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Abstract 10 

Many people live, work and spend time during their commute in near-road environments (<50 11 

m) where pollutant concentrations usually remain high. We investigated the influence of 12 

roadside green infrastructure (GI) on concentrations of particulate matter ≤10 µm (PM10), ≤2.5 13 

µm (PM2.5), ≤1 µm (PM1), black carbon (BC) and particle number concentrations (PNC) under 14 

three GI configurations –  (i) hedges only, (ii) trees only, and (iii) a mix of trees and 15 
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hedges/shrubs – separately in close (<1m) and away (>2m) road conditions. These 16 

configurations gave us a total of six different real-world scenarios for evaluation. The changes 17 

in concentrations of PM10, PM2.5, PM1, BC and PNC at all six sites were estimated by 18 

comparing simultaneous measurements behind and in front of GI (or adjacent clear area). A 19 

portable battery-operated experimental set-up was designed for measuring the pollutant 20 

concentrations for 30 full days over a field campaign period of three months. On each day, 21 

around 10 hours of continuous data were recorded simultaneously behind and in front of GI/ 22 

adjacent clear area, capturing both morning and evening traffic peaks. Our objectives were to: 23 

(i) assess the effectiveness of different types of GI in reducing various pollutants; (ii) evaluate 24 

the impact of wind directions and density of vegetation on reducing different pollutant 25 

concentrations behind GI; (iii) investigate the changes in fractional composition of sub-micron 26 

(PM1), fine (PM2.5) and coarse (PM2.5-10) particles; and (iv) quantify the elemental composition 27 

of collected particles before and after the GI. In away-road conditions, all three configurations 28 

showed reductions behind the GI for all pollutants. The ‘hedges only’ configuration showed 29 

higher pollutant reductions than the other two configurations, with maximum reductions of up 30 

to 63% shown for BC. In close-road conditions, the results were mixed. The ‘trees only’ 31 

configuration reported increases in most of the pollutant concentrations, whereas the 32 

combination of trees and hedges resulted in reduced pollutant concentrations behind the GI. 33 

Among all pollutants, the highest relative changes in concentration were observed for BC (up 34 

to 63%) and lowest for PM2.5 (14%). Categorising the data based on wind directions showed 35 

the highest reduction during along-road wind conditions (i.e., parallel to the road). This was 36 

expected due to the sweeping of emissions by the wind and the wake of road vehicles whilst 37 

the barrier effect of GI enhanced this cleansing, limiting lateral diffusion of the pollutants. 38 

However, cross-road winds that took vehicular emissions to pass through the GI allowed us to 39 

assess their influence, showing up to 52, 15, 17, 31 and 30% reduction for BC, PM10, PM2.5, 40 
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PM1 and PNC, respectively. The largest reductions were consistently noted for the mixed ‘trees 41 

and hedges’ configuration in close-road conditions and the ‘hedge only’ configuration in away-42 

road conditions. The assessment of various fractions of PM showed that ‘hedges only’ and a 43 

combination of trees and hedges lowered fine particles behind GI. The SEM-EDS analysis 44 

indicated the dominance of natural particles (50%) and a reduction in vehicle-related particles 45 

(i.e., iron and its oxides, Ba, Cr, Mn) behind GI when compared with the in-front/adjacent clear 46 

area. The evidence contributed by this work enhances our understanding of air quality 47 

modifications under the influence of different GI configurations, for multiple pollutants. In 48 

turn, this will support the formulation of appropriate guidelines for GI design, to reduce the air 49 

pollution exposure of those living, working or travelling near busy roads.  50 

Keywords: Green infrastructure; Near-road; particulate matter deposition; Hedges and trees; 51 

Air quality  52 

1. Introduction  53 

 More than half of the global population (~54%) lives in urban areas (United Nations, 54 

2014), while this fraction increases to almost two thirds (72%) in the European Union 55 

(European Environment Agency, 2015). Air pollution levels in many European cities are above 56 

permissible limits (European Environment Agency, 2013; Guerreiro et al., 2016), making it 57 

one of the primary environmental health risks (European Environment Agency, 2015). Road 58 

vehicles are the dominant source of harmful ambient air pollutants, such as particulate matter 59 

(PM), nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs). 60 

Traffic-related air pollutants are emitted close to ground-level, causing elevated pollutant 61 

concentrations near busy roadsqq when compared with urban background concentrations (Goel 62 

and Kumar, 2016; Karner et al., 2010; Pasquier and André, 2017). These traffic-generated 63 

emissions contribute to increased air pollution exposure in ‘on-road’, ‘near-road’ and ‘far-road’ 64 
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microenvironments (Batterman, 2013; Batterman et al., 2014). In on-road microenvironments, 65 

drivers, commuters, pedestrians, and cyclists are exposed to air pollution (Kumar et al., 2018a, 66 

2018b). The near-road microenvironment extends over a few hundred meters from highways, 67 

including where people live, walk or cycle. The far-field environment is beyond several 68 

hundred meters from traffic.  69 

A significant fraction of the population lives in the near-road environment. For example, 45 70 

million people live or work within 100m from heavily used roadways in the US (EPA, 2016). 71 

Likewise, about 40% of the population in cities such as Toronto lives within 500m of an 72 

expressway or within 100m of a major road (HEI, 2010). The majority of people living in near-73 

road environments are low-income residents or minorities (Carrier et al., 2014a; Tian et al., 74 

2013). In addition, exposure to traffic-related air pollutants of vulnerable schoolchildren 75 

escalates concerns over air quality in the near-road region (Carrier et al., 2014b; Kim et al., 76 

2004; Kumar et al., 2017; Sharma and Kumar, 2018). Numerous studies have demonstrated the 77 

association of adverse health impacts with people living in near-road conditions proximate to 78 

highways. The range of health implications includes exacerbation of asthma (Clark et al., 2010; 79 

Evans et al., 2014; Volk et al., 2011), impaired lung function (Laumbach and Kipen, 2012), 80 

cardiovascular morbidity and mortality (Brook et al., 2010; Cahill et al., 2011; Wilker et al., 81 

2013), adverse birth outcomes (Michelle Wilhelm, Jo Kay Ghosh, Jason Su, Myles Cockburn, 82 

Michael Jerrett, 2012), and cognitive declines (HEI, 2010; Volk et al., 2011). 83 

Numerous exposure assessment investigations have analysed pollutant concentration 84 

distribution in the near-road environment (Karner et al., 2010; Pasquier and André, 2017). 85 

Near-road pollutant concentration levels are affected by distance to the road, road 86 

configuration, meteorology, and adjacent infrastructure geometries such as noise barriers and 87 

GI. Usually, concentrations of pollutants including particulate matter ≤10 µm (PM10) and 88 



5 
 

particle number concentrations (PNC) decay rapidly with distance from the road  (Karner et 89 

al., 2010; Pasquier and André, 2017). Depending on the type of pollutants, concentration 90 

reaches close to background levels by 80m to 600m from the road (Karner et al., 2010; Pasquier 91 

and André, 2017). Apart from a distance to the road, specific roadway characteristics such as 92 

elevated, at-grade, and depressed roads can also influence the pollutant concentration 93 

distribution near highways (Baldauf et al., 2013; Patton et al., 2014; Steffens et al., 2014). 94 

Moreover, meteorological conditions affect near-road pollutant concentrations (Pasquier and 95 

