocumentation.html

 https://coastwatch.pfeg.noaa.gov/erddap/griddap/do

cumentation.html

System administrators :

 https://coastwatch.pfeg.noaa.gov/erddap/download/s

etup.html

Data managers :

 https://coastwatch.pfeg.noaa.gov/erddap/download/s

etupDatasetsXml.html

ASSUMPTIONS/

DEPENDENCIES

 For security reasons, the infrastructure is regularly updated:

 Tomcat patches

 VM-Ware patches

 Java security patches

https://coastwatch.pfeg.noaa.gov/erddap/tabledap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setup.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setup.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html

ENVRI-FAIR DELIVERABLE D9.3 23 / 90

4.3.2 Features

4.3.2.1 Feature 1: List datasets

DESCRIPTION

AND PRIORITY
The user can query for a list of the existing datasets.

USE CASES

All datasets : the user/client service asks the service for the full list of the

datasets existing on the server and retrieves a list with links of all the features

for each dataset.

List by dataset type : the user asks/client service for either a list of “Gridded

datasets” or “Table datasets”. The server answers with the list of the datasets

with a link for each of the features.

List by attribute : the user/client service picks an attribute existing in the

datasets (“variableName”, “long_name”, “standard_name”, “institution”,...).

The serverthen provides a list of existing values among all the datasets. Once the

user chose the desired value, the server provides a list of the datasets that

contain the attribute and value specified by the user.

ADDITIONAL

REQUIREMENTS
Void

4.3.2.2 Feature 2: Graph

DESCRIPTION

AND PRIORITY

For any dataset, the user can ask for plots of the data contained in the dataset.

USE CASES

Case 1 – Graphical user interface

The webpage presents a plot made with default values (that can be programmed

by data managers when setting up the dataset).

The user can change values of the parameters, for example the time range or the

quality control code for a specific variable.

The user clicks on “Redraw the Graph” which triggers the graph creation on the

server side.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to list the dataset attribute structure in order to create a

query that will be sent to the API endpoint and will trigger the graph creation.

ADDITIONAL

REQUIREMENTS
Void

4.3.2.3 Feature 3: WMS

DESCRIPTION

AND PRIORITY

For any gridded dataset, the user can ask for a colored map which shows the

desired parameter value.

USE CASES

Case 1 – Graphical user interface

The landing webpage presents a map that shows a parameter values represented

along with a color map.

The user can change the parameter shown on the map.

The user can zoom in/out which triggers the map creation on the server side.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to create queries in a standard way (WMS standard).

The client service can specify the dataset ID, parameter to color, geographical

bounds, elevation in order to create the image that will be provided by the

service.

ENVRI-FAIR DELIVERABLE D9.3 24 / 90

ADDITIONAL

REQUIREMENTS
Void

4.3.2.4 Feature 4: Data

DESCRIPTION

AND PRIORITY

For any dataset, the user can ask for the data contained in the dataset in a variety

of output formats.

USE CASES

Case 1 – Graphical user interface

The landing webpage presents a form that the user can fill in order to specify the

query.

The user can change values of the parameters, for example the time range or the

quality control code for a specific variable.

The user clicks on “Submit” which triggers the data gathering and formatting on

the server side. The data can be downloaded by the user.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to list the dataset attribute structure in order to create a

query that will be sent to the API endpoint and will trigger the data gathering

and formatting on the server side. The data can be downloaded by the user.

ADDITIONAL

REQUIREMENTS
Void

4.3.2.5 Feature 5: Display Metadata

DESCRIPTION

AND PRIORITY

For any dataset, the user can retrieve the metadata describing the dataset.

USE CASES

The user/client service calls the metadata URL for the desired dataset.

Case 1 – Graphical User Interface :

The server provides to the user an HTML table containing all the dataset

metadata (global and variable attributes) in a human-readable way.

Case 2 – Machine to machine API

The server provides the metadata (global and variable attributes) in the format

asked by the client service (can be CSV, JSON, netCDF …)

ADDITIONAL

REQUIREMENTS
Void

4.3.2.6 Feature 6: Subscription

DESCRIPTION

AND PRIORITY

For any dataset, the user can setup a subscription so the server can notify any

change to the dataset

USE CASES

The user/client service calls the subscription URL for the desired dataset.

The user/client service provides the email address that will receive notifications

when the dataset changes and submits the request.

The server then sends an email in order for the end user to validate the

subscription.

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 25 / 90

4.3.3 External interface

USER

INTERFACE

The most important parts of the webpages are presented in the form of tables.

All the features for each dataset are presented in the “List datasets” feature

(screenshot below)

Some forms cells provide drop down lists that helps the user select existing

values for attributes in the dataset (screenshot below).

SOFTWARE

INTERFACE

In order to extract data and metadata from the netCDF files, Erddap relies on the

Java NetCDF library which is included in the package.

HARDWARE

INTERFACE
Void

COMMUNICAT

ION

INTERFACE

The server communicates with the user with the following communication

standards/technologies :

● HTTP
● Email
● WMS (https://fr.wikipedia.org/wiki/Web_Map_Service)
● OPeNDAP (https://en.wikipedia.org/wiki/OPeNDAP)

The user/client service can access the service with the following communication

standards/technologies :

● Web Browser
● Other HTTP clients : curl, python “request” module …
● Non-official python module : erddapy

4.3.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

https://fr.wikipedia.org/wiki/Web_Map_Service
https://en.wikipedia.org/wiki/OPeNDAP

ENVRI-FAIR DELIVERABLE D9.3 26 / 90

OPERATIONAL

The service must be provided on a server that has at least 2 gigabytes of RAM.

The Tomcat server and ERDDAP API are deployed in a docker container.

The container is deployed on a virtual machine cluster based on VM-Ware.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

Performances depend on the filesystem which manages the NetCDF files.

The is proposed for interactive services.

Human users of the server expect answers to queries within a few seconds of

time.

SECURITY

Security will be best achieved by setting up the Apache Tomcat server

configuration depending on the hosting site requirements.

The security can also be achieved by setting up a frontal web server that can

implement authentication as well as SSL encryption.

OTHER

REQUIREMENTS

The API and its Tomcat server is deployable as a docker container on EOSC

infrastructure.

ENVRI-FAIR DELIVERABLE D9.3 27 / 90

5 Euro-Argo technical specification

5.1 Overview
5.1.1 Scope for the RI
Euro-Argo concluded from the FAIRness analysis that the system is well underway to be FAIR, but

more FAIR to people than to machines. Taking this as starting point, the FAIRness improvement of

Euro-Argo will focus on the back office layer, as illustrated in the next diagram.

Figure 3: Illustration of focus for FAIRness activities

5.1.2 Summary of the technical implementation

FINDABILITY Implement a search engine service to allow open queries on Argo Data

ACCESSIBILITY

Implement a metadata API for machine to machine access

Implement a data API for machine to machine access

implement an API description service to facilitate the use of Argo APIs

implement the major OGC services on top of data and metadata APIs: WMS for

map services, SOS v3 for data queries, WPS to activate filtering and subsetting

of the data processing HUB (ENVRI-FAIR VRE)

INTEROPERABILITY

and

REUSABILITY

Provide a publicly available list of standard vocabularies for Argo metadata

published as linked data (NVS)

Use existing patterns to model the data/metadata API (e.g. DCAT(1) ontology,

schema.org(2) vocabulary) and serialize using json-LD (3) (json-Linked Data)

format.

 https://www.w3.org/TR/vocab-dcat-2/

 https://schema.org/

 https://json-ld.org/

https://www.w3.org/TR/vocab-dcat-2/
https://schema.org/
https://json-ld.org/

ENVRI-FAIR DELIVERABLE D9.3 28 / 90

5.1.3 Planning for delivery
Search engine service on Argo Data January 2021

Metadata API for machine to machine access July 2020

Data API for machine to machine access July 2020

ERDDAP data and metadata API Done in 2019

API description service to facilitate the use of Argo APIs July 2020

OGC services on top of data and metadata APIs July 2021

WMS, SensorOfTheThings, WPS (ENVRI-FAIR VRE)

Vocabulary server for Argo metadata September 2020

5.2 Argo OpenSearch API
5.2.1 Description

SERVICE

PERSPECTIVE

The OpenSearch service is installed on top of an Elasticsearch metadata

repository.

OpenSearch is a collection of technologies that allow publishing of search results

in a format suitable for syndication and aggregation. It is a way for websites and

search engines to publish search results in a standard and accessible format.

OpenSearch-OGC will be evaluated

(https://www.ogc.org/standards/opensearchgeo).

FEATURES
/api/floats/search query Argo floats

/api/profiles/search query Argo floats vertical profiles

USER OVERVIEW

The API is invoked from computer applications.

Examples:

 List of floats within a bounding-box and temporal extent

The service is interactive: the API response time to requests should be less than a

second. Pagination will be managed to keep acceptable response times.

The API response syntax is ATOM, following OpenSearch specification.

TECHNOLOGIES

The API is implemented using Java8.

It is hosted on a Tomcat8 server (https)

It queries an elasticsearch database.

OPERATING

ENVIRONMENT

The Tomcat server and API are encapsulated as a docker container.

The container is deployed on a virtual machine cluster managed with VM-Ware.

The service is deployed in a DMZ area.

It is requested without Internet identification.

CONSTRAINTS

The OpenSearch database is updated daily (via metadata database update).

The web server is active 24 hours a day, 365 days a year.

It is monitored by Nagios.

The service must respond to at least 10 simultaneous requests in peak times.

Response time must be less than one second.

DOCUMENTATIO

N

The Argo OpenSearch API is available online with an Internet link (https)

The Argo OpenSearch API is documented on an OpenAPI (swagger) User

Interface.

The service may be replicated on EOSC infrastructure nodes, as a docker

container.

ASSUMPTIONS/

DEPENDENCIES

For security reasons, the infrastructure is regularly updated:

 OS patches

 Tomcat patches

 VM-Ware patches

 Java security patches

https://www.ogc.org/standards/opensearchgeo

ENVRI-FAIR DELIVERABLE D9.3 29 / 90

5.2.2 Features

5.2.2.1 Feature 1: [GET|POST] /api/floats/search

DESCRIPTION

AND PRIORITY

The API is compliant with “OGC-OpenSearch Geo and Time extensions” specification

available on https://www.ogc.org/standards/opensearchgeo

It is available in GET or POST mode. GET mode is human readable but limited in

number of characters; POST mode is not readable but its JSON parameter document

size is not limited.

 GET /api/floats/search?<query string>

 POST /api/floats/search {JSON document}

Parameters

 bbox geospatial boundary (WGS 84)

 datetime temporal restriction (RFC-3339)

 q full text query

 Sort sort results directive

 page page number requested

 size number of results in a page

 Argo specific fields

o platform_code

o datacentre

o owner

o model

o …

Output

An Atom document with a list of floats

See example in Annex 9.2

USE CASES Query for a list of floats matching a series of criteria

ADDITIONAL

REQUIREMENTS
Void

5.2.2.2 Feature 2: [GET|POST] /api/profiles/search

DESCRIPTION

AND PRIORITY

This feature is derived from Feature 1, for vertical profiles.

Parameters

● bbox geospatial boundary (WGS 84)

● datetime temporal restriction (RFC-3339)

● q full text query

● Sort sort results directive

● page page number requested

● size number of results in a page

● Argo specific fields

○ platform_code

○ datacentre

○ owner

○ model

○ …

Output

https://www.ogc.org/standards/opensearchgeo

ENVRI-FAIR DELIVERABLE D9.3 30 / 90

An Atom document with a list of vertical profiles URLs

See example in annex 9.2.

USE CASES Query for a list of vertical profiles

ADDITIONAL

REQUIREMENTS
Void

5.2.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service

SOFTWARE

INTERFACE

● Elasticsearch database

● Java8

● Tomcat8

HARDWARE

INTERFACE
Docker container deployed on a virtual machine, managed with VM-Ware.

COMMUNICATIO

N INTERFACE

The API is activated with https requests.

There is no authentication.

The communication is encrypted.

The data transfer rate depends on the user's Internet connection.

The server has a 10Gb internet connection.

5.2.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine managed on a VM-Ware

cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

The data API is proposed for interactive services such as Argo dashboard.

Human users of the dashboard expect answers to queries within one second of

time.

SECURITY

The Data API is developed in a GITLAB continuous integration and

deployment system.

The GITLAB server disk has a snapshot feature: every file content change is

preserved and can be restored within one month.

The GITLAB server disk is daily archived in a remote storage. In case of a

hardware failure, the archived project can be restored on another server.

 The Data API is deployed on a VM-Ware infrastructure, when a virtual

machine fails, it is reactivated.

ENVRI-FAIR DELIVERABLE D9.3 31 / 90

OTHER

REQUIREMENTS

The API and its Tomcat server can be pushed as a docker container on EOSC

infrastructure.

5.3 Metadata API
In these sections, one per service or interface, present each main service or interface by completing the

tables.

5.3.1 Description

SERVICE

PERSPECTIVE

The Argo metadata API provides access to metadata and technical data of Argo

floats through an http REST service.

 These metadata are extracted from NetCDF Argo data files. (Figure 1-1). They

are ingested in the Coriolis database (Figure 1-2). The metadata are downloaded

every night with a batch and loaded in an ElasticSearch server (Figure 1-3). The

Argo metadata API (Figure 1-4) provides access to the data and search

functionality of this ElasticSearch engine.

This API can feed a WEB site or any automated process with an https connection.

Figure 4 : MetaData API architecture

FEATURES

The metadata API offers 6 types of REST requests detailed in the Features

chapter. The API returns the metadata requested by the user in JSON via the https

protocol :

GET /floats/count

Count the number of indexed floats

GET /floats/pages

Get paginated list of floats with only basic data

GET /floats/basic/{wmo}

Get a float basic metadata for a given wmo code

GET /floats/{wmo}

Get a float metadata with all data

POST /floats/multi-lines-count

Count the number of indexed floats for a multi-lines search

POST /floats/multi-lines-search/pages

Get paginated list of floats from multi-lines search

ENVRI-FAIR DELIVERABLE D9.3 32 / 90

USER OVERVIEW

This API is freely accessible without authentication. It is intended for

communication between machines. It can be used to feed a WEB site for

example. The applications are in interactive mode: the API response time to

requests should be less than a second.

TECHNOLOGIES

This API encapsulates the search functionalities of an ElasticSearch V6 engine.

Communication with the API is only performed using HTTPS requests. The API

returns the requested metadata in JSON format in an HTTPS response.

The API is implemented using a Java8 code.

It is hosted on a Tomcat8 server (https)

It queries a Cassandra database.

OPERATING

ENVIRONMENT

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine managed on a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

CONSTRAINTS

The Cassandra database is updated daily.

The web server is active 24 hours a day, 365 days a year.

It is monitored by Nagios.

The service must respond to at least 10 simultaneous requests

The configuration of the API promotes the lowest possible latency and high

output for data access.

