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Summary

This work focuses on 3D modelling of elastic two-body frictionless contact by means of the mortar method

for small strains extended for hierarchical shape functions. Surfaces of two bodies discretised by tetrahedral

elements are denoted as master and slave surfaces. When two triangular faces of tetrahedral elements are

candidates for contact, with one face belonging to the master and the other to the slave surface, they are

used to create a special prism element. These prisms are used as integration domains to solve the contact

problem. For a given prism configuration, triangular faces can either be in contact or form a gap denoting an

active or passive state, respectively. This state is determined by evaluation of the complementarity function

proposed in [1], that is modified in the present work to yield a smooth Newton algorithm. Finally, results for

sphere-to-sphere Hertz contact are compared to analytical solution for different orders of approximation.
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Introduction

Contact conditions are frequently observed in engineering applications. Even though contact has been
an important research topic in computational mechanics for a long time, its modelling is still a challenge.
Approaches that have been proposed are the so called node-to-node, node-to-segment and mortar
contact, with the latter being the most promising method so far proposed. The majority of mortar
contact related works involve usage of standard Lagrange shape functions or dual shape functions. In
the present work, a mortar contact formulation using the active set strategy is presented for hierarchical
shape functions for tetrahedral elements [2]. This paper is an extension of the work previously presented
in [3]. Regularisation of non smoothness arising from the active set strategy formulation is proposed
to avoid usage of semi-smooth Newton solver. This approach was chosen because it is well suited
for integration within an already existing Arbitrary Lagrangian Eulerian fracture framework [4]. This
future integration, will allow for investigation of influence of contact on crack propagation within nuclear
graphite bricks.

Problem definition

The problem under consideration is schematically presented in Figure 1 where two bodies are potentially
coming into contact. Current configuration of the two bodies is denoted by sets Ω(i), where i = 1, 2.
Furthermore, each body’s surface, ∂Ω(i), is divided into three sets, presented in Figure 1 with three
different hatchings. The three sets are distinguished according to conditions applied and therefore there
exist Dirichlet, Neumann and contact boundaries denoted by γ

(i)
u , γ

(i)
σ and γ

(i)
c , respectively. Following

assumptions presented in [1], the boundary sets are considered to be disjoined:

∂Ω(i) = γ(i)u ∪ γ(i)σ ∪ γ(i)c and γ(i)u ∩ γ(i)σ = γ(i)σ ∩ γ(i)c = γ(i)c ∩ γ(i)u = ∅ (1)

Moreover, the boundary value problem under consideration is described below
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Figure 1: Schematic representation of 3D contact problem.

divσ(i) = 0 in Ω(i), u(i) = ū(i) on γ(i)u and σ(i)n(i) = t̄
(i)

on γ(i)σ (2)

where, σ(i) is the Cauchy stress tensor, n(i) is unit vector normal to γu
(i) surfaces, t̄

(i)
is the vector of

prescribed tractions on γσ
(i) and u(i) and ū(i) are the unprescribed and prescribed displacement vectors,

respectively. Vectors u(i) and ū(i) are evaluated as

u(i) = x(i) −X(i) on Ω(i) ∩ γ(i)u and ū(i) = x̄(i) −X(i) on γ(i)u (3)

where x̄(i) is the vector of prescribed current spatial positions on γc
(i) and x(i) and X(i) are the vectors

of current and reference unprescribed spatial positions, respectively. Furthermore, gap between the two
bodies is evaluated as

g(x) = −n(x(1)) ·
[
x(1) − x(2)

]
where n(x(1)) = τ ξ(x(1))× τ η(x(1)) (4)

where g is the scalar gap function and τ ξ(x(1)) and τ η(x(1)) are two tangent vectors to surface γ
(1)
c

at x(1). In addition, since contact is frictionless, only normal component, pn, from contact tractions,
tc, over γ

(1)
c is taken into account and evaluated as

pn = tc · n(x(1)) (5)