André, 2017). When wind direction is perpendicular to the road (i.e. wind flows from the road 96 

to the nearby areas), pollutants travel longer distances downwind than when winds are parallel 97 

or inclined to the road. Lower pollutant concentrations are observed during high wind speeds, 98 

and an opposite trend is observed for low wind speeds (Karner et al., 2010; Pasquier and André, 99 

2017). In addition, stable atmospheric conditions in winter seasons induce higher pollutant 100 

concentrations as opposed to relatively unstable summer periods that are associated with a 101 

decrease in pollutant concentrations. 102 

Regardless of pollutant type, geometrical and meteorological factors, pollutant concentration 103 

close to the traffic (<50m, near-road) remains up to half of the on-road levels. Reducing air 104 

pollution exposure in this near-road environment could be achieved by implementing passive 105 

control measures such as GI and low boundary walls (Abhijith et al., 2017; Baldauf, 2017; 106 

Gallagher et al., 2015). The greening of cities is favoured for exploiting their diverse health 107 

benefits and ecosystem services, yet clear guidelines are needed for their implementation at 108 

roadside environments. This study focuses on GI performance in lowering pollution 109 

concentrations in near-road environments (<50m, near-road). Table 1 shows a summary of 110 

previous field experimental studies on air pollution modifications of different GI types in near-111 

road environments, based on the pollutant concentration decay trend with distance from traffic 112 

(Karner et al., 2010; Pasquier and André, 2017); an extended version is available as 113 



6 
 

Supplementary Information, SI, Table S1. Usually, the highest GI-induced improvement is 114 

observed for pollutants such as ultrafine particles (UFP), carbon monoxide (CO) and PM10. 115 

The literature reports varying level of differences in pollutant concentration depending on the 116 

GI type (Abhijith et al., 2017; Chen et al., 2015; Hagler et al., 2012).  For example, some studies 117 

showed decreased concentrations due to hedges (Tiwary et al. 2008; Al-Dabbous and Kumar, 118 

2014) whereas others showed that trees can result in both air quality deterioration (Tong et al., 119 

2015; Morakinyo et al., 2016; Yli-Pelkonen et al., 2017 ) and improvement (Yin et al., 2011; 120 

Lin et al., 2016). Before drawing generalisations on the air quality benefits of GI, it is important 121 

to consider the type of pollutants evaluated and reflected in any associated guidelines.  122 

The objectives of this work are to assess the air quality improvement potential of different types 123 

of GI in the near-road environment. We quantify and compare the pollutant reduction potential 124 

of three different GI categories (trees, hedges, and trees with hedges/shrubs) under close-road 125 

(<1m) and away-road (>2m) conditions. In this work, we have used the terms GI and vegetation 126 

interchangeably and the combination of hedges and trees are expressed as GI, depending on 127 

the context. In addition, we considered at least one pollutant from each decay trend category 128 

(Karner et al., 2010): PNC and BC (rapid decay in pollutant concentration normalised to edge 129 

of road concentration with distance from roadside), PM2.5 (usually a gradual decay), and PM10 130 

(no clear trend in decay). This enables us to reveal the probable difference in concentration 131 

reduction of each pollutant category for different GI types. We also inspected the influences of 132 

wind direction as well as GI characteristics such as leaf area density on pollutant reduction and 133 

quantified the elemental composition of PM to determine the changes in traffic-generated 134 

elements such as Fe, Ba, Cr and Mn by the GI.   135 

2. Methodology  136 

2.1 Site description  137 



7 
 

We selected six roadside locations in a typical UK town, Guildford, which is one of the 138 

most populated areas in the Guildford Borough under Surrey County (Surrey-i, 2015). 139 

Guildford Borough has a population of 137,183 (Surrey-i, 2015). The most popular mode of 140 

transportation is by car, which includes about 72% of total commutes and 42% of these 141 

journeys are between house to school (Al-Dabbous and Kumar, 2014). The sampling sites 142 

consisted of two sets of the following three GI configurations: (i) trees, (ii) hedges, and (iii) a 143 

combination of trees and hedges/shrubs. Site selection was based on the availability of stretches 144 

of road with different GI configurations, as well as space for placing instruments behind GI 145 

and at an adjacent clear area or in front of GI. Fig 1 shows a schematic representation of 146 

monitoring locations along with the dimensions of GI, distance from the edge of the road to 147 

monitoring point, and width of traffic lanes. Table 2 lists a detailed summary of monitoring 148 

location features including highways and GI characteristics while an additional description is 149 

provided in SI Section SI. Each site had one sampling point behind the GI. In half of the sites, 150 

the second measurement point was at a clear area next to the GI, equidistant from the road as 151 

that of the sampling point behind the barrier (Figs 1a, c, e), and the remaining sites each had a 152 

second measurement location in front of the GI (Figs 1b, d, f). The sites with monitoring points 153 

at an adjacent clear area and behind GI (Figs 1a, c, e) reflected a distance of less than 1m 154 

between the GI and the edge of the road, leaving no space for placing instruments; these sites 155 

are referred to as ‘close-road’ (Fig 1g).  The remaining sites with measurement locations behind 156 

and in front of the GI (Figs 1b, d, f) had more than 2m in distance from the edge of the road to 157 

GI, leaving enough space to place the instrument in front of GI; these sites are referred to as 158 

‘away-road’ (Figs 1f). Henceforth, the terms ‘close-road’ and ‘away-road’ are used to define 159 

the ‘clear area and behind (CB)’ and ‘in front and behind (IB)’ sites, respectively (Table 2).  160 

All six measurement locations were near to residential areas containing two-storey buildings 161 

or sections of surrounding public parks, falling under typical open road environments. In 162 
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particular, sites HCB (Aldershot-Hedge) and TCB (Aldershot-Tree) are along the same road and 163 

are approximately 200m away from each other (Fig 1a, c). These sites are situated in a 164 

residential area with double-storey houses on either side of the two-lane road. Similarly, TIB 165 

(Sutherland-Tree) and THIB (Sutherland-GI) sites are 100m apart from each other and are next 166 

to a recreational park near the two-lane road (Fig. 1d, e).  HIB (Stoke Road-Hedge) site is near 167 

to a children’s play area, adjacent to a two-lane street passing through a residential area (Fig 168 

1b). THIB at Shalford is next to a public park and a busy two-lane road is close to the vegetation 169 

barrier. Average traffic volume and direction of roads at each site were counted (Table 2).   170 

2.2 Data collection  171 

We simultaneously monitored PM1, PM2.5, PM10, PNC and BC behind and in front of or 172 

adjacent to the GI.  Two GRIMM aerosol monitors (model EDM 107 and 11-C) measured PM1, 173 

PM2.5 and PM10. Both instruments measured PM mass concentrations in 31 different size 174 

channels at a resolution of 6 seconds. These instruments have been widely used for PM 175 

concentration measurements (Azarmi and Kumar, 2016; Rivas et al., 2017; Viippola et al., 176 

2018).  The mass of bulk particles was collected on a PTFE filter in the GRIMM monitors, 177 

which were analysed using SEM-EDS to allow chemical and morphological exploration 178 

(Azarmi and Kumar, 2016; Rivas et al., 2017) (Section 2.4). Three filter papers were collected 179 

from behind and in front of or adjacent clear area of the GI and filter papers were changed after 180 