DOCUMENTATIO

N

A OpenAPI (swagger) is accessible. It lists the available functionalities and

allows to test the different queries offered.

ASSUMPTIONS/

DEPENDENCIES

for security reason, the technical infrastructure is regularly updated by:

● Tomcat patches

● VM-Ware patches

● ElasticSearch patches

● Java security patches

5.3.2 Features

5.4.2.1 Feature 1 : GET /api/floats/count

DESCRIPTION

AND PRIORITY

Return the number of ARGO floats stored in the database

Parameters

● None

Output

● integer

Example of output

https://eosc-argo-dashboard.eu/floats/count

15958

USE CASES

Display, in a Web site, the total numbers of Argo floats available.

 Figure 2 : Display the total number of Argo floats monitored by the Argo

monitoring web site

ENVRI-FAIR DELIVERABLE D9.3 33 / 90

ADDITIONAL

REQUIREMENTS
Not applicable

5.3.2.1 Feature 2 : GET /api/floats/pages?page={nb}&size={nb}

DESCRIPTION

AND PRIORITY

Get paginated list of floats with only basic metadata for each float

 Parameters

● page (integer) : page n°

● size (integer) : number of floats per page

Output

● Response code 200 (ok), 404 (data not found)

● Metadata in the response’s in JSON format

Example of output

https://eosc-argo-dashboard.eu/floats/pages?page=4&size=2
 {

 "wmo": "1900864",

 "serialInst": "OIN-06-S3-017",

 "serialIMEI": null,

 "platform": {...},

 "sensors": [],

 ...

 },

 {

 "wmo": "5900544",

 "platform": {...},

 ...

 }

]

USE CASES

Display a result list with Argo float information in a web site

Figure 4 : Display the main information of a float in the result list in Argo monitoring

web site

ADDITIONAL

REQUIREMENTS
Not applicable

5.3.2.2 Feature 3 : GET /api/floats/basic/{wmo}

DESCRIPTION

AND PRIORITY

Get the basic metadata of a specific argo float. To get the complete metadata of

a float, including cycle, location, … see Feature 4 /floats/{wmo}

Parameters

ENVRI-FAIR DELIVERABLE D9.3 34 / 90

● wmo (string)

Output

● Response code 200 (ok), 404 (wmo not found)

● If ok, metadata in the response’s in JSON format

Example of output

https://eosc-argo-dashboard.eu/floats/basic/3901909
{

 "wmo": "3901909",

 "serialInst": "AI2600-16FR072",

 "serialIMEI": null,

 "platform": {

 "code": "3901909",

 "name": "AI2600-16FR072",

 "description": "ARGO MOCCA - EU",

 "comment": null,

 ...

}

USE CASES
Get the basic metadata of the Argo float selected by the end-user and display

the meta-data in a web page.

ADDITIONAL

REQUIREMENTS
Not applicable

5.3.2.3 Feature 4 : GET /api/floats/{wmo}

DESCRIPTION

AND PRIORITY

Get the complete set of metadata of a specific Argo float.

 Parameters

 wmo platform code (string)

Output

 Response code 200 (ok), 404 (wmo not found)

 If ok, metadata in the response’s in JSON format

Example of output

https://eosc-argo-dashboard.eu/floats/3901909
{

 "wmo": "3901909",

 "serialInst": "AI2600-16FR072",

 "serialIMEI": null,

 "platform": {

 "code": "3901909",

 "name": "AI2600-16FR072",

 "description": "ARGO MOCCA - EU",

 "comment": null,

 ...

 "cycles": {

 "id": "112",

 ...

USE CASES
Get the complete metadata of the Argo float selected by the end-user and

display the meta-data in a web page.

ADDITIONAL

REQUIREMENTS
Not applicable

https://eosc-argo-dashboard.eu/floats/basic/3901909
https://eosc-argo-dashboard.eu/floats/3901909

ENVRI-FAIR DELIVERABLE D9.3 35 / 90

5.3.2.4 Feature 5 : POST /api/floats/floats/multi-lines-count

DESCRIPTION

AND PRIORITY

Get the number of a list of floats that matches a specific query. See the multi-

lines-search/pages query to get the list of index available and more information.
Parameters

The query is posted in JSON. Several index can be combined in the search

Output

 An Integer

Example of output

33
[

 {

 "field": " piName",

 "searchValueType": "Text",

 "values": [

 "Birgit Klein"

]

 },

 {

 "field": "deploymentYear",

 "searchValueType": "Text",

 "values": [

 "2016"

]

 }

]

USE CASES

A web site offers a search interface that allows the end-users to get only a

selection of Argo floats. The Web site builds the corresponding API query, post

the query to the API, and display the number of Argo that matches the query.

Figure 5 : The Argo monitoring web site search interface

Figure 6 : The Argo monitoring web site displays the number of Argo floats that match

the end-user’s query.

ADDITIONAL

REQUIREMENTS
Not applicable

ENVRI-FAIR DELIVERABLE D9.3 36 / 90

5.3.2.5 Feature 6 : POST /api/floats/floats/multi-lines-search/pages

DESCRIPTION

AND PRIORITY

Get the main metadata of a list of floats that matches a specific query.

Parameters

The query is posted in JSON. Several indexes can be combined in the search

(See below). The response can be paginated by using the page and the size

parameter (/floats/pages?page={nb}&size={nb}). The response can also be

sorted (see the swagger for more information).
[

 {

 "field": " piName",

 "searchValueType": "Text",

 "values": [

 "Birgit Klein"

]

 },

 {

 "field": "deploymentYear",

 "searchValueType": "Text",

 "values": [

 "2016"

]

 }

]

The following indexes are available : country, projects, InstitutionCode,

platformType, basinCode, deploymentYear, platformMaker,

serialIMEINumber, InstitutionDescription, cruise, dacName, status, networks,

Output

 If ok, the metadata of the floats that match the query in JSON format

Example of output
[

 {

 "wmo": "3901838",

 "serialInst": "AI2600-16FR001",

 "serialIMEI": null,

 ...

 "deployment": {

 "launchDate": "2016-08-23T09:41:00.000+0000",

 "year": null,

 "platform": "METEOR",

 },

...

USE CASES See Feature 5 /floats/floats/multi-lines-count

ADDITIONAL

REQUIREMENTS
Not applicable

5.3.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service

ENVRI-FAIR DELIVERABLE D9.3 37 / 90

SOFTWARE

INTERFACE
There is no interface apart from the 15 HTTPS queries offered by the API.

HARDWARE

INTERFACE
Not applicable

COMMUNICATIO

N INTERFACE
Not applicable

5.3.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

The data API is proposed for interactive services such as Argo dashboard.

Human users of the dashboard expect answers to queries within one second of

time.

SECURITY

The Data API is developed in a GITLAB continuous integration and

deployment system.

The GITLAB server disk has a snapshot feature: every file content change is

preserved and can be restored within one month.

The GITLAB server disk is daily archived in a remote room. In case of a

hardware failure, the archived project can be restored on another server.

The Data API is deployed on a VM-Ware infrastructure, when a virtual

machine fails, it is reactivated.

OTHER

REQUIREMENTS
Not applicable

5.4 Argo data API web service
5.4.1 Description

SERVICE

PERSPECTIVE

The Argo Data API (Application Programming Interface) is a web service on

the Internet that receives requests for data and returns the data.

 Requests are in REST format

 Answers are in JSON format

FEATURES

/api/profiles request for vertical profiles data

/api/trajectories request for trajectory data

/api/timeseries request for timeseries data

/api/profiles_timelines request for timeline (count of observation per day

for a given platform)

/api/profiles_parameters list of parameters on a vertical profile

/api/timeseries_parameters list of parameters on a timeseries

ENVRI-FAIR DELIVERABLE D9.3 38 / 90

USER OVERVIEW

The API is invoked from computer applications.

Examples:

 Data display on graphs

 Data file formatting (csv, NetCDF, …)

 Calculation on the data (means, heat contents, derived parameters)

The applications are in interactive mode: the API response time to requests

should be less than a second.

TECHNOLOGIES

The API is a Java8 code.

It is hosted on a Tomcat8 server (https)

It queries a Cassandra database.

Cassandra database content is encrypted.

The system is configured in CP mode (CAP theorem): data consistency is

guaranteed within a call.

OPERATING

ENVIRONMENT

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

CONSTRAINTS

The Cassandra database is updated daily.

The web server is active 24 hours a day, 365 days a year.

It is monitored by Nagios.

The service must respond to at least 10 simultaneous requests

The configuration of the API promotes the lowest possible latency and high

output for data access.

Response time must be less than one second

DOCUMENTATIO

N

The Argo data API is available online with an Internet link (https)

The Argo data API is documented on an OpenAPI (swagger) User Interface.

The service may be replicated on EOSC infrastructure nodes, as a docker

container.

ASSUMPTIONS/

DEPENDENCIES

For security reasons, the infrastructure is regularly updated:
 Tomcat patches

 VM-Ware patches

 Cassandra patches

 Java security patches

5.4.2 Features

5.4.2.1 Feature 1: GET /api/profiles

DESCRIPTION

AND PRIORITY

Give access to profiles data, by platform, physical parameter, measure type, and

time period.

 For each timestamp, a value associated to physical parameter is

returned, with associated quality code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

Alternative: GET /api/trajectories_goodqc

Identical to Feature 3 api/timeseries but ignores data with bad quality code

(QC)

Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

ENVRI-FAIR DELIVERABLE D9.3 39 / 90

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

 measuretype (integer) : mandatory, measure type asked.

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 samplingparameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

 Output

In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when errocode is not '0' to describe the error

 "query" : the query parameters

 “result” : a tab of objects. Each objects represent a specific vertical

profile and have specific global attributes (date, position, associated

QCs, and number of values).

In each object "data" attribute is a tab of tabs. Each second dimension tab

include (in order) : physical parameter value, immersion level, parameter QC

value, relative immersion value, and immersion QC.

Effective data by immersion level is located in "data" attribute. It is a tab of tab.

Each tab is composed by (in order) : timestamp of measure, measure value,

quality code (from 0 to 9)

Example of “get profiles” output in Annex 9.2

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.4.2.2 Feature 2: GET /api/trajectories

DESCRIPTION

AND PRIORITY

Give access to data from trajectories, by platform, physical parameter, measure

type, and time period.

 For each timestamp, a value associated to physical parameter is

returned, with associated coordinates (longitude, latitude) and quality

code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

ENVRI-FAIR DELIVERABLE D9.3 40 / 90

 measuretype (integer) : mandatory, measure type asked.

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 samplingparameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

Output

In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when error code is not '0' to describe the error

 "query" : the query parameters

 "result" : is a tab of objects. Each objects represent a specific

immersion level ("z_value" attribute). There is also a count of data

before and after downsampling (if downsampling as been selected).

Effective data by immersion level is located in "data" attribute. It is a

tab of tab.

Each tab is composed by (in order): timestamp of measure, measure value, lat,

long, quality code (from 0 to 9)

Example of “get trajectory” output in annex 9.2

USE CASES

The API is invoked from computer applications.

Examples:

 Data display on graphs

 Data file formatting (csv, NetCDF, …)

 Calculation on the data (means, heat contents, derived parameters)

The applications are in interactive mode: the API response time to requests

should be less than a second.

ADDITIONAL

REQUIREMENTS
Void

5.4.2.3 Feature 3: GET /api/timeseries

DESCRIPTION

AND PRIORITY

Give access to data from timeseries, by platform, physical parameter, measure

type, and time period.

 For each timestamp, a value associated to physical parameter is

returned, with associated quality code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

 measuretype (integer) : mandatory, measure type asked.

ENVRI-FAIR DELIVERABLE D9.3 41 / 90

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 Sampling parameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

Output

In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when error code is not '0' to describe the error

 "query" : the query parameters

 "result" : is a tab of objects. Each objects represent a specific

immersion level ("z_value" attribute). There is also a count of data

before and after downsampling (if downsampling as been selected).

Effective data by immersion level is located in "data" attribute. It is a

tab of tab.

Each tab is composed by (in order): timestamp of measure, measure value,

quality code (from 0 to 9)

 Example of “get timeseries” output in annex 9.2

USE CASES

The API is invoked from computer applications.

Examples:

 Data display on graphs

 Data file formatting (csv, NetCDF, …)

 Calculation on the data (means, heat contents, derived parameters)

The applications are in interactive mode: the API response time to requests

should be less than a second.

ADDITIONAL

REQUIREMENTS
Void

5.4.2.4 Feature 4: GET /api/profiles_timelines

DESCRIPTION

AND PRIORITY

Return the number of values per day for a given platform.

 Parameters

 platform (string) : mandatory, the requested platform code.

Output

 A JSON tab filled with two attributes : "timestamp" representing the

day, and "measures" representing the number of values.

Example
 [

 {

 "timestamp":1504051200000,

 "measures":3850

 },

 {

 "timestamp":1504483200000,

 "measures":3840

 },

 ...

]

USE CASES Identical to feature 1

ENVRI-FAIR DELIVERABLE D9.3 42 / 90

ADDITIONAL

REQUIREMENTS
Void

5.4.2.5 Feature 5: GET /api/profiles_parameters

DESCRIPTION

AND PRIORITY

Return the physical parameters available for a specific profile ID.

Parameters

 observation_id (integer) : mandatory, the profile ID requested

Output

 A JSON tab of associated physical parameters.

Example

 [30,35,66,67,68,69,70,71]

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.4.2.6 Feature 6: GET /api/timeseries_parameters

DESCRIPTION

AND PRIORITY

Return the physical parameters available for a specific platform during a time

period.

Parameters

 platform_code (string) : mandatory, the platform code requested.

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

Output

 A JSON tab of associated physical parameters.

Example

 [30,35,66,67,68,69,70,71]

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.4.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service

SOFTWARE

INTERFACE

Cassandra database

Java8

Tomcat8

HARDWARE Docker container activated on a virtual machine, managed with VM-Ware.

ENVRI-FAIR DELIVERABLE D9.3 43 / 90

INTERFACE

COMMUNICATIO

N INTERFACE

 The API is activated with https requests.

There is no identification.

The communication is encrypted.

The data transfer rate depends on the user's Internet connection.

The server is connected to a 10Gb internet node.

5.4.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

The data API is proposed for interactive services such as Argo dashboard.

Human users of the dashboard expect answers to queries within one second of

time.

SECURITY

 The Data API is developed in a GITLAB continuous integration and

deployment system.

The GITLAB server disk has a snapshot feature: every file content change is

preserved and can be restored within one month.

The GITLAB server disk is daily archived in a remote room. In case of a

hardware failure, the archived project can be restored on another server.

The Data API is deployed on a VM-Ware infrastructure, when a virtual

machine fails, it is reactivated.

OTHER

REQUIREMENTS

The API and its Tomcat server can be pushed as a docker container on EOSC

infrastructure.