The conditions that describe frictionless contact can be summerised by the Karun-Kuhn-Tucker (KKT)
conditions as

g(x) ≥ 0, pn ≤ 0, png(x) = 0 (6)

where the first inequality describes prohibition of penetration of the two bodies under consideration
and the second one expresses development of normal tractions over the contact area. Moreover, the
equality in (6) is a complementary argument that ensures gap closure when contact pressure is non-zero
and zero pressure during gap opening.
Since it is computationally demanding to explicitly solve KKT conditions the three relationships in (6)
can be captured by the alternative complementarity problem described by the complementarity function
C as

C(λ,x) = λ−max(0, λ− cng) =
1

2
(λ+ cng − |λ− cng|) , cn > 0 (7)
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that was first presented in [1] for active set strategy that is well suited for semi-smooth Newton method.
Here, λ is the so called Lagrange multiplier considered to be equal to pn and cn is a non-physical input
parameter. In the present work, C function is regularised in order to avoid the primal dual active set
strategy and usage of dual Lagrange multipliers. Regularisation is achieved by substituting the absolute
(non-smooth) function with a strongly non-linear smooth function

C̃(λ,x) =
1

2

(
λ+ cng −

1

r
|λ− cng|r

)
(8)

where C̃ is the regularised C function and r is non-physical regularisation parameter whose values could
be chosen between 1 to 1.1.

Contact element formulation

The central objective of the proposed formulation is for it to be integrated with mesh partitioning
schemes. Therefore, when two triangular faces of tetrahedral elements are candidates to be in contact,
with one face belonging to the master and the other to the slave surface, they are used to create a
special prism element. No integration is performed within the prism volume therefore contact prisms
can overlap and can be arbitrarily distorted. This approach resolves the problem where the master and
slave triangle lie between two different partitions. More details of the generation process of the prism
elements can be found in [3].
The present section focusses on the description of the contact element solely, while virtual work re-
lated to work on the elastic bodies is omitted. Virtual work related to contact development and for
complementarity function are presented below

rx =

∫
γ
(1)
c

λδg(x)dγ(1)c =

∫
γ
(1)
c

λ(−n · (δx(1) − δx(2)))dγ(1)c and rλ =

∫
γ
(1)
c

δλC̃dγ(1)c := 0 (9)

Furthermore, the linearised system of equations is
∂rx
∂x

(n) ∂rx
∂λ

(n)

∂rλ
∂x

(n) ∂rλ
∂λ

(n)


∆x(n+1)

∆λ(n+1)

 =

−rx
(n)

−rλ
(n)

 (10)

where n is the iteration number in the Newton algorithm within one step.

Results

Comparison of the model’s results with the analytical solution for the Hertz problem for two spheres
coming into contact is presented. The problem setup is schematically presented in Figure 2a) where
only an eighth of each sphere is considered. Input parameters are: radius of the two spheres R = 10 [m],
Young’s modulus E = 10 [Pa], Poisson ratio ν = 0, cn = 10 and r = 1. All planar surfaces of the two
bodies are fixed in their perpendicular direction except for one where uniform normal displacements are
applied incrementally (Figure 2a)). For each displacement increment, the total quarter surface force
is calculated via summation of reaction forces of the nodes prescribed with non-zero displacements.
Four analyses were run using the same mesh for increasing orders of approximation and having both
fields of Lagrange multipliers and spatial positions to be equal. The quarter surface forces versus the
uniform displacement increment curves resulting from the four analyses are compared in Figure 2b) to
analytical curve for the given input according to the equations presented in [5]. It can be observed that
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for orders higher than 1st results are very close to the analytical one and lie on top of each other.

Conclusions

A novel implementation of the mortar contact approach for hierarchical basis functions and regulari-
sation of the complementarity function was presented. The model results for sphere-to-sphere Hertz
problem matched well analytical solution for higher orders of approximation. The promising approach is
a good candidate for simulating more challenging problems with spatially heterogeneous basis functions
after further development.
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Figure 2: Sphere-to-sphere Hertz problem: (a) problem setup where only an eighth of each sphere is
considered (b) comparison of model result with analytical curve for total quarter surface forces versus
vertical displacements.
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