10 days of measurements (80 to 100 hours of sampling). Two P-TRAK 8525 (TSI Inc.) were 181 

employed to measure PNC in the size range of 0.02 to 1μm. Studies on the impacts of barriers 182 

in open road environments and personal exposure studies have used these instruments (Baldauf 183 

et al., 2008; Rivas et al., 2017). Both P-TRAKs measured PNC every 6 seconds. BC 184 

concentrations were collected using two portable MicroAeth AE51 (Aethlabs), which is widely 185 

employed for personal exposure assessments (Rivas et al., 2017). Attenuation in BC data 186 

generated due to instrumental optical and electronic noise is rectified by post-processing the 187 
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data with the Optimised Noise-reduction Averaging algorithm (ONA; Hagler, et al. 2011). 188 

Filter papers of microaeths were changed every 20 hours of sampling and sampling rate was 189 

set to 100 ml m-1 to reduce the effect of filter loading. The time base was set to 10 seconds.  190 

Later, all measured data were combined by averaging over 1 minute. Breaks of 10 to 30 minutes 191 

were taken for changing the batteries of the GRIMM monitors and re-filling the alcohol in the 192 

P-TRAK wicks. Leaf area index (LAI) is a dimensionless metric of leaf area per unit ground 193 

area m2/m2. It is estimated from changes in photosynthetically active radiation passing through 194 

overlaying foliage by the handheld ceptometer Accu-PAR LP80. LAI measurements were 195 

carried out at the beginning and end of sampling at each location and used to determine the leaf 196 

area density (LAD).  197 

Meteorological conditions (i.e., wind direction, wind speed, temperature and relative humidity) 198 

during monitoring periods were obtained from the nearest UK weather station, located in 199 

Farnborough (~10km northwest of Guildford). Previous studies have utilised data from this 200 

meteorological station (Al-Dabbous and Kumar, 2014; Goel and Kumar, 2016).  In addition, 201 

micrometeorological conditions were collected by portable weather station Kestrel 4500 at a 202 

1.5m height above the road level. Local and reference wind direction bias was checked and 203 

provided in Supplementary Information, SI, Figs S1 and S2.  Traffic counting was performed 204 

for 20 minutes in every hour of monitoring during each day of measurement, with the help of 205 

the SMART Traffic Counter App developed by the University of Wollongong, Australia. Later, 206 

the collected traffic counts of 20 minutes were extrapolated to generate an hourly average, as 207 

shown in Table 2. 208 

Sampling location had two sets of instruments (includes GRIMM, P-TRAK, and MicroAeth) 209 

mounted on a tripod stand at a 1.5m height to sample air from a typical breathing height. One 210 

tripod was kept behind the GI at all sites and the other one was placed in an adjacent clear area 211 
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at sites HCB, TCB and THCB and behind the GI at sites HIB, TIB and THIB. The portable weather 212 

station was always attached to the tripod in the adjacent clear area or in front of the GI. The 213 

campaign collected 5 days of monitoring data per site, making a total of 30 days. Each day, 214 

measurement started and ended around 08.00 h and 18.00 h (local time), respectively, 215 

producing 8 to 10 hours of high-resolution data daily. Field measurements were not carried out 216 

on rainy days in order to ensure the safety of the instruments. 217 

2.3 Data processing 218 

All the data were cleaned and processed using R Statistical software (v3.0.2, R Core 219 

Team, 2016). Statistical analyses were performed using the openair package (Carslaw and 220 

Ropkins, 2012). In order to investigate the influence of wind direction on pollution exposure, 221 

the data was divided based on the wind flow direction with respect to street and GI alignment. 222 

The dataset was divided into three wind direction sectors: ‘along-road’ (parallel to road), 223 

‘cross-road’ (wind from road to GI), and ‘cross-vegetation’ (wind from GI to the road), as 224 

demonstrated in Fig 2 by the yellow (along-road), green (cross-vegetation) and blue (cross-225 

road) shaded areas. Along-road wind condition included two 600 circular sectors (300 either 226 

side of parallel axis), with their centres passing through the parallel axis of GI/road (Fig 2a). 227 

This represents parallel wind conditions and includes wind coming from either end of GI. The 228 

centers of cross-road and cross-vegetation wind sectors passed through the perpendicular axis 229 

of GI and road, and consisted of circular sections with an angle of 1200 on both sides of GI, as 230 

shown in Fig 2a.  Both wind sectors represent perpendicular wind directions.   231 

2.4 SEM and EDS analysis 232 

The bulk particles were collected on 47mm PTFE filter using the GRIMM 107 and 233 

GRIMM 11-C, representing measurements behind and in front of or adjacent to the GI. Each 234 

location had three filter paper samples. For analysing morphology and the elemental 235 

composition of individual particles, samples were made by cutting a 1 cm × 1 cm area from all 236 
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filter papers, at the Micro-Structural Studies Unit of the University of Surrey, UK. These 237 

samples were mounted on aluminum studs and carbon coated. Prepared specimens were 238 

analysed by a Scanning Electron Microscope, JEOL SEM (model JSM-7100F, Japan) equipped 239 

with an energy dispersive X-ray spectrometer. The SEM has a spatial resolution of 1.2 nm at 240 

30 kV and 3.0 nm at 1 kV.  SEM was operated at an acceleration voltage of 10kv, with a 241 

working distance of 10mm under vacuum conditions. As the filter paper substrate is made of 242 

carbon and fluorine, their presence was removed from the particle spectrum in SEM-EDS 243 

analysis. Backscattering electron (BSE) detectors were employed to identify particles with 244 

higher atomic number elements. This forms a contrasting image, with bright white particles of 245 

higher atomic number elements and a black background consisting of other particles of lower 246 

atomic number elements and filter paper (Fig 3). Images with white particles were analysed 247 

with Pathfinder software from Thermo-Fisher in automated mode. Ten random images were 248 

taken from each sample of behind GI measurement point and clear-area/in front of GI location 249 

making 60 micrographs in total. Around 20000 random particles from these images were 250 

analysed and categorised based on the elemental composition (Section 3.5).   251 

2.5 Quality control  252 

Two sets of portable high-end instruments were used for the monitoring of BC 253 

(microAeth AE51), PM (GRIMM 107 and 11-C), and PNC (P-TRAK 8525). All the 254 

instruments were calibrated prior to fieldwork. One in each pair of the instruments was 255 

calibrated later than the other, and was considered as a base instrument to harmonise the data. 256 

For quality assurance of the data collected by instruments, we implemented the following 257 

quality control strategy as also used by previous studies (Lin et al. 2016; Brantley et al., 2014). 258 

We co-located both sets of instruments side-by-side for at least 30 minutes prior to start and 259 

after the GI monitoring campaigns each day. On some days, we carried out this co-location 260 

exercise in the middle of the monitoring period, when instruments were restarted after a battery 261 
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change. The total period of co-location data accounted for ~10% of total field campaign data, 262 

enabling us to inter-compare results from two identical instruments and assess the relative 263 

difference. All our instruments performed well against their counterpart and obtained a good 264 

agreement (Fig 4). We obtained (i) a minimum R2 value of 0.85 for BC measurements by 265 

microAeths; (ii) GRIMMs showed R2 values of 0.87, 0.93, and 0.88 for PM10, PM2.5 and PM1, 266 

respectively; and (iii) P-TRAKs showed the highest R2 value (0.97) among all instruments (Fig 267 

4). Even though these correlations were satisfactory, a slight difference in instrument results 268 

can be expected. To remove this discrepancy, we corrected the data obtained from one of the 269 

instruments using the equations derived from the scatter plots (Fig 4). These correlations 270 

account for various factors, including the different field measurement conditions and possible 271 

differences in meteorological conditions, such as high and low ambient temperature and 272 

relative humidity.  273 

3. Results and Discussion  274 

3.1 Overall pollutant concentration changes with different GI  275 

Figure 5 shows the summary of pollutant concentration changes at six monitoring sites. 276 