5.5 Argo ERDDAP Metadata & Data API
5.5.1 Description

SERVICE

PERSPECTIVE

The service provides metadata and data from various sources. The service

gathers decentralized data in order to provide search, visualization and subset

capabilities on multiple datasets.

FEATURES

1. List datasets: provides a list of the datasets described on this server

and/or others.
2. Graph: creates data plots or maps on selected parameters .
3. WMS: provides map service for gridded datasets.
4. Data: provides subsetting capabilities into a variety of output formats.
5. Display metadata: displays the metadata of the dataset and its

variables.
6. Subscription: lets the user subscribe to an alert each time a specific

dataset changes .

ENVRI-FAIR DELIVERABLE D9.3 44 / 90

USER OVERVIEW
Users can be developers, data managers as well as people who want to easily

discover the dataset.

TECHNOLOGIES Java + Apache Tomcat (JVM)

OPERATING

ENVIRONMENT

The service is operated on a Linux platforms (Debian).

The service is in a Docker container including Java, Tomcat.

CONSTRAINTS
Erddap is an open source software developed at NOAA. While it is easy to

write new features, predicting release cycle is not easy.

DOCUMENTATIO

N

The documentation is split towards different actors :

Users & developers :

 https://coastwatch.pfeg.noaa.gov/erddap/tabledap/

documentation.html

 https://coastwatch.pfeg.noaa.gov/erddap/griddap/d

ocumentation.html
System administrators :

 https://coastwatch.pfeg.noaa.gov/erddap/download

/setup.html
Data managers :

 https://coastwatch.pfeg.noaa.gov/erddap/download

/setupDatasetsXml.html

ASSUMPTIONS/

DEPENDENCIES

For security reasons, the infrastructure is regularly updated:

 Tomcat patches

 VM-Ware patches

 Java security patches

5.5.2 Features

5.5.2.1 Feature 1: List datasets

DESCRIPTION

AND PRIORITY
The user can query for a list of the existing datasets.

USE CASES

All datasets : the user/client service asks the service for the full list of the

datasets existing on the server and retrieves a list with links of all the features

for each dataset.

List by dataset type : the user asks/client service for either a list of “Gridded

datasets” or “Table datasets”. The server answers with the list of the datasets

with a link for each of the features.

List by attribute : the user/client service picks an attribute existing in the

datasets (“variableName”, “long_name”, “standard_name”, “institution”,...).

The servers provides then a list of existing values among all the datasets. Once

the user chose the desired value, the server provides a list of the datasets that

contain the attribute and value specified by the user.

ADDITIONAL

REQUIREMENTS
 Void

https://coastwatch.pfeg.noaa.gov/erddap/tabledap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setup.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setup.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html
https://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html

ENVRI-FAIR DELIVERABLE D9.3 45 / 90

5.5.2.2 Feature 2: Graph

DESCRIPTION

AND PRIORITY
For any dataset, the user can ask for plots of the data contained in the dataset.

USE CASES

Case 1 – Graphical user interface

The webpage presents a plot made with default values (that can be

programmed by data managers when setting up the dataset).

The user can change values of the parameters, for example the time range or

the quality control code for a specific variable.

The user clicks on “Redraw the Graph” which triggers the graph creation on

the server side.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to list the dataset attribute structure in order to create

a query that will be sent to the API endpoint and will trigger the graph creation.

ADDITIONAL

REQUIREMENTS
Void

5.5.2.3 Feature 3: WMS

DESCRIPTION

AND PRIORITY

For any gridded dataset, the user can ask for a colored map which shows the

desired parameter value.

USE CASES

Case 1 – Graphical user interface

The landing webpage presents a map that shows a parameter values represented

along with a color map.

The user can change the parameter shown on the map.

The user can zoom in/out which triggers the map creation on the server side.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to create queries in a standard way (WMS standard).

The client service can specify the dataset ID, parameter to color, geographical

bounds, elevation in order to create the image that will be provided by the

service.

ADDITIONAL

REQUIREMENTS
Void

5.5.2.4 Feature 4: Data

DESCRIPTION

AND PRIORITY

For any dataset, the user can ask for the data contained in the dataset in a

variety of output formats.

USE CASES

Case 1 – Graphical user interface

The landing webpage presents a form that the user can fill in order to specify

the query.

The user can change values of the parameters, for example the time range or

the quality control code for a specific variable.

The user clicks on “Submit” which triggers the data gathering and formatting

ENVRI-FAIR DELIVERABLE D9.3 46 / 90

on the server side. The data can be downloaded by the user.

Case 2 – Machine to machine API

The same service is provided in a machine-to-machine paradigm.

The client service is able to list the dataset attribute structure in order to create

a query that will be sent to the API endpoint and will trigger the data gathering

and formatting on the server side. The data can be downloaded by the user.

ADDITIONAL

REQUIREMENTS
Void

5.5.2.5 Feature 5: Display Metadata

DESCRIPTION

AND PRIORITY
For any dataset, the user can retrieve the metadata describing the dataset.

USE CASES

The user/client service calls the metadata URL for the desired dataset.

 Case 1 – Graphical User Interface :

The server provides to the user an HTML table containing all the dataset

metadata (global and variable attributes) in a human-readable way.

 Case 2 – Machine to machine API

The server provides the metadata (global and variable attributes) in the format

asked by the client service (can be CSV, JSON, netCDF …)

ADDITIONAL

REQUIREMENTS
Void

5.5.2.6 Feature 6: Subscription

DESCRIPTION

AND PRIORITY

For any dataset, the user can setup a subscription so the server can notify any

change to the dataset

USE CASES

The user/client service calls the subscription URL for the desired dataset.

The user/client service provides the email address that will receive notifications

when the dataset changes and submits the request.

The server then sends an email in order for the end user to validate the

subscription.

ADDITIONAL

REQUIREMENTS
Void

5.5.3 External interface

USER

INTERFACE

The most important parts of the webpages is presented in the form of tables.

All the features for each dataset are presented in the “List datasets” feature

(screenshot below)

Some forms cells provide drop down lists that helps the user select existing values

for attributes in the dataset (screenshot below).

ENVRI-FAIR DELIVERABLE D9.3 47 / 90

SOFTWARE

INTERFACE

In order to extract data and metadata from the netCDF files, Erddap relies on the

Java NetCDF library which is included in the package.

HARDWARE

INTERFACE
Void

COMMUNICAT

ION INTERFACE

The server communicates with the user with the following communication

standards/technologies :

 HTTP

 Email

 WMS (https://fr.wikipedia.org/wiki/Web_Map_Service)

 OPeNDAP (https://en.wikipedia.org/wiki/OPeNDAP)

The user/client service can access the service with the following communication

standards/technologies :

 Web Browser

 Other HTTP clients : curl, python “request” module …

 Non-official python module : erddapy

5.5.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The service must be provided on a server that has at least 2 gigabytes of RAM.

 The Tomcat server and ERDDAP API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

Performances depend on the filesystem on which lie the NetCDF files.

The is proposed for interactive services.

Human users of the server expect answers to queries within a few seconds of

time.

SECURITY

Security will be best achieved by setting up the Apache Tomcat server

configuration depending on the hosting site requirements.

The security can also be achieved by setting up a frontal web server that can

implement authentication as well as SSL encryption.

OTHER

REQUIREMENTS

The API and its Tomcat server is deployable as a docker container on EOSC

infrastructure.

ENVRI-FAIR DELIVERABLE D9.3 48 / 90

5.6 Argo OpenAPI (Swagger) web service
5.6.1 Description

SERVICE

PERSPECTIVE

The Argo OpenAPI (Swagger) is a web service to present the Argo data and

metadata APIs.

It lists and documents the APIs methods.

It also provides a GUI (Graphic User Interface) to build and test API queries.

FEATURES

GET /api/profiles

GET /api/trajectories

GET /api/timeseries

GET /api/profiles_timelines

GET /api/profiles_parameters

GET /api/timeseries_parameters

USER OVERVIEW

The API is invoked from computer applications.

Examples:

 Data display on graphs

 Data file formatting (csv, NetCDF, …)

 Calculation on the data (means, heat contents, derived parameters)

The applications are in interactive mode: the API response time to requests

should be less than a second.

TECHNOLOGIES

The API is a Java8 code.

It is hosted on a Tomcat8 server (https)

It queries a Cassandra database.

Cassandra database content is encrypted.

The system is configured in CP mode (CAP theorem): data consistency is

guaranteed within a call.

OPERATING

ENVIRONMENT

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

CONSTRAINTS

The Cassandra database is updated daily.

The web server is active 24 hours a day, 365 days a year.

It is monitored by Nagios.

The service must respond to at least 10 simultaneous requests

The configuration of the API promotes the lowest possible latency and high

output for data access.

Response time must be less than one second

DOCUMENTATIO

N

The Argo data API is available online with an Internet link (https)

The Argo data API is documented on a swagger User Interface.

The service may be replicated on EOSC infrastructure nodes, as a docker

container.

ASSUMPTIONS/

DEPENDENCIES

 For security reasons, the infrastructure is regularly updated:

 Tomcat patches

 VM-Ware patches

 Cassandra patches

 Java security patches

ENVRI-FAIR DELIVERABLE D9.3 49 / 90

5.6.2 Features

5.6.2.1 Feature 1: GET /api/profiles

DESCRIPTION

AND PRIORITY

Give access to profiles data, by platform, physical parameter, measure type, and

time period.

 For each timestamp, a value associated with the physical parameter is

returned, with associated quality code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

Alternative: GET /api/trajectories_goodqc

Identical to Feature 3 api/timeseries but ignores data with bad quality code

(QC)

Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

 measuretype (integer) : mandatory, measure type asked.

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 Sampling parameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

 Output

 In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when errocode is not '0' to describe the error

 "query" : the query parameters

 “result” : a tab of objects. Each object represents a specific vertical

profile and has specific global attributes (date, position, associated

QCs, and number of values).

In each object "data" attribute is a tab of tabs. Each second dimension tab

includes (in order) : physical parameter value, immersion level, parameter QC

value, relative immersion value, and immersion QC.

Effective data by immersion level is located in "data" attribute. It is a tab of tab.

Each tab is composed by (in order) : timestamp of measure, measure value,

quality code (from 0 to 9)

Example of “get profiles” output in annex 9.2

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 50 / 90

5.6.2.2 Feature 2: GET /api/trajectories

DESCRIPTION

AND PRIORITY

Give access to data from trajectories, by platform, physical parameter, measure

type, and time period.

 For each timestamp, a value associated to physical parameter is

returned, with associated coordinates (longitude, latitude) and quality

code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

 Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

 measuretype (integer) : mandatory, measure type asked.

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 samplingparameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

Output

In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when error code is not '0' to describe the error

 "query" : the query parameters

 "result" : is a tab of objects. Each objects represent a specific

immersion level ("z_value" attribute). There is also a count of data

before and after downsampling (if downsampling as been selected).

Effective data by immersion level is located in "data" attribute. It is a

tab of tab.

Each tab is composed by (in order): timestamp of measure, measure value, lat,

long, quality code (from 0 to 9)

Example of “get trajectories” output in annex 9.2

USE CASES

The API is invoked from computer applications.

Examples:

Data display on graphs

Data file formatting (csv, NetCDF, …)

Calculation on the data (means, heat contents, derived parameters)

 The applications are in interactive mode: the API response time to requests

should be less than a second.

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 51 / 90

5.6.2.3 Feature 3: GET /api/timeseries

DESCRIPTION

AND PRIORITY

Give access to data from timeseries, by platform, physical parameter, measure

type, and time period.

 For each timestamp, a value associated to physical parameter is

returned, with associated quality code (qc).

 Data are grouped by immersion level and sorted by measure date

ascending.

 A downsampling algorithm (LTTB) can be applied before the data is

returned.

Parameters

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 platform (string) : mandatory, platform code asked.

 qc (string) : optional, qc asked. Leave blank to get all qc.

 measuretype (integer) : mandatory, measure type asked.

 parameter_code (integer) : mandatory, physical parameter code asked.

 downsampling (string) : optional, set the downsampling algorithm to

be applied on data before the return. LTTB option is supported. Leave

blank to get full data.

 samplingparameter (integer) : optional, set the downsampling

algorithm parameter. If LTTB is set, will determine the number of

points to be returned

Output

In the father object, these attributes are set :

 "errorcode" : set to '0' if no functional error code

 "errormessage" : is set when error code is not '0' to describe the error

 "query" : the query parameters

 "result" : is a tab of objects. Each objects represent a specific

immersion level ("z_value" attribute). There is also a count of data

before and after downsampling (if downsampling as been selected).

Effective data by immersion level is located in "data" attribute. It is a

tab of tab.

Each tab is composed by (in order): timestamp of measure, measure value,

quality code (from 0 to 9)

 Example of “get timeseries” output in Annex 9.2

USE CASES

The API is invoked from computer applications.

Examples:

 Data display on graphs

 Data file formatting (csv, NetCDF, …)

 Calculation on the data (means, heat contents, derived parameters)

 The applications are in interactive mode: the API response time to requests

should be less than a second.

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 52 / 90

5.6.2.4 Feature 4: GET /api/profiles_timelines

DESCRIPTION

AND PRIORITY

Return the number of values per day for a given platform.

Parameters

platform (string) : mandatory, the requested platform code.

Output

A JSON tab filled with two attributes : "timestamp" representing the day, and

"measures" representing the number of values.

Example
 [

 {

 "timestamp":1504051200000,

 "measures":3850

 },

 {

 "timestamp":1504483200000,

 "measures":3840

 },

 ...

]

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.6.2.5 Feature 5: GET /api/profiles_parameters

DESCRIPTION

AND PRIORITY

Return the physical parameters available for a specific profile ID.

 Parameters

 observation_id (integer) : mandatory, the profile ID requested

Output

 A JSON tab of associated physical parameters.

Example

 [30,35,66,67,68,69,70,71]

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.6.2.6 Feature 6: GET /api/timeseries_parameters

DESCRIPTION

AND PRIORITY

Return physical parameters available for a specific platform during a period.

Parameters

 platform_code (string) : mandatory, the platform code requested.

 start (integer or string) : mandatory, set the beginning of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

 end (integer or string) : mandatory, set the end of time period

expressed in UTC (unix timestamp or date format YYYY-mm-dd).

Output

 A JSON tab of associated physical parameters.

Example

 [30,35,66,67,68,69,70,71]

ENVRI-FAIR DELIVERABLE D9.3 53 / 90

USE CASES Identical to feature 1

ADDITIONAL

REQUIREMENTS
Void

5.6.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service

SOFTWARE

INTERFACE

Cassandra database

Java8

Tomcat8

HARDWARE

INTERFACE
Docker container activated on a virtual machine, managed with VM-Ware.

COMMUNICATIO

N INTERFACE

The API is activated with https requests.

There is no identification.

The communication is encrypted.

The data transfer rate depends on the user's Internet connection.