Table 3 shows the summary statistics of recorded measurements. At most sites, PNC 277 

concentrations behind the GI were found to be modestly lower than clear (–2%) or in front of 278 

(–3%) GI, except in the cases of TCB and THCB in close-road sites. The maximum improvement 279 

in PNC concentrations behind GI was observed with hedges (HIB and HCB) in both close-road 280 

and away-road sites, with –30% and –9%, respectively. The reductions seen from HIB and the 281 

combination of trees and hedges were comparable to those reported previously by Al-Dabbous 282 

and Kumar (2014) and Hagler et al. (2012). At close-road sites, BC concentrations behind the 283 

GI were found to be slightly higher than in the adjacent clear area, except for the tree and hedge 284 

configuration (THCB; 4%), which was similar to those reported by Brantley et al. (2014).  The 285 

HCB site emerged as the worst scenario among close-road sites (15%). Conversely, away-road 286 
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sites displayed higher BC concentration reductions in the range of –43 to –63%, with lowest at 287 

HIB and highest at THIB. Percentage changes in BC concentrations (ΔBC) were relatively high 288 

when compared with the other pollutants investigated in this study (Table 3).  289 

Similar to ΔBC, ΔPM10 behind the GI also exhibited a similar trend in both close-road and 290 

away-road sites, but the magnitude of ΔPM10 was lower compared to ΔBC. The highest 291 

improvement in ΔPM10 was observed for trees with hedge in away-road (THIB; –24%) and 292 

close-road (THCB; –7%) sites, respectively. The highest deterioration (22%) in ΔPM10 behind 293 

GI was noticed in the hedge only (HCB) scenario of close-road sites. Almost all previous away-294 

road  studies (Chen et al., 2016; Islam et al., 2012; Shan et al., 2007; Tiwary et al., 2008) have 295 

reported a high reduction of PM10 compared to close-road  (Chen et al., 2015; Viippola et al., 296 

2018).  297 

The percentage changes in PM2.5 concentrations (ΔPM2.5) were the lowest in magnitude 298 

compared to other pollutants. ΔPM2.5 behind the GI matched the trend of ΔBC and ΔPM10 in 299 

close-road and reversed concentration change profile for ΔBC and ΔPM10 at away-road sites. 300 

Here, a maximum improvement of 8% was recorded in trees with hedges (THCB) in close-road 301 

sites and an increase in ΔPM2.5 for ~22% is reported with hedge only (HCB). Meanwhile, the 302 

maximum reduction of PM2.5 was displayed by the hedge only scenario (HIB; –14%) and the 303 

least was displayed by trees with hedges (THIB; –8%) at away-road sites. Past studies reported 304 

inconclusive results while investigating PM2.5 concentration behind GI regardless of adopted 305 

locations for comparison (Table 1).  306 

Improvement in PM1 concentration behind GI was observed in most of the investigated 307 

scenarios, except hedge only (HCB; 1%) in close-road sites. ΔPM1 followed the same trend as 308 

ΔPM2.5. Hedge only (HIB; 25%) and tress with hedges (THCB 19%) recorded the highest PM1 309 
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concentration reductions behind the GI in away-road and close-road sites, respectively. Such 310 

variations in ΔPM1 behind GI at the tree only (TCB) site was nominal.    311 

In summary, the HIB site presented better improvement in air quality behind GI across measured 312 

pollutants, followed by THIB in away-road sites, whereas THCB displayed improvement in air 313 

quality in close-road sites. HCB and TCB sites presented a deterioration of air quality behind GI 314 

under close-road conditions. Although, the magnitude of increase in pollutant concentration 315 

changes were less than 7%, expect PM10 concentrations (22%) and BC (15%) at hedges only 316 

(HCB) site. Since the comparisons were made between the pair of GI types in investigated under 317 

away-road and close-road sites, the higher concentration reduction in former case could be due 318 

to the build-up of pollutants concentrations in-front of GI compared to the latter case where 319 

measurement points were at the same distance (Fig 1). Usually, a higher reduction of pollutant 320 

concentration is expected with an increase in LAD. However, we found an opposite trend for 321 

HCB (LAD = 5.5 m2m-3) and HIB (LAD = 2.4 m2m-3), where elevated concentrations were 322 

observed for nearly all of the pollutants. These concentrations could be due to a relatively low 323 

height of HCB (<1m) that is insufficient to create a barrier effect. Similarly, past investigations 324 

have reported mixed results of pollutant concentrations behind trees that emerged from a lack 325 

of barrier effect at breathing height and lower density (Brantley et al., 2014; Chen et al., 2016; 326 

Hagler et al., 2012; Viippola et al., 2018; Yli-Pelkonen et al., 2017). In addition, major reasons 327 

for higher pollutant concentrations behind trees (TCB; single tree row) compared with TIB 328 

(multiple tree rows, up to 4) was due to the difference in thickness of tree rows and lower 329 

canopy to ground distance. The physical structures of THCB (naturally occurring) and THIB 330 

were comparable but THIB site had a well-maintained hedge in front of the tree row. This 331 

configuration was revealed to be the most effective tree and hedge combination for achieving 332 

a maximum reduction in pollutant concentrations.  333 
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The above finding highlights the importance of GI configurations in reducing exposure 334 

concentrations for various pollutants. Among all pollutants, the highest relative differences 335 

were seen for BC and PNC (rapid decay) and the least for PM2.5 (gradual decay). Finally, we 336 

observed that hedges, and the combination of trees with hedges, provided the better reduction 337 

potential.  338 

3.2 Effects on wind direction  339 

In order to understand the influence of wind direction on concentrations behind the GI, 340 

we separated the wind conditions into three main categories: along-road, cross-road and cross-341 

vegetation (Fig 2), as explained in Section 2.3. For some sites, we did not have enough data 342 

points available; for example, during cross-road winds at THIB and cross-vegetation winds at 343 

both the TCB and HIB sites (Table S2). ΔPNC in three investigated wind directions were lower 344 

than that of ΔBC and were similar to ΔPM1. Along-road wind conditions resulted in a 345 

maximum reduction between wind categories. HIB and HCB in both close-road and away-road 346 

sites showed the highest reduction in ΔPNC of –30% and –50%, respectively (Fig 6). In cross-347 

road conditions, HIB displayed a maximum reduction (–30%) in PNC, followed by TCB (–13%) 348 

and HCB (–12%). The highest deterioration in PNC among all wind conditions was reported 349 

during cross-road winds, although less than 5% at sites TCB and THCB (Table S2). Lowest 350 

ΔPNC were observed with cross-vegetation compared to other wind directions and the highest 351 

improvement in PNC concentration was noticed for THIB (–13%; Table S2). Al-Dabbous and 352 

Kumar (2014) investigated hedges similar to HIB and reported –77%, and –37% reductions in 353 

ΔPNC concentrations in along-road and cross-road wind directions, respectively. HIB 354 

displayed –50% and –30% reductions in ΔPNC concentrations with corresponding wind 355 

conditions. ΔPNC in cross-road wind conditions were comparable and along-road wind 356 

direction displayed higher ΔPNC than cross-road winds in both studies.  357 
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Highest relative changes between measurements taken behind GI and in front of GI/clear areas 358 

were observed with BC compared other investigated pollutants. Furthermore, the maximum 359 

percentage differences in BC were comparable across different wind directions (Fig 6). A 360 

relatively small (<6%) increase in ΔBC was observed at THCB site during along-road wind 361 

directions opposed to a reduction of –7.8% reported by  Brantley et al. (2014). Conversely, 362 

improvement in BC concentrations ranged from –49% (HIB) to –65% (THIB) at away-road sites 363 

(Table.S2). During cross-road winds, all sites showed an improvement in BC concentrations 364 

behind the GI except for HCB (–23%). The TCB and THCB close-road sites saw a –11% 365 

improvement, in line with the ~12% reported by Brantley et al. (2014) for GI with similar LAI 366 

values. TIB showed the highest change (52%) in ΔBC concentrations among studied sites 367 

(Table.S2). BC is a good traffic emission tracer, indicating no deterioration in air quality behind 368 

GI during cross-vegetation wind directions. Moreover, ΔBC under cross-vegetation winds 369 

ranged from –12% (TIB) to –61% (THIB). In the case of trees with hedges (THIB and THCB), the 370 

maximum reduction in BC concentration was found in away-road (–65%) and close-road (–371 

43%), respectively. 372 

The influences of GI on ΔPM10 under different wind conditions were similar except at the HCB 373 

and TCB sites (Fig 6).  During along-road winds, the majority of cases displayed improvements 374 

of about –12 to –16% in ΔPM10 behind GI, while the HCB and TCB sites displayed reductions 375 

of just 6% and 8%, respectively. The highest reductions in ΔPM10 were recorded at THCB (–376 

16%) sites in near-road conditions and at HIB (–14%) in away-road conditions. Under cross-377 

road wind conditions, only HCB showed an increase in PM10 concentrations (22%) and all other 378 

improvements in ΔPM10 ranged from –2% (TCB) to –15% (HIB) (Table S2). During cross-379 

vegetation winds, all sites exhibited a reduction in PM10 except HCB, with an increase of 21% 380 

behind the hedge. Maximum improvement in PM10 concentrations was presented by trees with 381 
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hedges in both close-road and away-road cases, providing further evidence of GI removing 382 

PM10 effectively in open road conditions. 383 

ΔPM2.5 concentrations were lower than all other measured pollutants in this study (Fig 6). HCB 384 

and TCB sites showed deterioration in PM2.5 concentration behind the GI for all wind directions. 385 

In along-road wind direction, the highest improvements were revealed by THCB (–17%) at 386 

close-road sites and TIB (–14%) in away-road sites. During cross-road winds, HIB (–17%) 387 

displayed maximum reductions. All close-road sites exhibited positive differences in PM2.5, 388 

ranging from 2% to 7% in the cross-vegetation wind category (Table S2). Past studies 389 

investigating different GI (Brantley et al., 2014;Chen et al., 2016; Tong et al., 2015; Viippola 390 

et al., 2018; Morakinyo et al., 2016) recorded a mixed (increase or decrease) trend for PM2.5 391 

(Table 1), as was also noticed in this study. Hedges and trees with hedges were effective in 392 

reducing PM2.5. As discussed in Section 3.1 and highlighted by previous studies (Abhijith et 393 

al., 2017; Baldauf, 2017), GI dimensions such as the height and thickness could be primary 394 

reasons for increases in different pollutant concentrations behind HCB and TCB compared to TIB 395 

and HIB with similar LAD.  396 

In most of the wind categories, influences on ΔPM1 were positive (Fig 6). The magnitude of 397 

differences was similar to PNC and higher than PM10 and PM2.5 (Table S2). For example, 398 

during along-road winds, highest improvements were noticed at close-road site THCB (–29%) 399 

and TIB (–18%) in away-road sites, similar to PM2.5 variation. During the cross-road winds, 400 

THCB (–14%) in close-road sites and HIB (–31%) in away-road sites reported the highest 401 

reductions in PM1. No increase in PM1 concentrations behind GI was noticed under cross-road 402 

winds. Lastly, cross-vegetation winds showed improvement in PM1 concentrations, except at 403 

HCB site (Fig 6). 404 

In summary, the magnitude of percentage differences followed the following trend: 405 
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ΔPM2.5<ΔPM10<ΔPM1<ΔPNC<ΔBC. Generally, higher percentage changes were reported 406 

during along-road winds due to sweeping effects, followed by upwind areas of cross-road and 407 

cross-vegetation winds. THCB in close-road sites and HIB in away-road sites reported the 408 

highest reduction in pollutant concentrations, mainly during along-road and cross-road wind 409 

conditions. These observations clearly indicate that due consideration of local wind directions 410 

during the urban planning of new built-up areas could help to reduce exposure of roadside 411 

users. In cross-vegetation winds, THCB and THIB cases showed a high percentage reduction 412 

among all GI. HCB showed an increase in all pollutants (mainly PMs) except BC in cross-413 

vegetation winds, indicating upwind sources of pollutants other than the road (maybe from 414 

houses as traffic correlated BC is absent).  Similarly, increases in other cross-vegetation cases 415 

pointed towards emissions from background residential areas since no increase in BC 416 

concentrations were noticed. Most of the increases in pollutant concentrations behind GI were 417 

found in HCB and TCB sites and had a strong correlation with their physical dimensions. Hedge 418 

height at HCB was lower (~1 m) and TCB has a single tree row with no buffer by its trunk at 419 

measurement height, assisting in the accumulation of pollutants and failing to create a 420 

significant barrier effect (Hagler et al., 2012).  421 

3.3 The effect of vegetation density on changes in relative concentrations  422 

In order to assess the effect of vegetation density on percentage differences in pollutant 423 

concentration behind the GI, the correlation coefficient (R2) between LAD and relative 424 

pollutant concentration were drawn (SI Fig S3). As mentioned in Section 3.2, a full dataset was 425 

not available for cross-road and cross-vegetation wind directions and such scenarios were 426 

therefore excluded in this analysis. While analysing the overall data, we observed R2 well 427 

below 0.8 at close-road and away-road sites for more than half of the cases and were considered 428 

as insignificant (Fig 7). Strong correlations of LAD were only found with ΔPNC in all 429 

investigated cases. Similarly, ΔPM10 at close-road sites and ΔPM1 and ΔPM2.5 at away-road 430 
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sites exhibited a significant correlation with LAD (R2 >0.9). These observations indicated an 431 

increase in pollutant concentration reduction behind the GI with an increase in LAD, 432 

supporting our previous observations (Abhijith et al., 2017). This analysis of experimental 433 

observations testified the outcomes of a modelling study by Tong et al. (2016) on the 434 

relationship between ΔPNC behind GI and LAD.  Interestingly, ΔPM10 showed an increase in 435 

concentration behind the GI with an increase in LAD, requiring further investigations to 436 

provide a clear explanation for this trend.    437 

3.4 Influence of GI on PM fractions  438 

Figure 8 shows the differences in the percentage of PM fractions behind GI and in front 439 

of or in a clear area adjacent to GI for the studied GI configurations. At most GI sites, PM1 440 

fraction of fine particles dominated the total PM fractions in adjacent clear area and in front of 441 