The server is connected to a 10Gb internet node.

5.6.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE

The data API is proposed for interactive services such as Argo dashboard.

Human users of the dashboard expect answers to queries within one second of

time.

SECURITY

The Data API is developed in a GITLAB continuous integration and

deployment system.

The GITLAB server disk has a snapshot feature: every file content change is

preserved and can be restored within one month.

The GITLAB server disk is daily archived in a remote room. In case of a

hardware failure, the archived project can be restored on another server.

The Data API is deployed on a VM-Ware infrastructure, when a virtual

machine fails, it is reactivated.

OTHER

REQUIREMENTS

The API and its Tomcat server can be pushed as a docker container on EOSC

infrastructure.

ENVRI-FAIR DELIVERABLE D9.3 54 / 90

5.7 Argo OGC SensorThings API
5.7.1 Description

SERVICE

PERSPECTIVE

An implementation for Argo floats of OGC SensorThings API to query sensor

data on top of an O&M model.

FEATURES

name "Things"

url "http://a.b.c/examind/WS/sts/sts_csv/Things"

Query on instruments

name "Locations"

url "http://a.b.c/examind/WS/sts/sts_csv/Locations"

Query on positions

name "Datastreams"

url "http://a.b.c/examind/WS/sts/sts_csv/Datastreams"

Query on observed properties

name "MultiDatastreams"

url "http://a.b.c/examind/WS/sts/sts_csv/MultiDatastreams"

Query on combined observed properties

name "Sensors"

url "http://a.b.c/examind/WS/sts/sts_csv/Sensors"

Query on sensors

name "Observations"

url "http://a.b.c/examind/WS/sts/sts_csv/Observations"

Query on individual observation

name "ObservedProperties"

url "http://a.b.c/examind/WS/sts/sts_csv/ObservedProperties"

Query available parameters

name "FeaturesOfInterest"

url "http://a.b.c/examind/WS/sts/sts_csv/FeaturesOfInterest"

Query on regional area

USER OVERVIEW

The API is invoked from computer applications.

Examples:

 Data access for display on graphs

 Data access for download and further processing

 The applications may be in interactive or batch mode.

Interactive queries should be limited to provide a reasonable response time to

requests.

TECHNOLOGIES

The API is a Java8 code.

It is hosted on a Tomcat8 server (https)

It queries the Argo data API based on Cassandra database.

It is a service added on Examind server, an open source software (the

development will be delivered to the community).

OPERATING

ENVIRONMENT

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

CONSTRAINTS

The web server is active 24 hours a day, 365 days a year.

It is monitored by Nagios.

The service must respond to at least 10 simultaneous requests

DOCUMENTATIO

N

The Argo SensorThings API will be available online with an Internet link

(https)

The Argo SensorThings API will be documented on an OpenAPI (swagger)

User Interface.

The service may be replicated on EOSC infrastructure nodes, as a docker

ENVRI-FAIR DELIVERABLE D9.3 55 / 90

container.

ASSUMPTIONS/

DEPENDENCIES

For security reasons, the infrastructure is regularly updated:

 Tomcat patches

 VM-Ware patches

 Java security patches

5.7.2 Features

5.7.2.1 Feature 1: Thing

DESCRIPTION

AND PRIORITY

The “Thing” is an Argo float.

The OGC SensorThings API follows the ITU-T definition, i.e., with regard to

the Internet of Things, a thing is an object of the physical world (physical

things) or the information world (virtual things) that is capable of being

identified and integrated into communication networks [ITU-T Y.2060].

Name Definition Data
type

Multiplicity
and use

name A property provides a label for Thing
entity, commonly a descriptive name.

Character
String

One
(mandatory)

descrip
tion

This is a short description of the
corresponding Thing entity.

Character
String

One
(mandatory)

propert
ies

A JSON Object containing user-
annotated properties as key-value pairs.

JSON
Object

Zero-to-one

 Example of SensorThing Thing feature in annex 9.2

USE CASES Query on instruments, an instrument is an Argo float

ADDITIONAL

REQUIREMENTS
Void

5.7.2.2 Feature 2: Location

DESCRIPTION

AND PRIORITY

The “Location” refers to the position of observations from an Argo float.

The Location entity locates the Thing or the Things it associated with. A

Thing’s Location entity is defined as the last known location of the Thing.

A Thing’s Location may be identical to the Thing’s Observations’

FeatureOfInterest. In the context of the IoT, the principle location of interest is

usually associated with the location of the Thing, especially for in-situ sensing

applications. For example, the location of interest of a wifi-connected

thermostat should be the building or the room in which the smart thermostat is

located. And the FeatureOfInterest of the Observations made by the thermostat

(e.g., room temperature readings) should also be the building or the room. In

this case, the content of the smart thermostat’s location should be the same as

the content of the temperature readings’ feature of interest.

However, the ultimate location of interest of a Thing is not always the location

of the Thing (e.g., in the case of remote sensing). In those use cases, the content

of a Thing’s Location is different from the content of theFeatureOfInterestof the

Thing’s Observations. Section 7.1.4 of [OGC 10-004r3 and ISO 19156:2011]

provides a detailed explanation of observation location.

ENVRI-FAIR DELIVERABLE D9.3 56 / 90

Name Definition Data type Multiplici
ty and
use

name A property provides a label
for Location entity,
commonly a descriptive
name.

CharacterString One
(mandator
y)

descripti
on

The description about the
Location.

CharacterString One
(mandator
y)

encoding
Type

The encoding type of the
Location property. Its value
is one of the ValueCode
enumeration.

ValueCode One
(mandator
y)

location The location type is defined
by encodingType.

Any (i.e., the type is
depending on the
value of the
encodingType)

One
(mandator
y)

Example of a sensorThing location entity in annex 9.2

USE CASES Query on location of an Argo float

ADDITIONAL

REQUIREMENTS
Void

5.7.2.3 Feature 3: HistoricalLocation

DESCRIPTION

AND PRIORITY

The history of locations of an Argo float.

A Thing’s HistoricalLocation entity set provides the times of the current (i.e.,

last known) and previous locations of the Thing.

Name Definition Data type Multiplicity
and use

time The time when the Thing is
known at the Location.

TM_Instant (ISO-8601
Time String)

One
(mandatory)

Example of a sensorThing HistoricalLocation in annex 9.2

USE CASES Query on locations of an Argo float

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 57 / 90

5.7.2.4 Feature 4: Datastream

DESCRIPTION

AND PRIORITY

The “Datastream” is a collection of an observed property of an Argo floats.

A Datastream groups a collection of Observations measuring the same

ObservedProperty and produced by the same Sensor.

Name Definition Data type Multiplicity and use

name A property provides a
label for Datastream
entity, commonly a
descriptive name.

CharacterSt
ring

One (mandatory)

description The description of the
Datastream entity.

CharacterSt
ring

One (mandatory)

unitOfMeasur
ement

A JSON Object
containing three key-
value pairs. The name
property presents the
full name of the
unitOfMeasurement; the
symbol property shows
the textual form of the
unit symbol; and the
definition contains the
URI defining the
unitOfMeasurement.

The values of these
properties SHOULD
follow the Unified Code
for Unit of Measure
(UCUM).

JSON
Object

One (mandatory)

Note: When a
Datastream does not
have a unit of
measurement (e.g., a
OM_TruthObservation
type), the
corresponding
unitOfMeasurement
properties SHALL
have null values.

observationT
ype

The type of Observation
(with unique result
type), which is used by
the service to encode
observations.

ValueCode

see Table
12.

One (mandatory)

observedArea The spatial bounding
box of the spatial extent
of all FeaturesOfInterest
that belong to the
Observations associated
with this Datastream.

GM_Envelo
pe
(GeoJSON
Polygon)

Zero-to-one (optional)

phenomenon
Time

The temporal interval of
the phenomenon times
of all observations
belonging to this
Datastream.

TM_Period
(ISO 8601
Time
Interval)

Zero-to-one (optional)

resultTime The temporal interval of
the result times of all
observations belonging
to this Datastream.

TM_Period
(ISO 8601
Time
Interval)

Zero-to-one (optional)

Example of sensorThing data stream in annex 9.2

USE CASES Query on observed properties of an Argo float

ENVRI-FAIR DELIVERABLE D9.3 58 / 90

ADDITIONAL

REQUIREMENTS
Void

5.7.2.5 Feature 5: Sensor

DESCRIPTION

AND PRIORITY

An Argo float is equipped with various sensors to observe properties such as

sea water temperature or sea water salinity.

A Sensor is an instrument that observes a property or phenomenon with the goal

of producing an estimate of the value of the property.

Name Definition Data type Multiplici
ty and
use

name A property provides a label for
Sensor entity, commonly a
descriptive name.

CharacterString One
(mandator
y)

descripti
on

The description of the Sensor
entity.

CharacterString One
(mandator
y)

encoding
Type

The encoding type of the
metadata property. Its value is
one of the ValueCode
enumeration (see Table 15 for
the available ValueCode).

ValueCode One
(mandator
y)

metadata The detailed description of the
Sensor or system. The metadata
type is defined by encodingType.

Any (depending
on the value of
the
encodingType)

One
(mandator
y)

Example

{

 "@iot.id": 1,
 "@iot.selfLink":

 "http://example.org/v1.0/Sensors(1)",

 "Datastreams@iot.navigationLink":
 "Sensors(1)/Datastreams",

 "name": "TMP36",

 "description": "TMP36
 - Analog Temperature sensor",

 "encodingType": "application/pdf",

 "metadata":

 "http://example.org/TMP35_36_37.pdf"

 }

USE CASES Query on instruments, an instrument is an Argo float

ADDITIONAL

REQUIREMENTS
Void

ENVRI-FAIR DELIVERABLE D9.3 59 / 90

5.7.2.6 Feature 6: ObservedProperty

DESCRIPTION

AND PRIORITY

The “ObservedProperty” is a parameter observed by an Argo float.

An ObservedProperty specifies the phenomenon of an Observation.

Name Definition Data
type

Multiplici
ty and
use

name A property provides a label for
ObservedProperty entity, commonly a
descriptive name.

Character
String

One
(mandator
y)

definiti
on

The URI of the ObservedProperty.
Dereferencing this URI SHOULD result in a
representation of the definition of the
ObservedProperty.

URI One
(mandator
y)

descrip
tion

A description about the ObservedProperty. Character
String

One
(mandator
y)

Example

{
 "@iot.id": 1,

 "@iot.selfLink":

 "http://example.org/v1.0/ObservedProperties(1)",
 "Datastreams@iot.navigationLink":

 "ObservedProperties(1)/Datastreams",

 "description":
 "The dewpoint temperature is the temperature to which the air must be

 cooled, at constant pressure, for dew to form. As the grass and other objects

 near the ground cool to the dewpoint, some of the water vapor in the

 atmosphere condenses into liquid water on the objects.",

 "name":
 "DewPoint Temperature",

 "definition":

 "http://dbpedia.org/page/Dew_point"
 }

USE CASES Query available parameters of an Argo float

ADDITIONAL

REQUIREMENTS
Void

5.7.2.7 Feature 7: Observation

DESCRIPTI

ON AND

PRIORITY

An observation from an Argo floats.

An Observation is the act of measuring or otherwise determining the value of a

property [OGC 10-004r3 and ISO 19156:2011]

Name Definition Data type Multipl
icity
and
use

ENVRI-FAIR DELIVERABLE D9.3 60 / 90

phenomen
onTime

The time instant or period of when
the Observation happens.

 Note: Many resource-constrained
sensing devices do not have a
clock. As a result, a client may
omit phenonmenonTime when
POST new Observations, even
though phenonmenonTime is a
mandatory property. When a
SensorThings service receives a
POST Observations without
phenonmenonTime, the service
SHALL assign the current server
time to the value of the
phenomenonTime.

TM_Object (ISO
8601 Time string or
Time Interval string
(e.g., 2010-12-
23T10:20:00.00-
07:00 or 2010-12-
23T10:20:00.00-
07:00/2010-12-
23T12:20:00.00-
07:00))

One
(manda
tory)

result The estimated value of an
ObservedProperty from the
Observation.

Any (depends on
the observationType
defined in the
associated
Datastream)

One
(manda
tory)

resultTime The time of the Observation's
result was generated.

Note: Many resource-constrained
sensing devices do not have a
clock. As a result, a client may
omit resultTime when POST new
Observations, even though
resultTime is a mandatory
property. When a SensorThings
service receives a POST
Observations without resultTime,
the service SHALL assign a null
value to the resultTime.

TM_Instant (ISO
8601 Time string)

One
(manda
tory)

resultQuali
ty

Describes the quality of the result. DQ_Element Zero-
to-
many

validTime The time period during which the
result may be used.

TM_Period (ISO
8601 Time Interval
string)

Zero-
to-one

parameters Key-value pairs showing the
environmental conditions during
measurement.

NamedValues in a
JSON Array

Zero-
to-one

Example
{

 "@iot.id": 1,

 "@iot.selfLink":

 "http://example.org/v1.0/Observations(1)",
 "FeatureOfInterest@iot.navigationLink":

 "Observations(1)/FeatureOfInterest",

 "Datastream@iot.navigationLink":"Observations(1)/Datastream",
 "phenomenonTime": "2014-12-31T11:59:59.00+08:00",

 "resultTime": "2014-12-31T11:59:59.00+08:00",

 "result": 21.4
 }

USE CASES Query on individual observation of an Argo float

ENVRI-FAIR DELIVERABLE D9.3 61 / 90

ADDITION

AL

REQUIREME

NTS

Void

5.7.2.8 Feature 8: FeatureOfInterest

DESCRIPTION

AND PRIORITY

The “thing” is a collection of Argo floats.

An Observation results in a value being assigned to a phenomenon. The

phenomenon is a property of a feature, the latter being the FeatureOfInterest of

the Observation [OGC and ISO 19156:2011]. In the context of the Internet of

Things, many Observations’ FeatureOfInterest can be the Location of the

Thing. For example, the FeatureOfInterest of a wifi-connect thermostat can be

the Location of the thermostat (i.e., the living room where the thermostat is

located in). In the case of remote sensing, the FeatureOfInterest can be the

geographical area or volume that is being sensed.

Name Definition Data
type

Multiplicity
and use

name A property provides a label for
FeatureOfInterest entity,
commonly a descriptive name.

Character
String

One
(mandatory)

description The description about the
FeatureOfInterest.

Character
String

One
(mandatory)

encodingType The encoding type of the feature
property.

Its value is one of the ValueCode
enumeration (see Table 7 for
the available ValueCode).

ValueCode One
(mandatory)

feature The detailed description of the
feature. The data type is defined
by encodingType.

Any One
(mandatory)

 Example

{
 "@iot.id": 1,

 "@iot.selfLink":

 "http://example.org/v1.0/FeaturesOfInterest(1)",
 "Observations@iot.navigationLink":

 "FeaturesOfInterest(1)/Observations",

 "name":
 "Argo float Arvor 690078",

 "description": "This is an Argo float deployed in Atlantic ocean.",

 "encodingType": "application/vnd.geo+json",
 "feature": {

 "type":

 "Feature",
 "geometry":{

 "type": "Point",
 "coordinates": [-114.06,51.05]

 }

 }
 }

USE CASES Query on Argo floats observations in a regional area

ENVRI-FAIR DELIVERABLE D9.3 62 / 90

ADDITIONAL

REQUIREMENTS
Void

5.7.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service

SOFTWARE

INTERFACE

 Java8

 Tomcat8

 Argo data API

HARDWARE

INTERFACE
Docker container activated on a virtual machine, managed with VM-Ware.

COMMUNICATIO

N INTERFACE

The API is activated with https requests.

There is no identification.

The communication is encrypted.

The data transfer rate depends on the user's Internet connection.

The server is connected to a 10Gb internet node.

5.7.4 Nonfunctional requirements

USABILITY
A Nagios agent monitors the service every 5 minutes

Upon failure, an alert message is sent to the service owner.

OPERATIONAL

The Tomcat server and API are deployed in a docker container.

The container is activated on a virtual machine in a VM-Ware cluster.

The service is deployed in the DMZ (web Internet Zone) area.

It is requested without Internet identification.

PERFORMANCE The data API is proposed for interactive services such as Argo dashboard.

SECURITY

The Data API is developed in a GITLAB continuous integration and

deployment system.

The GITLAB server disk have a snapshot feature: every file content change is

preserved and can be restored within one month.

The GITLAB server disk is daily archived in a remote room. In case of a

hardware failure, the archived project can be restored on another server.

 The Data API is deployed on a VM-Ware infrastructure, when a virtual

machine fails, it is reactivated.

OTHER

REQUIREMENTS

The API and its Tomcat server can be pushed as a docker container on EOSC

infrastructure.

ENVRI-FAIR DELIVERABLE D9.3 63 / 90

5.8 Argo Vocabulary web services
5.8.1 Description

SERVICE

PERSPECTIVE

The Argo ocean observing network consists of an array of approximately

4000 profiling floats to enable the observation of the global ocean. This has

been developed and is sustained by national contributions to an international

partnership of program managers, investigators, manufacturers, data

managers, quality control operators, technicians and research scientists.

Over the past 20 years, the Argo ocean observing system has amassed a

wealth of metadata regarding float deployment, capabilities, configuration

and technical status. Until now, this wealth of information has been

controlled using word processing tables and spreadsheets, which would

benefit from being managed in a framework that provides metadata terms

and their definitions from a definitive machine-readable source.

The intended solution is to capitalise on past investment by using the

existing functionality of the NERC Vocabulary Server (NVS) to provide an

Argo Vocabulary service. The NVS is hosted by the National Oceanography

Centre and managed by a team of specialists at the British Oceanographic

Data Centre (BODC). The NVS provides public lists of controlled terms

used to describe data and metadata.

Using standardized sets of terms ("controlled vocabularies") in metadata, and

to label data, solves the problem of ambiguities associated with data markup,

and enables records to be interpreted by computers. This opens data sets to a

whole world of possibilities for computer aided integration, manipulation,

distribution and long-term reuse.

The NVS follows the Simple Knowledge Organisation System (SKOS)

model to define, organise and classify its content. SKOS is an application of

the Resource Description Framework (RDF), therefore NVS holdings can be

represented on the World Wide Web and as such are machine-readable.

Concepts are at the base of SKOS. They each represent an abstract entity of

any kind (e.g. idea, object, event etc.), labeled with lexical strings and codes,

documented through definitions, and identifiable through a Uniform

Resource Identifier (URI). Concepts can be grouped into meaningful

collections, aggregated into schemes, and mapped to other concepts where

semantic links exist.

 The human development and maintenance of these terms is dependent on

having a set of tools to support this process. The current Vocab Search Tool

and Vocab Editing Tool need to be enhanced to support a growing base of

users, communities and editors, whilst a Vocab Mapping Visualisation Tool

needs to be developed to support the management and visualisation of

mappings between concepts.

FEATURES

Each Argo metadata table will be presented in a unique NVS vocabulary

collection and belong to one of five vocabulary collection features:

1. Argo reference table for parameter codes collection;

2. Argo reference tables collections (all those not specified

elsewhere);

3. Argo configuration and technical units collections;

4. Argo core configuration parameter names collections;

5. Argo biogeochemical configuration parameter names collections;

6. Argo technical names collections;

7. Argo standard format collections;

8. Argo trajectory table collection.

Each feature will be managed by selected Argo governance groups, with the

support of the Vocabulary Management Group and the Argo team at BODC.

Argo metadata tables are currently listed in the Argo user’s manual, cf.

§3 “Reference tables” and several spreadsheets accessible from the Argo

Data Management Team documentation webpage in the

http://dx.doi.org/10.13155/29825
http://dx.doi.org/10.13155/29825
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation

ENVRI-FAIR DELIVERABLE D9.3 64 / 90

‘Argo data formats’ section.

There are an additional 3 features covering the development of tools:

9. Enhancement of the existing NVS Editor Tool to support improved

human administration of the vocabulary collections;

10. Enhancement of the existing NVS Search Tool to support human

improved search in identifying existing concepts and, critically, the

need for new concepts;

11. Development of an NVS Mappings Visualisation Tool.

The prioritisation of features (1= highest priority, 5 = lowest priority) will be

undertaken in two parallel streams:

 Vocabulary collection features

 Vocabulary tool features

While these developments will facilitate access and management of the Argo

vocabularies based on FAIR principles, it will also benefit the broader

community.

USER OVERVIEW

Each table is human readable and machine readable, and there is a range of

different types of users:

 Argo Data Management Team (ADMT) – the overall group

responsible for the entire Argo data system, including Data

Assembly Centres, Global Data Assembly Centres, Delayed-mode

Quality Control operators and the Argo Regional Centres;

 Argo Vocabulary Team – the subset of the ADMT responsible for

the governance of Argo vocabulary content, including a member of

the BODC Argo Team;

 BODC Vocabulary Management Group – the BODC team

responsible for providing technical governance for the NVS;

 Argo data users;

 General data users.

TECHNOLOGIES

The Argo vocabulary collections are to be hosted on the NVS, which is

managed by BODC. The technologies used are:

 ReST: The Representational State Transfer API design allows web

services to be viewed as resources and can therefore be identified

by their Uniform Resource Locators (URLs).

 SOAP: The SOAP API design allows the exchange of structured

information across computer networks following calls to web

services. It relies upon XML (Extensible Markup Language)

documents for passing messages.

 SPARQL: a standard query language for interrogating graph

databases. The SPARQL endpoint is accessible through a web

interface where queries to retrieve URL lists of concept collections

can be entered directly. Available output formats include XML,

JSON, text, CSV and TSV.

OPERATING

ENVIRONMENT

Human users will interact with the NVS through a browser interface

underpinned by the technologies listed above.

The NVS is a service hosted at BODC; it uses a dedicated NVS server, it

runs on a Linux operating system environment, and uses Oracle databases

for information storage. Development and production support use a range of

software including SQL database tools.

CONSTRAINTS

The range of concept attributes and mappings available is limited by the

standards that are currently in use, but there is potential to adopt additional

standards to extend the range of concept attributes and mappings.

http://www.argodatamgt.org/Documentation

ENVRI-FAIR DELIVERABLE D9.3 65 / 90

DOCUMENTATION

Information on the NVS can be accessed through the BODC website.

The NVS is published as Linked Data; it adheres to the following

conventions:

 W3C: World Wide Web Consortium international standards;

 RDF: Resource Description Framework specifications;

And is modeled using the following ontologies/vocabularies:

 SKOS: Simple Knowledge Organization System structure;

 Dublin Core;

 Provenance Authoring and Versioning ontology (PAV);

 Ontology Web Language (OWL).

ASSUMPTIONS/

DEPENDENCIES

There are no known assumptions or dependencies that could potentially

impact the technical specification, as the NVS already exists and the new

features are well defined.

5.8.2 Features

5.8.2.1 Feature 1: “Argo reference table 3: parameter codes” NVS collection

DESCRIPTION AND

PRIORITY

This NVS collection will reflect reference table 3, ‘Parameter code table’,

which can be found under section 3.3 of the Argo User Manual

(http://dx.doi.org/10.13155/29825).
Thierry Carval and Mathieu Belbeoch are the appointed editors for this NVS

collection.
The priority ranking for this vocabulary collection feature is: 1.

USE CASES

Concepts from this collection are used for labelling variables in the Argo

NetCDF files. They specify which parameter the corresponding data is

associated with.

These concepts will be mapped to the BODC Parameter Usage Vocabulary

collection P01, an NVS collection containing over 40,000 terms and more

than 300,000 SKOS mappings providing links to broader and related

concepts; these vocabulary links are key to enabling data discovery and

aggregation at a wide scale.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.2 Feature 2: “All other Argo reference tables not otherwise specified“ NVS

collections

DESCRIPTION

AND PRIORITY

These NVS collections will reflect all tables currently held solely in section 3

of the Argo User Manual (http://dx.doi.org/10.13155/29825) which are

not covered by any other feature.

Thierry Carval and Mathieu Belbeoch are the appointed editors for these NVS

collections.

The priority ranking for this vocabulary collection feature is: 1.

USE CASES

Concepts from these collections are used as metadata in the Argo NetCDF
files. These concepts capture various information about the nature of the float

including:

 File data type

https://www.bodc.ac.uk/resources/products/web_services/vocab/#methods
https://www.bodc.ac.uk/resources/products/web_services/vocab/#methods
http://dx.doi.org/10.13155/29825
http://dx.doi.org/10.13155/29825

ENVRI-FAIR DELIVERABLE D9.3 66 / 90

 Quality control flag scales

 Data centres and institution codes

 Classes of position accuracy

 Data state indicators

 History action codes

 Instrument types

 Positioning system

 Transmission system

 Binary ID of quality control test results

 History steps codes

 Ocean codes

 Vertical sampling schemes

 STATUS flags

 GROUNDED flags

 REPRESENTATIVE_PARK_PRESSURE_STATUS

 PLATFORM_FAMILY

 PLATFORM_TYPE

 PLATFORM_MAKER

 SENSOR

 SENSOR_MAKER

 SENSOR_MODEL

 CONTROLLER_BOARD_TYPE_PRIMARY

 BATTERY_TYPE

 BATTERY_PACKS

Some of these terms are not yet machine readable. In addition to supporting

long-term maintenance and use of these vocabularies for Argo, these concepts

could be adopted for wider observing system use, or could be mapped to form

other collections external to Argo to enhance semantic richness and provide a

basis for cross in-domain and cross domain use.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.3 Feature 3: “Argo configuration and technical units” NVS collection

DESCRIPTION

AND PRIORITY

This NVS collection will reflect the list of units associated with float

configuration and technical metadata. Currently, the primary location of this

table is an XLSX file which can be downloaded from:

Table%20Tech%20and%20Conf%20Units%20V2.3.xlsx
Birgit Klein is the appointed editor for this NVS collection.

The priority ranking for this vocabulary collection feature is: 1.

USE CASES

Concepts from this collection are used to define the units of the metadata from

the Argo technical files and configuration parameters.

Though BODC NVS collection P06 holds an extensive list of data storage

units, several of those used in conjunction with Argo technical and

configuration metadata are not yet present. There is thus significant scope in

creating concepts to be mapped to the Argo configuration and technical

parameters, either as a new collection or as additions to P06.

ADDITIONAL

REQUIREMENTS
n/a

http://www.argodatamgt.org/content/download/27456/187267/file/Table%20Tech%20and%20Conf%20Units%20V2.3.xlsx
http://www.argodatamgt.org/content/download/27456/187267/file/Table%20Tech%20and%20Conf%20Units%20V2.3.xlsx
http://www.argodatamgt.org/content/download/27456/187267/file/Table%20Tech%20and%20Conf%20Units%20V2.3.xlsx

ENVRI-FAIR DELIVERABLE D9.3 67 / 90

5.8.2.4 Feature 4: “Argo core configuration parameter names” NVS collection

DESCRIPTION AND

PRIORITY

These NVS collections will reflect all Argo core configuration parameter

names described in the Excel spreadsheet ‘Configuration parameter names,

core Argo, November 13
th

 2018’, which can be downloaded from the

http://www.argodatamgt.org/Documentation website under the ‘Argo data

formats’/‘Argo metadata files’ sub-section.

John Gilson is the appointed editor for these NVS collections.

The priority ranking for this vocabulary collection feature is: 2.

USE CASES

Concepts from these collections are used as metadata in the Argo NetCDF

files, in support of the Core Argo mission. These concepts define the intended

float configuration, and enable the at-sea monitoring of float performance.

There is significant scope to enhance semantic richness through a review of

the definition of existing terms, and by mapping between terms. There is also

the potential to introduce additional collections based on the type of float, to

enable mapping between float manufacturer and Argo Data Management

Team defined concepts.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.5 Feature 5: “Argo biogeochemical configuration parameter names” NVS

collection

DESCRIPTION AND

PRIORITY

These NVS collections will reflect all Argo biogeochemical configuration

parameter names described in the Excel spreadsheet ‘Configuration parameter

names, BGC-Argo, July10th 2019’, which can be downloaded from the

http://www.argodatamgt.org/Documentation website under the

‘Argo data formats’/‘Argo metadata files’ sub-section.

Catherine Schmechtig is the appointed editor for these NVS collections.

The priority ranking for this vocabulary collection feature is: 2.

USE CASES

Concepts from these collections are used as additional float configuration

metadata in the Argo NetCDF files, in support of the Biogeochemical Argo

mission. These concepts define the intended float configuration with respect

to biogeochemical sensors, and enable the at-sea monitoring of float

performance. There is significant scope to enhance semantic richness through

a review of the definition of existing terms, and by mapping between terms.

There is also the potential to introduce additional collections based on the type

of float to enable mapping between float manufacturer and Argo Data

Management Team defined concepts.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.6 Feature 6: “Argo technical names” NVS collection

DESCRIPTION AND

PRIORITY

These NVS collections will reflect all Argo technical names described in the

documents under the ‘Argo data formats’/’Argo user manual for technical

files’ sub-section, which can be downloaded from the

http://www.argodatamgt.org/Documentation website.

Birgit Klein is the appointed editor for these NVS collections.

The priority ranking for this vocabulary collection feature is: 2.

USE CASES Concepts from these collections are used as float technical metadata in the

http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation

ENVRI-FAIR DELIVERABLE D9.3 68 / 90

Argo NetCDF files. These concepts define the float technical status and

enable its at-sea monitoring. There is significant scope to enhance semantic

richness through a review of the definition of existing terms, and by mapping

between terms. There is also the potential to introduce additional collections

based on the type of float to enable mapping between float manufacturer and

Argo Data Management Team defined concepts.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.7 Feature 7: “Argo standard format tables” NVS collections

DESCRIPTION AND

PRIORITY

These NVS collections will reflect the Argo standard format table, which is

currently stored in a Google spreadsheet accessible from the ADMT webpage

and from the Argo User Manual: http://tinyurl.com/qy7fdqc.
Megan Scanderbeg and Mathieu Belbeoch are the appointed editors for these

NVS collections.