GI compared to PM1 behind the GI. This indicated the presence of fresh emissions from traffic 442 

in front of GI and adjacent clear area, and a reduction of corresponding PM1 fine fraction 443 

behind GI after passing through the barrier. While considering overall PM fractions in hedges, 444 

both HCB and HIB displayed a reduction in fine particles (PM1 and PM1-2.5) behind GI, with HCB 445 

showing a relatively higher reduction between them (Fig 8). Hedges with leaves close to 446 

ground-level assisted in reducing the traffic-originated fine fraction of PM (PM1 and PM1-2.5) 447 

by providing a barrier effect and surfaces for deposition at breathing level. This PM removal 448 

mechanism of hedges was pronounced when emissions were transported from the road to GI 449 

in a cross-road wind direction, and the higher reduction was observed in corresponding wind 450 

conditions (Fig 8). No significant changes in any PM fractions were observed during cross-451 

vegetation winds. Both tree-only sites (i.e., TIB and TCB) displayed no significant changes in 452 

PM fractions under overall and studied wind directions. This was expected as there was only a 453 

main trunk or stem of the tree between the tree canopy base and ground-level, resulting in an 454 

absence of a barrier effect and surfaces for deposition in the breathing zone.  The changes in 455 
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PM fractions behind GI in a combination of trees with hedges (THIB and THCB) were influenced 456 

by either hedges or trees depending on wind directions. During along-road winds, fine (PM1 457 

and PM1-2.5) and coarse (PM2.5-10) particle fractions displayed no considerable variations behind 458 

the GI at all sites. Parallel air flow along GI limited penetration of particles into the body of 459 

GI, thereby minimising the effect of GI on PM fractions. During cross-wind conditions, THCB 460 

sites showed a reduction in fine particle fractions behind the GI, indicating filtration of these 461 

traffic-originated particles by the hedges at breathing height, similar to hedge-only sites. While 462 

in cross-vegetation winds, THIB and THCB resulted in a large reduction of coarse particles 463 

behind the GI when compared with in the front of or adjacent clear area to the GI. This could 464 

be attributed to fresh emissions from neighbouring houses or other activities as stated in Section 465 

3.2.  466 

Figure 9 shows a comparison of ratios of PM1/PM2.5 and PM2.5/PM10 at all the sites. The sites 467 

displayed dominance of PM1 particles in PM2.5 as seen from the PM1/PM2.5 being >0.6.  All 468 

sites had a slight difference between values of PM1/PM2.5 ratios behind GI and those in front 469 

of or in the clear area adjacent to GI. Conversely, ratios of PM2.5/PM10 recorded a significant 470 

reduction of PM2.5 behind the GI when compared with areas in front of or adjacent to GI 471 

(PM2.5/PM10 behind GI <PM2.5/PM10 in front/clear area). This demonstrated a lower 472 

concentration of fine particles behind GI when compared with in front of or adjacent to GI, and 473 

hence provides further evidence of fine particle removal through deposition and the barrier 474 

effect.  475 

3.5 Elemental composition of individual particles 476 

A total of 10491 particles from the front/clear areas and 9819 particles from behind GI 477 

were identified for analysis. We classified the particles based on their elemental composition 478 

as natural, vehicle, salt, and unclassified. Figure 11 shows the images of representative particles 479 

such as NaCl, pollens and carbon soot and sulphur rich particles found on the PTFE filter papers 480 
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from behind and in the front/clear area. We identified 4564 and 4908 natural particles on the 481 

filter papers from the in-front/clear area and behind GI locations, respectively. The particles in 482 

the natural category were dominated by commonly found earth elements, such as Si, Ca, Al, 483 

Mg, Fe, K, S and P. An individual particle was listed as natural where the sum of the percentage 484 

weight of its constituent elements exceeded 70%. Previous studies have identified these 485 

elements arising from sources such as road dust and soil (Jancsek-Turóczi et al., 2013; Panda 486 

and Shiva Nagendra, 2018). Under the vehicle category, 1419 individual particles were 487 

classified from the in-front/clear area filter paper and, of those, 903 particles were iron and its 488 

oxides, usually found in exhaust and brake and tyre wear from road vehicles (Weerakkody et 489 

al., 2018).  By comparison, 725 particles were classified under the vehicle category from the 490 

behind GI filter paper. Among identified particles, iron oxides and other metals (Ba, Cr, V, Ti) 491 

constituted 406 and 319 respectively. Vehicle particles have either 70% of iron and its oxides 492 

or at least 60% of elemental weight compositions of Ba, Cr, Mn, Cu, V and Ti. Vehicle category 493 

elements (Fe Ba, Cr, Mn, Cu, V and Ti) are tracers of vehicular exhaust and non-exhaust 494 

emissions (González et al., 2017; Mazziotti Tagliani et al., 2017; Weerakkody et al., 2018), of 495 

which, Ba, Zn, and Cu have been identified as brake lining emissions in previous studies (Hays 496 

et al., 2011; Moreno et al., 2015). Salt is used on the roads for gritting and NaCl crystals were 497 

clearly noticeable as perfect cuboids in the collected particles. In salt particles, 80% of weight 498 

consisted of sodium (Na) and chlorine (Cl).  As opposed to particles of other classifications, 499 

almost double the number of salt (NaCl) particles were found behind GI (1068) compared to 500 

in front of or in clear areas adjacent to GI (593).The remaining particles were agglomerates of 501 

above-mentioned particles and their elemental composition was evenly distributed among 502 

them. A total of 3915 from the in-front/adjacent clear areas and 3118 from behind GI were 503 

listed in the unclassified category.  504 
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Overall, mean values of percentage weight elemental compositions of particles in the same 505 

classification from behind GI and in front of or clear area adjacent to GI were comparable. For 506 

example, the NaCl category accounted for 45% of Cl and 35% of Na at both locations. Iron-507 

rich particles of the vehicle category consisted of Fe (57% behind, 54% in clear area/in-front) 508 

and oxygen (17% behind, 18% in clear area/in-front) dominated both locations (SI Table 3). 509 

Other particles in the vehicle category were dominated by Ba, followed by Mn, Cr, V, and Ti. 510 

Although the percentage difference of vehicle group between behind and in front of or clear 511 

area adjacent to vegetation were smaller, these elements are toxic even in lower concentrations. 512 

When comparing identified particles from behind GI with those from the other monitoring 513 

locations, natural (+7%) and NaCl (+5%) particles were higher behind GI than in front of or in 514 

a clear area adjacent to GI (Fig 11). Conversely, a significantly lower percentage (–7%) of 515 

vehicle particles were found behind GI than in the other monitoring locations (Fig 11).  In terms 516 

of particle count, 725 particles were from vehicular origin out of a total of 9819 particles 517 

collected from behind the GI, as opposed to 1419 from 10491 particles collected from in front 518 

of or in a clear area adjacent to GI. This difference indicates the positive effect of GI in reducing 519 

traffic-related emission exposure. In addition, the fraction of the unclassified group, which 520 

includes some traffic-originated particles, were found to be lower by about 5% behind the GI 521 

when compared with the other monitoring locations, further substantiating the potential for 522 

removal of harmful particles by GI through deposition. 523 

4. Summary, Conclusions and Future Work  524 

This experimental investigation measured and compared different pollutant (BC, PNC, 525 

PM10, PM2.5, and PM1) concentrations from behind GI with those from a clear area adjacent to 526 

or in front of GI. We evaluated three GI types (hedges, trees, and a combination of hedges and 527 

trees) in close-road and away-road environments and under along-road (parallel to the road), 528 

cross-road (perpendicular to the road, from the road to GI) and cross-vegetation (opposite to 529 
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cross-road) wind conditions. We also investigated the fractional composition of PM and the 530 

elemental composition behind the GI to ascertain possible GI induced alternation.    531 

The following conclusions were drawn: 532 

 The overall data, without segregating by ambient wind directions, suggested that hedge-533 

only (HIB) scenarios presented better improvement in air quality behind GI across all 534 

measured pollutants, at both away-road and close-road sites. Trees with hedges (THIB; 535 

THCB) scenarios were found to be the second most effective configuration type. Tree-only 536 

scenarios did not show any positive influences on the measured concentrations. The use of 537 

hedges or a combination of hedges and trees, therefore, emerged as favourable options for 538 

the reduction of pollutant concentrations behind vegetation.  539 

 When comparing concentration changes among pollutants, the highest relative differences 540 

were observed for BC, followed by PNC and PM1, which was expected due to their modest 541 

background concentrations when compared with PM10. The lowest relative differences 542 

were observed for PM2.5 behind the GI.  543 

 The assessments based on wind directions revealed a maximum reduction in pollutant 544 

concentration during along-road wind conditions, followed by cross-road wind 545 

conditions, showing up to a 52, 30, 15, 17 and 31% reduction for BC, PNC, PM10, PM2.5 546 

and PM1, respectively.   547 

 The analysis of vegetation density indicated higher relative pollutant reductions with an 548 

increase in LAD. ∆PNC showed a significant correlation with LAD. GI dimensions such 549 

as thickness and height had an important role in lowering pollutant concentrations behind 550 

GI. For example, single tree rows (thinner; TCB) showed a deterioration of air quality 551 

compared to multiple tree rows (thicker; TIB), even though both had similar LAD. 552 
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Similarly, a lower hedge height (HCB) was revealed to be ineffective in reducing pollutant 553 

concentrations when compared to a taller hedge (HIB).  554 

 No change in PM fractional composition was observed behind the GI in the presence of 555 

trees. However, both the hedge-only and trees with hedges scenarios resulted in lower 556 

fractions of sub-micron particles. The SEM single particle analysis led to a reduction in 557 

traffic-related particles (vehicle; 7%) in samples taken from behind the GI compared to 558 

those taken in front of or clear area adjacent to GI. In addition, naturally occurring particles 559 

were dominant behind the GI (7%) and agglomerates of particles originating from natural 560 

and vehicular sources were lower (–5%) behind the GI. The evidence from the SEM single 561 

particle elemental investigation demonstrated a reduction of harmful traffic-related 562 

particles by GI via deposition and enhanced dispersion. 563 

We compared a pair of the same GI types under two distinct (in-front vs behind in away-road 564 

environments, and clear area versus behind in close-road environments) scenarios that provided 565 

scientific evidence for the efficacy of GI for air pollution exposure reduction in real-world 566 

cases. The close-road cases revealed a difference in concentration changes due to additional 567 

accumulation of pollutants in front of vegetation. On the contrary, the away-road cases 568 

provided insight into additional dilution effects of pollutants due to an increased distance from 569 

the road. While our ingenious portable set-up allowed monitoring at desired locations, it limited 570 

long-term unattended measurements that are recommended to allow the covering of different 571 

seasons and the construction of a database that can help to formulate guidelines for GI design 572 

and implementation.  573 
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List of Figures 767 

 768 

Figure 1. Schematic representation of six monitoring locations with the type of GI and road 769 

details. The orange circle and black ring denote measurement points behind and in front of the 770 

GI, respectively. DR-GI refers to the distance between the road and the GI types. 771 
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 772 
Figure 2. Windrose diagrams at each of the monitoring locations (a) HIB, (b) HCB, (c) TIB, (d) 773 

TCB, (e) THIB, and (f) THCB over the entire sampling duration. The road is marked as a black 774 

coloured arrow. The colour shading denotes wind direction conditions with respect to street 775 

axis: cross-road (blue), along-road (yellow), and cross-vegetation (green). 776 
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 777 

Figure 3. SEM image of particle deposited on filter paper showing: (a) visible light, and (b) 778 

backscattering electron which highlights particles with a higher atomic number.  779 

  780 

(a) (b) 
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 781 

Figure 4. Scatterplots of co-located instruments for: (a) PM1, (b) PM2.5, (c) PM10 782 

measurements by GRIMM 11-C (x-axis) and GRIMM 107 (y-axis), (d) BC measurements by 783 

microAeth AE51, and (e) PNC measurements by both P-TRAK models. 784 
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 785 

Figure 5. Boxplots of pollutant concentration behind (red) and in-front/clear (green) measurement 786 

points at six monitoring sites for (a) BC, (b) PNC, (c) PM10, (d) PM2.5, and (e) PM1 concentrations; 787 

mean values are shown as star notation.  788 



36 
 

 789 

Figure 6. The percentage differences in various pollutants under along-road, cross-road and 790 

cross-vegetation wind conditions. The positive and negative differences indicated reduced and 791 

increased concentrations behind the GI at the close- and away-road sites. 792 
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 793 

 794 

Figure 7.  Correlation of percentage difference in pollutant concentrations with respect to LAD 795 

of GI in behind vs clear and behind vs in front scenarios. Red colour indicates an increase in 796 

pollutant concentration with increase in LAD and green colour vice-versa. The grey colour 797 

denotes insignificant R2 values. 798 
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  799 

Figure 8. The fraction of various PM types at all the six sites under different wind directions. 800 

The inner circle shows PM fractions behind the GI; the outer circle shows PM fractions in-801 

front/clear areas. Blue, orange and grey colours denote PM1, PM1-2.5 and PM2.5-10, respectively. 802 

Line shading represents a lack of data available in particular situations. 803 
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 804 

Figure 9. The ratios of (a) PM1/PM2.5 and (b) PM2.5/ PM10 at the studied sites.   805 
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 806 

Figure 10. SEM micrographs showing some of the identified particles on the PTFE filter paper 807 

and their elemental composition. (a) Pollen form plants (×2200), (b) pollen (×5000), (c) particle 808 

with high sulphur (×8500), (d) salt particles (×1200), (e) carbon soot (×10000), and (f) particle 809 

with high carbon content (×2700).    810 
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 811 

Figure 11. Percentage of samples identified in each elemental composition group in total particles on the 812 

PTFE filters (a) behind, and (b) in-front/clear of GI.  813 

  814 
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List of Tables 815 

Table 1. Summary of relevant research studies undertaken on air pollution reduction by the GI. 816 

Pollutant and concentration  

decay trend with distance 

GI type   Changes in pollutant 

concentration behind GI 

References  

No Trend: PM10, 

TSP 

Hedge  Reduction of  45-60% 

Reduction of  7-9% 

Reduction of 34% 

 Chen et al. (2016) 

 Chen et al. 2015) 

   Tiwary et al. (2008) 

Tree  Mixed (higher and lower) 

Reduction of  30-60% 

Reduction of  5-35% 

Large reduction  

 Brantley et al. (2014) 

 Chen et al. (2016) 

 Yin et al. (2011) 

 Viippola et al. (2018) 

Combination of 

Tree and hedge  

Reduction 10-70% 

Reduction of  7-15% 

Reduction of  12-65% 

Reduction of  30-65% 

 Chen et al. (2016) 

 Chen et al. (2015) 

 Islam et al. (2012) 

 Shan et al. (2007) 

Gradual: PM 2.5 Hedge  Reduction 5-35% Chen et al. (2016) 