The priority ranking for this vocabulary collection feature is: 3.

USE CASES

This table currently maps Argo float types to PLATFORM_TYPE_KEY in a

1:1 relationship; the latter is then mapped to STANDARD_FORMAT_ID in a

1:many relationship.

Use cases and implementation of this information within the NVS still needs

to be fully explored and comprehended.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.8 Feature 8: “Argo reference table 15: Codes of trajectory measurements

performed within a cycle” NVS collections

DESCRIPTION AND

PRIORITY

These NVS collections will contain the codes of trajectory measurements

performed within a cycle. These are currently in the table under section 3.15

of the Argo User Manual (http://dx.doi.org/10.13155/29825), and the

Argo Trajectory Measurement Code Tables document

(https://archimer.ifremer.fr/doc/00187/29824/66481.pdf) which can

be found in the Argo data management website

http://www.argodatamgt.org/Documentation under ‘Cookbooks,

core-Argo'.

An editor from the ADMT community has not been appointed yet.

The priority ranking for this vocabulary collection feature is: 3.

USE CASES

Concepts from these collections are used as metadata in the Argo NetCDF

trajectory files. The concepts describe measurement timing and position

relative to the float’s cycle through a series of codes.

ADDITIONAL

REQUIREMENTS
n/a

 5.8.2.9 Feature 9: Vocab Search Tool

DESCRIPTION AND

PRIORITY

Improvement of the existing Vocabulary Search Tool

https://www.bodc.ac.uk/resources/vocabularies/vocabulary_se

http://tinyurl.com/qy7fdqc
http://tinyurl.com/qy7fdqc
http://dx.doi.org/10.13155/29825
https://archimer.ifremer.fr/doc/00187/29824/66481.pdf
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation
http://www.argodatamgt.org/Documentation

ENVRI-FAIR DELIVERABLE D9.3 69 / 90

arch/, such as:

1. Simplification of the user interface: intuitive design, standard search

features;

2. Quick access to collections based on governance or customised

groupings;

3. Enhancement of free text search options and flexibility;

4. Simplification of the display output, with customisation enabled e.g.

choice of format, fields, etc.

 The priority ranking for this tool feature is: 1

USE CASES

The current content of vocabularies, including concept mappings, is used by

both humans and machines; however, it is humans that must ultimately impart

meaning to new terms and understand the meaning of existing terms. The

human user can currently access the Vocabulary Search Tool to search for

collections and concepts, and within collections for concepts; however, the

tool in its current form requires improvement to enhance usability

(particularly by unfamiliar users), to more readily expose all of the available

semantic richness, and to provide more options for display and export in

support of vocabulary reuse and development.

ADDITIONAL

REQUIREMENTS
n/a

 5.9.2.10 Feature 10: Vocab Editor Tool

DESCRIPTION AND

PRIORITY

Improve existing Vocabulary Editing Tool (including mapping management)

https://www.bodc.ac.uk/resources/vocabularies/vocabulary_ed

itor/, such as:

1. Add automated checks and improve user feedback;

2. Harmonise submission formats;

3. Enable user to review submission before committing;

4. Improve back-office tooling and workflow.

The priority ranking for this tool feature is: 2

USE CASES

Vocabularies need to be developed in a consistent manner to ensure that their

semantic meaning is retained over long time periods. This is fundamental so

that the NVS may grow in line with the evolving needs of the communities it

serves without compromising the quality and integrity of its holdings.

The current capabilities of the Vocabulary Editing Tool enable individuals

with the role of vocabulary editor to administer the vocabularies they are

responsible for. However, as the number of vocabularies, concepts and editors

expand, the tool will need to be enhanced to provide the functionality to

support consistent and effective decision-making.

ADDITIONAL

REQUIREMENTS
n/a

5.8.2.10 Feature 11: Vocab Mapping Visualisation Tool

DESCRIPTION AND

PRIORITY

Creation or adoption of a visualisation tool to help the management and

development of mappings between different vocabulary concepts:

1. Intuitive tool to explore and visualise links between concepts in e.g.

Argo vocabularies and other resources;

2. Explore the possibility of linking this tool with the Vocabulary

editing tool for mapping management.

https://www.bodc.ac.uk/resources/vocabularies/vocabulary_editor/
https://www.bodc.ac.uk/resources/vocabularies/vocabulary_editor/
https://www.bodc.ac.uk/resources/vocabularies/vocabulary_editor/
https://www.bodc.ac.uk/resources/vocabularies/vocabulary_editor/

ENVRI-FAIR DELIVERABLE D9.3 70 / 90

The priority ranking for this tool feature is: 3

USE CASES

Vocabulary users and editors need to be able to understand current and

potential future mappings for creating links between concepts. There are

currently no intuitive tools in place, and users are reliant on plain text links

within the definition of an individual concept.

Improving the available tools for this purpose has the potential to enhance the

semantic richness of the relationship between concepts by significantly

increasing the number of mappings available; this will in turn facilitate

domain and across domain use cases.

ADDITIONAL

REQUIREMENTS
n/a

5.8.3 External interface

USER INTERFACE

 Vocabulary Search: human-readable web interface to search and

access NVS collections within the whole catalogue. No access

control.

 NVS SPARQL endpoint: human and machine readable web interface

providing access to the entire NVS catalogue through SPARQL

queries, and outputting a range of selectable formats including ASCII,

JSON, XML, CSV and TSV. No access control.

 Vocabulary Editor: human interface allowing governance groups and

representatives to manage concepts and mappings that fall under their

remit. Access control in place.

 NVS Linked Data REST API: operates using content negotiation,

thus serving different versions of a resource at the same URI to allow

user agents to specify which version fits their capabilities best. In

practice, the Linked Data REST API serves html content to a human

user (browser) and RDF/XML to the machine.

 NVS Github repositories: open discussions, term requests and

reporting of issues can be made via the NVS Github repositories.

Using github empowers the transparency of governance and opens up

discussions to a wider community by using a centralised open space.

 SeaDataNet community tools: a set of external tools for NVS were

developed by SeaDataNet and can be found here.

 FAIRsharing.org: holds more information about the NVS, and can be

accessed through this link.

The NVS content is updated twice a day.

SOFTWARE

INTERFACE

The current NERC Vocabulary Server version is 2.0. NVS content is stored in

BODC’s Oracle database and is made publicly available via web services

namely SOAP, REST and SPARQL. As stated above, the REST interface

follows the Linked Data principles and applies content negotiation to serve its

content differently to humans and machines.

NVS functionality is enhanced with a set of tools for searching through and

editing of vocabularies with the NVS Search and Editor respectively.

HARDWARE

INTERFACE
N/A

COMMUNICATIO

N INTERFACE

The Vocabulary Editor tool requires user identification to create/edit concepts

and create/edit mappings for collections owned by the user.

The majority of the remaining NVS web services and applications can be used

without login.

ENVRI-FAIR DELIVERABLE D9.3 71 / 90

5.8.4 Nonfunctional requirements

USABILITY

The NVS is already an operational service which serves a large community of

globally distributed users. It currently receives an average of ~10,000 calls per

day through its different web services.

OPERATIONAL
The NVS will be provided through a dedicated virtual machine with redundant

processing and database capabilities.

PERFORMANCE

The NVS underpins the SeaDataNet data infrastructure and services. It is

continuously monitored for its performance, reliability and availability, both

internally at BODC but also by its main user communities (see e.g.

https://sdc.ui.argo.grnet.gr/sdc/dashboard/Critical/VOCABULAR

Y).
The Argo project vocabulary services will benefit from the same level of

performance monitoring. It is worth mentioning that our current user best

practices of consuming NVS webservices is caching.

SECURITY

The content of the NVS does not need to be protected as it is freely available

for use; however, the NVS service itself must be protected from disruption. As

mentioned above, our current user best practices of consuming NVS

webservices is caching rather than continuous firing or requests. Additionally,

the NVS SPARQL endpoint has a time-out for very long and complex

SPARQL queries that could disrupt the service.

OTHER

REQUIREMENTS
The contents of the NVS are freely available for download and local re-use.

https://sdc.ui.argo.grnet.gr/sdc/dashboard/Critical/VOCABULARY
https://sdc.ui.argo.grnet.gr/sdc/dashboard/Critical/VOCABULARY
https://sdc.ui.argo.grnet.gr/sdc/dashboard/Critical/VOCABULARY
https://sdc.ui.argo.grnet.gr/sdc/dashboard/Critical/VOCABULARY

ENVRI-FAIR DELIVERABLE D9.3 72 / 90

6 SeaDataNet technical specification

6.1 Overview
6.1.1 Scope for the RI
Following the results of the questionnaires and first FAIRness analysis, the focus for SeaDataNet will

be on its CDI data access service, and the SeaDataNet data product catalogue based on Sextant, plus

upgrade of some elements in the exposed metadata. Similar to Euro-Argo most attention will be given

to the service layers for machine to machine access, while the dataflow from the sources and the data

repositories will remain out-of-scope (being internal to the SeaDataNet community). This is illustrated

in the diagram below.

Figure 5: Schematic dataflow in SeaDataNet RI with focus areas for FAIRness

6.1.2 Summary of the technical implementation plan
As a result of the gaps identified during the FAIRness analysis the following list of implementation

actions has been created as part of D9.2.

FINDABILITY void

ACCESSIBILITY

● Sextant: Registration of SeaDataNet catalog in an official registry,

like FAIRSharing.

● CDI: API development for improved machine access.
Develop a restful API to improve the ordering and download of CDI

(unrestricted) data for improved machine access.

ENVRI-FAIR DELIVERABLE D9.3 73 / 90

● Sextant: access to dataplots via WPS
Develop WPS to allow data plot access, accessible from Sextant

metadata

CDI and Sextant: Explicit persistency policy in metadata

INTEROPERABILITY

● Sextant: Upgrade metadata with vocabularies (especially

concerning provenance and quality)
Upgrade Sextant metadata to incorporate more vocabularies. Collect

provenance information from dataproduct. After this metadata records

for products and aggregations can be updated

REUSABILITY

● CDI: Expand current CDI metadata

Machine readable and interpretable information is needed e.g. for

quality info, processing info. This info is known, but not captured and

provided in structured metadata. Upgrade CDI metadata eventually to

incorporate more vocabularies, regarding provenance and quality. We

will use the linked data principles and SeaDataNet directories and

vocabularies (linked to cruises, projects, organisations, data sets, etc)

● Sextant: Collect and expose structured provenance metadata for

data products and aggregations in Sextant

This information is known but not captured and provided in structured

metadata yet (usually only text/pdf format). Work will be done to extract

elements and store it as machine readable and interpretable information

e.g. for quality info, processing steps, validation, software versions.

As indicated in the table above the developments will focus on three services: CDI metadata and API,

CDI sparQL endpoint, and the Sextant data product catalogue. These services will be used in next

chapters to point out the specific developments in each of them.

6.1.3 Indicative planning for delivery
Analysis of the required semantic solutions in 2020 Q2,

Implementation semantic solutions Q1 2021.

First proof of concepts in 2020 Q2,

Demo version 2021 Q1.

ENVRI-FAIR DELIVERABLE D9.3 74 / 90

6.2 CDI metadata and data access API
6.2.1 Description

SERVICE

PERSPECTIVE

The SeaDataNet Common Data Index (CDI) is an existing service

(https://cdi.seadatanet.org/) which gives users a highly detailed insight in the

availability and geographical spreading of marine data sets that are managed by

more than 100 marine and oceanographic data centres, located in 34 countries,

around and riparian to European seas. It provides a unique interface for

requesting access, and if granted, for downloading subsets from the rich and

steadily increasing volume of marine data sets for physics, chemistry, geology,

biology, geophysics, and bathymetry that these distributed data centres are

managing. Currently, the CDI service gives access to more than 2.3 million

metadata records and associated data sets, in majority in SeaDataNet standard

data formats and using the SeaDataNet controlled vocabularies for many aspects,

plus some elements in free text (e.g. about data quality).

The CDI system already offers machine access to metadata (CSW/OAI-PMH),

but under ENVRI-FAIR the FAIRness of the CDI service will be expanded by

developing a Machine2Machine accessible API to facilitate access to data

(besides current human user interface) and at the same time the metadata will be

slightly expanded and upgraded to optimise machine access.

FEATURES

● Develop an API with workflow to enable search, order and download of

CDI (unrestricted/SeaDataNet licensed) data by machine users.

● Draft and add to the metadata an explicit persistency policy. Upgrade the

CDI metadata to incorporate more vocabularies, and linked data regarding

provenance and quality information. This info is known, but not captured

and provided in structured metadata and therefore not yet suitable for

machine interpretation.

USER OVERVIEW

Scientific users of e.g. VRE’s (programming e.g. in Jupyter notebook), as well

as European/Global scale services periodically harvesting a certain subset of the

CDI data resources.

TECHNOLOGIES

Main technologies and standards used:

● Restful API in combination with OpenSearch

● NERC Vocabulary Service

● ISO19115/19139 metadata profile CDI

OPERATING

ENVIRONMENT

The CDI API will be deployed on MARIS webservers, 24/7 operational with

99,9% uptime. The NVS is operated and hosted by BODC. The data behind the

CDI metadata indexes is stored in the cloud at EUDAT cloud servers (B2SAFE),

so there will be communication with B2SAFE (as is already operational in the

human user interface)

CONSTRAINTS

Even though the published data via the API is on a light license, there is a data

policy users need to accept, and an authentication is required via MARINE-ID

(operated by IFREMER). This machine users of the API will need to

authenticate and accept the license.

DOCUMENTATION

Metadata search via API. This will trigger an order workflow. Datasets per order

will be delivered in batches, as zip file with datasets in ODV/NetCDF format

(see all SDN formats on https://www.seadatanet.org/Standards/Data-Transport-

Formats)

ASSUMPTIONS/

DEPENDENCIES
N/A

6.2.2 New features

6.2.2.1 Feature 1 : Restful API development

DESCRIPTION

AND PRIORITY

Develop a Restful API with workflow to enable search, order and download of

CDI (unrestricted/SeaDataNet licensed) data by machine users.

USE CASES

● Programme authenticates to API via Marine-ID, receives token

● Search: Submit query, receive results (list of PID’s, metadata content)

● Order: submit list of PID’s as order, receive order-id

● Check progress of order, receive status, in the end receive download URL

https://cdi.seadatanet.org/
https://www.seadatanet.org/Standards/Data-Transport-Formats
https://www.seadatanet.org/Standards/Data-Transport-Formats

ENVRI-FAIR DELIVERABLE D9.3 75 / 90

● Download: Use token and URL to download files.

ADDITIONAL

REQUIREMENTS
Include Swagger documentation to support users

6.2.2.2 Feature 2 : Add persistency policy

DESCRIPTION

AND PRIORITY

Draft and add to metadata an explicit machine accessible persistency policy in

metadata

USE CASES
Request the persistency policy as metadata element as part of the metadata

request.

ADDITIONAL

REQUIREMENTS

Important to expand the CDI ISO19115 metadata model and formulate the

policy.

6.2.2.3 Feature 3 : Add machine readable provenance information

DESCRIPTION

AND PRIORITY

Upgrade the CDI metadata to incorporate more vocabularies regarding

provenance and quality information. Machine readable and interpretable

information is needed e.g. for quality info, processing info. This info is known,

but not captured and provided in structured metadata.

USE CASES

● Expand the CDI ISO19115 metadata model with elements for provenance

and quality

● This will include SWE information links, so e.g. links to sensor descriptions

created by the involved data centers.

● BODC to expand the NVS with vocabularies to support this information.

● Capture the metadata elements for quality and processing info (done by

DataCenters - involvement OGS, IFREMER, CSIC, RBINS. Adding this

info will be mostly forward looking, not for older records.

● Expose as part of metadata for demonstration cases.

ADDITIONAL

REQUIREMENTS

● Needs working group for the data model, SWE work and the NVS update

(NOC)

● Data centers required to test: RBINS, OGS, CSIC, IFREMER

6.2.3 External interface

USER INTERFACE There is no user interface, the API is a machine to machine service.

SOFTWARE

INTERFACE
SQLServer, Restful API

HARDWARE

INTERFACE
n/a

COMMUNICATION

INTERFACE

The API is requested via https requests. There is authentication and

authorisation via Marine-ID.

The data transfer rate depends on the machine’s Internet connection.

6.2.4 Nonfunctional requirements

USABILITY
The SeaDataNet ARGO monitoring will check the uptime of the service.

Upon failure, an alert message is sent to the service owner.

ENVRI-FAIR DELIVERABLE D9.3 76 / 90

OPERATIONAL n/a

PERFORMANCE

The API is proposed for interactive services such as VRE’s or processing

services.

The servers will expect responses to queries within one second.

SECURITY
The servers are secured and actively monitored. Backup is being created on a

daily basis.

OTHER

REQUIREMENTS
All services should be documented well.

6.3 CDI SPARQL endpoint
6.3.1 Description

SERVICE

PERSPECTIVE

Various metadata directories of SeaDataNet (Organisations EDMO, projects

EDMERP,..) are already available via SPARQL endpoints. The CDI system

already offers machine access to metadata (CSW/OAI-PMH), but under

ENVRIFAIR in cooperation with SDC the FAIRness of the CDI service will be

enhanced by developing a Machine2Machine (M2M) accessible SPARQL

endpoint for the metadata. Using a linked data approach, information relevant to

more than one catalog can be inherited or inferred by linkages between the

catalogs (EDMO, EDMERP, CSR, NVS).

The CDI triple store will be very large when generating this one-on-one for the

2.3M records. The challenge will therefore lie in the aggregation of the

metadata, the synchronisation process to RDF.

FEATURES

● Updating the current specification of the mapping of the CDI datamodel to

RDF. This specification needs to be enhanced to incorporate provenance

information related to quality and processing etc. including the links to the

other metadata repositories, and the NVS.

● Develop the SparQL endpoint for the CDI metadata

USER OVERVIEW Scientific users, search engines, other services with links to CDI.

TECHNOLOGIES

Main technologies and standards to be investigated/used:

● Fuseki

● Java-Jena

● NERC Vocabulary Service

● RDF

OPERATING

ENVIRONMENT

The CDI SPARQL endpoint will be deployed on MARIS webservers, 24/7

operational with 99,9% uptime. The data behind the CDI metadata indexes is

stored in the cloud at EUDAT cloud servers (B2SAFE), so there will be

communication with B2SAFE (as is already operational in the human user

interface)

CONSTRAINTS The CDI SPARQL endpoint will be fully open, no authentication.

DOCUMENTATION CDI metadata to RDF mapping, SPARQL endpoint documentation.

ASSUMPTIONS/

DEPENDENCIES
 n/a

ENVRI-FAIR DELIVERABLE D9.3 77 / 90

6.3.2 New features

6.3.2.1 Feature 1 : SPARQL endpoint development

DESCRIPTION

AND PRIORITY

FAIRness of the CDI service will be enhanced by developing a M2M accessible

SPARQL endpoint for the metadata, thereby achieving the optimised linked data

result for SeaDataNet (via the links to EDMO, EDMERP, CSR, NVS, SWE).

The CDI triple store will be very large when generating this one-on-one for the

2.3M records. The challenge will therefore lie in the aggregation of the

metadata, and the synchronisation process to RDF.

USE CASES

● Develop aggregation of metadata

● Map the database tables to Jena Model, using the mapping provided by

Marine Institute

● Export Database to multiple formats

● Load RDF in Fuseki and synchronise regularly

● Demonstrate the full linked data implementation with optimised data from

SDN data centers CSIC, RBINS, IFREMER, OGS.

ADDITIONAL

REQUIREMENTS

Include Swagger documentation for CDI sparql endpoint to follow the openAPI

and support users

6.3.2.2 Feature 2 : Aggregation and mapping to RDF

DESCRIPTION

AND PRIORITY

Create the mapping to RDF for CDI, including the links to the other metadata

repositories, the NVS and provenance information (see other action)

USE CASES

● Create a useful aggregation of the CDI metadata (e.g. per parameter group,

per sea-area)

● RDF mapping for CDI already developed. Needs to be expanded for quality

and provenance information. Plus create the dynamic mapping and use this

in the SPARQL endpoint (see feature 1)

ADDITIONAL

REQUIREMENTS
n/a

6.3.3 External interface

USER INTERFACE
Apache Jena Fuseki is a SPARQL server and has a user interface for server

monitoring and administration.

SOFTWARE

INTERFACE
SPARQL endpoint (Fuseki)

HARDWARE

INTERFACE
..

COMMUNICATION

INTERFACE

The SPARQL endpoint is requested via https requests.

There is no authentication and authorisation required.

The data transfer rate depends on the machines Internet connection.

6.3.4 Nonfunctional requirements

USABILITY
The SeaDataNet ARGO monitoring will check the uptime of the service.

Upon failure, an alert message is sent to the service owner.

OPERATIONAL ..

PERFORMANCE

The SPARQL endpoint is proposed for search engines, and scientific users

making complex queries. The users will expect answers to queries within a few

seconds.

ENVRI-FAIR DELIVERABLE D9.3 78 / 90

Caching of query results locally is the preferred way to work with a sparql

endpoint to avoid performance issues.

SECURITY
The servers are secured and actively monitored. Backup is being created on a

daily basis. The sparql endpoint is a read-only service

OTHER

REQUIREMENTS

All services should be documented well. Tests will be done together with the

data centers (CSIC, RBINS, OGS, IFREMER) if the provenance and quality

information is indeed exposed and flowing to the users.

6.4 Sextant data product catalogue upgrading
6.4.1 Description

SERVICE

PERSPECTIVE

SeaDataNet provides aggregated datasets (ODV collections of all unrestricted

SeaDataNet measurements of temperature and salinity by sea basins) and

climatologies (regional gridded field products) based on the aggregated datasets

and data from external data sources such as the COriolis Ocean Dataset for

Reanalysis (CORA) and the World Ocean Database (WOD) for all the European

sea basins and the Global Ocean. Each SeaDataCloud product is described in a

Product Information Document (PIDoc) that can be accessed from the product’s

landing page.

The data product metadata is accessible and searchable via the Sextant catalogue

that already exists

(https://www.seadatanet.org/Products#/search?from=1&to=30). As part of

ENVRI-FAIR the FAIRness of the catalogue has been analysed, leading to a set

of required upgrades that are specified here.

FEATURES

● Registration of SeaDataNet catalogue in an official registry.

● Add an explicit persistency policy in metadata.

● Create access to dataplots via WPS

● Develop WPS to allow data plot access, accessible from Sextant

metadata

● Upgrade metadata with vocabularies (especially concerning provenance

and quality). Collect provenance information from dataproduct. After

this metadata records for products and aggregations can be updated.

● Collect and expose structured provenance metadata for data products

and aggregations in Sextant. This information is known but not

captured and provided in structured metadata yet (usually only text/pdf

format). Work will be done to extract elements and store it as machine

readable and interpretable information e.g. for quality info, processing

steps, validation, software versions.

USER OVERVIEW
Scientific users, search engines, other services accessing the aggregations and

dataproduct (e.g. for cloud processing/VRE).

TECHNOLOGIES

Main technologies used:

● Sextant (based on Geonetwork)

● NERC Vocabulary Server

● WPS/ERDDAP

OPERATING

ENVIRONMENT
The Sextant service is already operational on the IFREMER webservers.

CONSTRAINTS
Sextant metadata is fully open, no authentication. Access to the datafiles

required authentication via MARINE-ID.

DOCUMENTATION Sextant metadata format.

ASSUMPTIONS/

DEPENDENCIES
-

https://www.seadatanet.org/Products#/search?from=1&to=30

ENVRI-FAIR DELIVERABLE D9.3 79 / 90

6.4.2 New features

6.4.2.1 Feature 1 : Registration of SeaDataNet catalogue in an official registry

DESCRIPTION

AND PRIORITY

To increase the visibility of the catalogue it is important to register it in an

official registry.

USE CASES
● Explore best suitable registries (e.g. FAIRsharing, B2Find, ...)

● Register.

ADDITIONAL

REQUIREMENTS
none.

6.4.2.2 Feature 2 : Add an explicit persistency policy in metadata

DESCRIPTION

AND PRIORITY

Draft and add to metadata an explicit machine accessible persistency policy in

metadata

USE CASES
● Test by requesting the persistency policy as element as part of the

metadata request

ADDITIONAL

REQUIREMENTS

Important to expand the Sextant ISO19115 metadata model and formulate the

policy.

6.4.2.3 Feature 3 : Create access to dataplots via WPS

DESCRIPTION

AND PRIORITY
Develop a WPS to allow data plot access, accessible from Sextant metadata

USE CASES

● Discover metadata

● From link in metadata access the data access service

● Request subset

ADDITIONAL

REQUIREMENTS
n/a

6.4.2.4 Feature 4 : Upgrade metadata elements with vocabularies

DESCRIPTION

AND PRIORITY

Upgrade metadata elements with vocabularies especially concerning provenance

and quality. Collect provenance information from data product generation

process. After this, the metadata records for products and aggregations can be

updated.

USE CASES

● Expand metadata format elements

● Identify and create new NVS vocabularies

● Publish in metadata

ADDITIONAL

REQUIREMENTS

Important to expand the Sextant ISO19115 metadata model and formulate the

policy.

6.4.2.5 Feature 5 : collect provenance information (QC and processing)

DESCRIPTION

AND PRIORITY

Collect and expose structured provenance metadata for data products and

aggregations in Sextant. This information is known but not captured and

provided in structured metadata yet (usually only text/pdf format). Work will be

done to extract elements and store it as machine readable and interpretable

information e.g. for quality info, processing steps, validation, software versions.

ENVRI-FAIR DELIVERABLE D9.3 80 / 90

USE CASES

● Set up working group with the WebODV and DIVA developers

● Collect the required elements during processing (in WebODV and

DIVA)

● Publish in metadata

● https://www.w3.org/TR/vocab-dqv/#dqv:QualityMetadata is a

candidate quality metadata ontology

ADDITIONAL

REQUIREMENTS
-

6.4.3 External interface

USER INTERFACE
https://www.seadatanet.org/Products#/search?from=1&to=30

SOFTWARE

INTERFACE
Sextant (Geonetwork), WPS (ERDDAP?)

HARDWARE

INTERFACE
..

COMMUNICATION

INTERFACE

Sextant is requested via https requests. There is no authentication and

authorisation required for the metadata discovery. For data access MARINE-ID

authentication is required.

6.4.4 Nonfunctional requirements

USABILITY
The SeaDataNet ARGO monitoring will check the uptime of the service.

Upon failure, an alert message is sent to the service owner.

OPERATIONAL ..

PERFORMANCE

Sextant is proposed for scientific users discovering data collections and quality

checked data products. The users will expect answers to queries within a few

seconds.

SECURITY
The servers are secured and actively monitored. Backup is being created on a

daily basis.

OTHER

REQUIREMENTS
All services should be documented well.

https://www.w3.org/TR/vocab-dqv/#dqv:QualityMetadata
https://www.seadatanet.org/Products#/search?from=1&to=30

ENVRI-FAIR DELIVERABLE D9.3 81 / 90

7 Conclusion
The developments specified in this document D9.3 will significantly improve the Machine to Machine

fairness of Marine domain RIs data system. The task 9.8 « Demonstrate Marine subdomain FAIRness,

EOV global product » is based on the APIs developed in ENVRI-FAIR and specified in chapters 2 to 6

of this document.

As a user of Marine domain services, the D9.8 demonstrator will query, subset and aggregate data files

from the 5 RIs on specific EOVs (Essential Ocean Variables).

The D9.8 demonstrator will illustrate the fairness of Marine domain Machine to Machine data and

metadata access.

Figure 8: task 9.8 demonstrator, a user requests data files containing a parameter (such as oxygen) from

the 5 marine domain Research Infrastructures

Figure 9: Gantt diagram for RIs technical implementation

ENVRI-FAIR DELIVERABLE D9.3 82 / 90

8 References

Ref Title Version / Date

D9.

1

Marine subdomain FAIRness roadmap

https://iagos-comm.iek.fz-juelich.de/dmsf/files/3946/view

V2.0

August 2019

D9.

2

Marine subdomain implementation plan

https://iagos-comm.iek.fz-juelich.de/dmsf/files/3944/view

V1.0 November

2019

https://iagos-comm.iek.fz-juelich.de/dmsf/files/3946/view
https://iagos-comm.iek.fz-juelich.de/dmsf/files/3944/view

ENVRI-FAIR DELIVERABLE D9.3 83 / 90

9 Appendices

9.1 Appendix 1: Glossary
API Application Programming Interface

B2HANDLE EUDAT minting, storing, managing and accessing persistent identifiers

CAS Central Authentication Service

CDI Common Data Index (metadata format and data access system by

SeaDataNet)

CF Climate and Forecast (semantics for NetCDF)

CMEMS Copernicus Marine Environment Monitoring Service

COPERNICUS A major earth observation programme run by European Commission and

European Space Agency

CP Carbon Portal

CSR Cruise Summary Report

CSW Catalogue Service for the Web

DMP 1) Data Management Plan 2) Data Management Platform (WP9)

DOI Digital Object Identifier

DSA Data Seal of Approval

ECV Essential Climate Variable

EDIOS European Directory of ocean Observing Systems

EDMED European Directory of Marine Environmental Datasets (SeaDataNet)

EDMO European Directory of Marine Organisations

EDMERP European Directory of Marine Environmental Research Projects

EMODNET European Marine Observation and Data Network

EMSO European Multidisciplinary Seafloor and water column Observatory

ENVRI 1) An environmental RI cluster FP7 project 2) Environment research

infrastructures (in ESFRI level or upcoming) as a community

ENVRIplus An environmental RI cluster H2020 project

EOSC European Open Science Cloud

EOV Essential Ocean Variable(s)

ERDDAP NOAA developed science data server technology

ERIC European Research Infrastructure Consortium (legal entity type)

ESFRI European Strategy Forum on Research Infrastructures

ENVRI-FAIR DELIVERABLE D9.3 84 / 90

FAIR Findable Accessible Interoperable Reusable

GBIF Global Biodiversity Information Facility

GCMD Global Change Master Directory

GDAC Global Data Assembly Center

GEMET GEneral Multilingual Environmental Thesaurus

GEO Group on Earth Observation (System of Systems)

GEOSS Global Earth Observation System of Systems

GOFAIR An international programme on FAIR implementation

GUI Graphical User Interface

ICOS Integrated Carbon Observation System

ICT Information and Communications Technology

IMIS Integrated Marine Information System

INSPIRE Infrastructure for Spatial Information in the European Community

iRODS Open Source Data Management Software

JCOMM Joint Technical Commission for Oceanography and Marine Meteorology

M Month

Marine-ID Registration and authentication services for marine data services

MDA Marine Data Archive

NetAPP Hybrid cloud service

NetCDF Network Common Data Format

NVS NERC Vocabulary Services

NOAA US National Oceanic and Atmospheric Administration

OAUTH Open Authorization (standard)

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

OBIS Ocean Biogeographic Information System

OGC Open Geospatial Consortium

OpenDAP Open-source Project for a Network Data Access Protocol

ORCID Open Researcher and Contributor ID

OWL Web Ontology Language

PID Persistent Identifiers

ENVRI-FAIR DELIVERABLE D9.3 85 / 90

POC Proof of Concept

PROV-O Web Ontology Language encoding of the PROV Data Mode

Q Quarter

QA/QC Quality Assurance/Quality Control

RDF Resource Description Framework

RI Research Infrastructure

RSS Really Simple Syndication

SAML Security Assertion Markup Language

SEADATANET SeaDataNet pan-European infrastructure for marine data management

SME Small or medium Enterprise

SparQL SparQL Protocol and RDF Query Language

SWOT Analysis on Strengths, Weaknesses, Opportunities and Threats

VRE Virtual Research Environment

WoRMS World Registry of Marine Species

WPS Web Processing Services

ENVRI-FAIR DELIVERABLE D9.3 86 / 90

9.2 Appendix 2: Euro-Argo APIs examples

Example of OpenSearch Atom output

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"

xmlns:geo="http://a9.com/-/opensearch/extensions/geo/1.0/"

xmlns:georss="http://www.georss.org/georss">

 <title>Argo floats search</title>

 <link href="https://argofloatsApi.eu.org/api/floats/search"/>

 <updated>2020-03-05T14:30:02Z</updated>

 <author>

 <name>Argo GDAC</name>

 </author>

 <id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>

 <opensearch:totalResults>1</opensearch:totalResults>

 <opensearch:startIndex>1</opensearch:startIndex>

 <opensearch:itemsPerPage>1</opensearch:itemsPerPage>

 <opensearch:Query

 role="request"

 searchTerms="6902964"

 startPage="1"

 geo:box="-74.0667,40.69418,-73.9116,40.7722"/>

 <link rel="alternate" href="https://argofloatsApi.eu.org/api/floats/search?q=6902964&bbox=-74.0667,40.69418,-73.9116,40.7722" type="text/html"/>

 <link rel="search" type="application/opensearchdescription+xml"

 href="http://example.com/opensearchdescription.xml"/>

 <georss:box>40.69418 -74.0667 40.7722 -73.9116</georss:box>

 <entry>

 <title>Float 6902964</title>

 <link href="https://fleetmonitoring.euro-argo.eu/api/float/6902964"/>

 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>

 <dc:identifier>1225c695-cfb8-4ebb-aaaa-80da344efa6a</dc:identifier>

 <updated>2019-12-13T18:30:02Z</updated>

 <georss:line>40.73763 -73.9972 40.73519 -73.99167 40.737015 - 73.99035 40.73643 -73.98914 40.734640 -73.990431 40.731617 -

73.991504</georss:line>

 </entry>

</feed>

Example of OpenSearch “profiles/search” Atom output

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"

xmlns:geo="http://a9.com/-/opensearch/extensions/geo/1.0/"

xmlns:georss="http://www.georss.org/georss">

 <title>Argo floats search</title>

 <link href="https://argofloatsApi.eu.org/api/profiles/search"/>

 <updated>2020-03-05T14:30:02Z</updated>

 <author>

 <name>Argo GDAC</name>

 </author>

 <id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>

 <opensearch:totalResults>1</opensearch:totalResults>

 <opensearch:startIndex>1</opensearch:startIndex>

 <opensearch:itemsPerPage>1</opensearch:itemsPerPage>

 <opensearch:Query

 role="request"

 searchTerms="6902964"

 startPage="1"

 geo:box="-74.0667,40.69418,-73.9116,40.7722"/>

 <link rel="alternate" href="https://argofloatsApi.eu.org/api/profiles/search?q=6902964&bbox=-74.0667,40.69418,-73.9116,40.7722" type="text/html"/>

 <link rel="search" type="application/opensearchdescription+xml"

 href="http://example.com/opensearchdescription.xml"/>

 <georss:box>40.69418 -74.0667 40.7722 -73.9116</georss:box>

 <entry>

 <title>Float 6902964 profile #1</title>

 <link href="https://fleetmonitoring.euro-argo.eu/float/6902964/profile/1"/>

 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>

 <dc:identifier>1225c695-cfb8-4ebb-aaaa-80da344efa6a</dc:identifier>

 <updated>2019-12-13T18:30:02Z</updated>

 <georss:line>40.73763 -73.9972 40.73519 -73.99167 40.737015 - 73.99035 40.73643 -73.98914 40.734640 -73.990431 40.731617 -

73.991504</georss:line>

 </entry>

</feed>

Example of Argo API “get profiles” output

 {

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"none",

 "samplingparameter":"none",

 "platformCode":"2901853",

 "parameterCode":"70",

 "measureType":"1",

 "startTimeMillis":"1394650350000",

 "endTimeMillis":"1394650350000",

 "startTimeFormat":"2014-03-12T18:52:30Z",

 "endTimeFormat":"2014-03-12T18:52:30Z"

 },

 "result":[

ENVRI-FAIR DELIVERABLE D9.3 87 / 90

 {

 "observationId":"32596535",

 "dataSetSizeBeforeRegression":990,

 "dataSetSizeAfterRegression":990,

 "dateTime":"1394650350000",

 "dataType":"PF",

 "dataSetSize":990,

 "latitude":6.48,

 "longitude":62.391,

 "dateQc":1,

 "positionQc":1,

 "zCode":28,

 "data":[

 [

 35.19198,

 4.1,

 1,

 1,

 1

],

 [

 35.19193,

 6,

 1,

 2,

 1

],

 ...

]

 }

]

 }

Example of Argo API “get trajectory” output in Annex 9.2

 {

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"LTTB",

 "samplingparameter":"400",

 "platformCode":"6200450",

 "parameterCode":"35",

 "measureType":"15",

 "startTimeMillis":"1569110400000",

 "endTimeMillis":"1571702400000",

 "startTimeFormat":"2019-09-22T00:00:00Z",

 "endTimeFormat":"2019-10-22T00:00:00Z"

 },

 "result":[

 {

 "name":"6200450-0",

 "dataSetSizeBeforeRegression":2109,

 "dataSetSizeAfterRegression":400,

 "data":[

 [

 1569110717000,

 16.24, 45.24, -3.50,

 1

],

 [

 1569113121000,

 16.22, 45.24, -3.51,

 1

],

 ...

],

 "z_value":"3.0"

 }

]

 }

Example of Argo API “get timeseries” output in annex 9.2
 {

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"LTTB",

 "samplingparameter":"400",

 "platformCode":"6200450",

 "parameterCode":"35",

 "measureType":"15",

 "startTimeMillis":"1569110400000",

 "endTimeMillis":"1571702400000",

 "startTimeFormat":"2019-09-22T00:00:00Z",

 "endTimeFormat":"2019-10-22T00:00:00Z"

 },

 "result":[

 {

 "name":"6200450-0",

 "dataSetSizeBeforeRegression":2109,

 "dataSetSizeAfterRegression":400,

 "data":[

 [

 1569110717000,

ENVRI-FAIR DELIVERABLE D9.3 88 / 90

 16.24,

 1

],

 [

 1569113121000,

 16.22,

 1

],

 ...

],

 "z_value":"3.0"

 }

]

 }

Example of Argo “get profiles” output
{

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"none",

 "samplingparameter":"none",

 "platformCode":"2901853",

 "parameterCode":"70",

 "measureType":"1",

 "startTimeMillis":"1394650350000",

 "endTimeMillis":"1394650350000",

 "startTimeFormat":"2014-03-12T18:52:30Z",

 "endTimeFormat":"2014-03-12T18:52:30Z"

 },

 "result":[

 {

 "observationId":"32596535",

 "dataSetSizeBeforeRegression":990,

 "dataSetSizeAfterRegression":990,

 "dateTime":"1394650350000",

 "dataType":"PF",

 "dataSetSize":990,

 "latitude":6.48,

 "longitude":62.391,

 "dateQc":1,

 "positionQc":1,

 "zCode":28,

 "data":[

 [

 35.19198,

 4.1,

 1,

 1,

 1

],

 [

 35.19193,

 6,

 1,

 2,

 1

],

 ...

]

 }

]

 }

Example of Argo “get trajectories” output
 {

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"LTTB",

 "samplingparameter":"400",

 "platformCode":"6200450",

 "parameterCode":"35",

 "measureType":"15",

 "startTimeMillis":"1569110400000",

 "endTimeMillis":"1571702400000",

 "startTimeFormat":"2019-09-22T00:00:00Z",

 "endTimeFormat":"2019-10-22T00:00:00Z"

 },

 "result":[

 {

 "name":"6200450-0",

 "dataSetSizeBeforeRegression":2109,

 "dataSetSizeAfterRegression":400,

 "data":[

 [

 1569110717000,

 16.24, 45.24, -3.50,

 1

],

 [

 1569113121000,

 16.22, 45.24, -3.51,

 1

ENVRI-FAIR DELIVERABLE D9.3 89 / 90

],

 ...

],

 "z_value":"3.0"

 }

]

 }

Example of Argo “get timeseries” output
 {

 {

 "errorcode":0,

 "errormessage":"",

 "query":{

 "downsampling":"LTTB",

 "samplingparameter":"400",

 "platformCode":"6200450",

 "parameterCode":"35",

 "measureType":"15",

 "startTimeMillis":"1569110400000",

 "endTimeMillis":"1571702400000",

 "startTimeFormat":"2019-09-22T00:00:00Z",

 "endTimeFormat":"2019-10-22T00:00:00Z"

 },

 "result":[

 {

 "name":"6200450-0",

 "dataSetSizeBeforeRegression":2109,

 "dataSetSizeAfterRegression":400,

 "data":[

 [

 1569110717000,

 16.24,

 1

],

 [

 1569113121000,

 16.22,

 1

],

 ...

],

 "z_value":"3.0"

 }

]

 }

Example of OGC-SensorThing Thing feature
{

 "@iot.id": 1,

 "@iot.selfLink":
 "http://example.org/v1.0/Things(1)",

 "Locations@iot.navigationLink":

 "Things(1)/Locations",
 "Datastreams@iot.navigationLink":

 "Things(1)/Datastreams",

 "HistoricalLocations@iot.navigationLink":
 "Things(1)/HistoricalLocations",

 "name": "Arvor 690078",

 "description": "This
 thing is an Argo float.",

 "properties": {

 "institution": "Ifremer",
 "floatType": "NKE Arvor"

 }

 }

Example of a OGC-sensorThing location entity

{

 "@iot.id": 1,
 "@iot.selfLink":

 "http://example.org/v1.0/Locations(1)",

 "Things@iot.navigationLink":
 "Locations(1)/Things",

 "HistoricalLocations@iot.navigationLink":

 "Locations(1)/HistoricalLocations",
 "encodingType":

 "application/vnd.geo+json",

 "name": " Arvor 690078",
 "description": "Argo profiling float profile n°102",

 "location": {

 "type":

 "Feature",

ENVRI-FAIR DELIVERABLE D9.3 90 / 90

 "geometry":{

 "type": "Point",
 "coordinates": [-114.06,51.05]

 }

 }
 }

Example of a OGC-sensorThing HistoricalLocation

{
 "value": [

 {

 "@iot.id": 1,
 "@iot.selfLink":

 "http://example.org/v1.0/HistoricalLocations(1)",

 "Locations@iot.navigationLink":
 "HistoricalLocations(1)/Locations",

 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",

 "time": "2015-01-25T12:00:00-07:00"
 },

 {

 "@iot.id": 2,
 "@iot.selfLink":

 "http://example.org/v1.0/HistoricalLocations(2)",

 "Locations@iot.navigationLink":
 "HistoricalLocations(2)/Locations",

 "Thing@iot.navigationLink":

 "HistoricalLocations(2)/Thing",
 "time": "2015-01-25T13:00:00-07:00"

 }

],
 "@iot.nextLink":"http://example.org/v1.0/Things(1)/HistoricalLocations?$skip=2&$top=2"

 }

Example of OGC-sensorThing data stream

{

 "@iot.id": 1,

 "@iot.selfLink":
 "http://example.org/v1.0/Datastreams(1)",

 "Thing@iot.navigationLink":

 "HistoricalLocations(1)/Thing",
 "Sensor@iot.navigationLink":

 "Datastreams(1)/Sensor",

 "ObservedProperty@iot.navigationLink":
 "Datastreams(1)/ObservedProperty",

 "Observations@iot.navigationLink":

 "Datastreams(1)/Observations",
 "name": "Sea water temperature from Argo float",

 "description": "This is a datastream measuring the sea water temperature from an Argo float.",

 "unitOfMeasurement":
 {

 "name":

 "degree Celsius",

 "symbol":

 "°C",

 "definition":
 "http://unitsofmeasure.org/ucum.html#para-30"

 },

 "observationType":
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "observedArea": {

 "type":
 "Polygon",

 "coordinates":

 [[[100,0],[101,0],[101,1],[100,1],[100,0]]]
 },

 "phenomenonTime":

 "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",
 "resultTime":

 "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"

 }