Tree  No Significant difference 

Mixed -20 to 20% 

Higher behind trees 10% 

Slight reduction  

Brantley et al. (2014) 

Chen et al. (2016) 

Tong et al. (2015) 

Viippola et al. (2018)  

Morakinyo et al. (2016) 

Combination of 

Tree and hedge 

Mixed -20 to 40% 

Increase behind  

Chen et al.(2016) 

Morakinyo et al. (2016) 

Rapid: UFP Hedge  High reduction: 37- 77% Al-Dabbous and Kumar 

(2014) 

Tree  Mixed  

Reduction of 37.7-63.6% 

Hagler et al. (2012) 

Lin et al. (2016) 

Rapid: BC  Tree  Reduction of 7.8-12.4% Brantley et al. (2014) 

Rapid: CO Tree  Reduction of 23.6-56.1%   Lin et al.(2016) 

Rapid: NO2 Tree  Reduction 14-59% 

Reduction 1-21% 

Average Reduction 7% 

Increase  

Increase  

Fantozzi et al. (2015) 

Yin et al. (2011) 

Grundström and Pleijel 

(2014) 

Yli-Pelkonen et al. (2017) 

Viippola et al. (2018) 

Combination of 

Tree and hedge  

Reduction  Klingberg et al. (2017) 

O3 Tree  Increase   

Non-significant reduction 

of 2%  

Fantozzi et al. (2015) 

Grundström and Pleijel 

(2014) 

 817 

 818 

  819 
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Table 2.  Details of six monitoring locations. Note the clear area and behind (CB) and in-front and 820 

behind (IB) monitoring points refer to measurements taken at a clear location adjacent to and in front 821 

of GI, respectively. In all cases, ‘behind’ refers to measurements carried out behind the GI, as 822 

explained in Figure 1. Leaf area index (LAI) is estimated with help of ceptometer Accu-PAR LP80. 823 

The superscript in column 1 describes the additional physical characteristics of the GI at each site. 824 

The superscript in column 5 describes the type and origin of the GI at each site. 825 

GI Type 

(location) 

Measurement 

locations (site 

abbreviation) 

Road name  

(coordinates) 

 

Approximate 

dimensions;   

L: Length, 

W:Width,  

H: Height  

Species common 

name (scientific 

name) 

 LAI 

(hourly traffic) 

volume) 

Hedge only1  

(Aldershot 

road) 

Clear and 

Behind (HCB) 

A323 

(51.251114, 

-0.599585) 

 

L: 36m , 

W: 1m,  

H: 1.2m 

Hawthorn 

(Crataegus 

monogyna)a,c 

Common Ivy 

(Hedera helix)a,d 

 LAI = 6.64 

m2/m2 

(750) 

Hedge  only2 

(Stoke park 

road ) 

In-front and 

Behind (HIB) 

A320 

(51.243999 -

0.571478) 

L: 36m, 

 W: 1.5m,  

H: 2.2m 

Beech (Fagus 

sylvatica)a,c 

 LAI = 4.47 

m2/m2 

(1200) 

Tree only3  

(Aldershot 

road) 

Clear and 

Behind (TCB) 

A323 

(51.250527, 

-0.597351) 

L: 40m,  

W:  6m,  

H: 10m 

Common lime (Tilia 

x europaea)a,c 

 

 LAI = 

4.25m2/m2 

(750) 

Tree only4 

(Sutherland 

park) 

In-front and 

Behind (TIB) 

A3100 

(51.261390, 

-0.547263 

L: 50m,  

W: 9m,  

H: 7m 

Common lime (Tilia 

x europaea)a,c 

Field maple 

(Acer campestre)a,c  

Poplar  

(Populus nigra) a,c   

Bird cherry (Prunus 

padus)a,c  

 LAI = 4.63 

m2/m2 

(1650) 

Tree with 

hedge5 

(Sutherland 

park) 

In-front and 

Behind 

(THIB) 

A3100 

(51.260847, 

-0.546053) 

L: ~40m,  

W: ~7m,  

H: ~5m 

 

Hawthorn 

(Crataegus 

monogyna)a,c 

Common Ivy 

(Hedera helix)a,d 

Common Ash 

(Fraxinus excelsior) 

a,c 

 LAI = 1.54 

m2/m2,  

LAI = 3.4 

m2/m2    

(1650) 

Tree with 

hedge6 

(Shalford 

road) 

Clear and 

Behind 

(THCB) 

A281 

(51.227721, 

-0.571825) 

L:  ~66m 

W:~3.5m,  

H: ~4m 

 

Red Pine (Pinus 

resinosa)d 

London plane 

(Platanus x 

hispanica)b,c 

blackthorn (Prunus 
spinose)a,c 

 LAI = 4.07 

m2/m2 

(1200) 

1Hedge height is lower than breathing height; 2Height is higher than average breathing levels; 3Single 826 

tree row; the vertical distance between the bottom of tree crown and the ground surface ranged from 827 

1.7-2.5m;  4 Multiple rows (up to 4) of tree in zig-zag planting formation; the vertical distance between 828 

the bottom of tree crown and the ground surface ranged from 1.0-2.5m; 5Well maintained hedge of 1.7m 829 

height and single tree row behind the hedge; the vertical distance between the bottom of tree crown and 830 

the ground surface ranged from 1.5-2.5m; 6Less maintained/ freely growing hedge with varying height 831 

2-4 m; the trees are embedded in the hedgerows.  anative; bnon-native; cdeciduous; devergreen.   832 
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Table 3. The summary statistics showing the available number of one-minute averaged data points 833 

(N), median, geometric mean (GM) and geometric standard deviation (GSD) of pollutant 834 

concentration behind and in-front/clear measurement points at six monitoring sites and the relative 835 

difference in pollutant concentration. All these percentage calculations did not account for 836 

background subtraction and may underestimate our reported changes. The negative and positive 837 

values in the last column denotes decrease and increase in concentration behind GI, respectively. 838 

    Clear area or In front  of GI Behind GI % diff 

    N median  GM GSD N median GM GSD   

BC HCB 2159 654 541 2.7 2197 659 619 2.2 -15 

  TCB 1587 743 531 4.2 1845 632 552 3.2 -4 

  THCB 2455 906 780 2.6 2550 913 747 2.5 4 

  HIB 1931 1359 1218 2.9 1950 829 695 2.7 43 

  TIB 2014 1213 1070 2.5 1977 852 594 3.7 44 

  THIB 1530 444 424 3.7 1557 173 155 6.0 63 

PNC HCB 2038 6322 6450 1.6 2024 5956 5877 1.6 9 

  TCB 1799 5491 6149 1.6 1890 5797 6332 1.6 -3 

  THCB 1609 7678 7724 1.5 1562 8068 7854 1.5 -2 

  HIB 1786 8190 8384 1.7 1786 5473 5880 1.6 30 

  TIB 1919 11573 11081 1.6 1995 10983 10224 1.6 8 

  THIB 1161 4270 4629 1.6 1162 3722 3975 1.6 14 

PM10 HCB 2375 17 15 1.6 2377 20 19 1.8 -22 

  TCB 2009 16 16 1.6 1801 17 16 1.6 -2 

  THCB 2423 23 20 1.4 2424 20 19 1.5 7 

  HIB 1948 16 16 1.4 1942 14 14 1.5 15 

  TIB 2527 32 28 1.8 2527 27 25 1.8 10 

  THIB 1556 19 20 1.4 1557 15 15 1.7 24 

PM2.5 HCB 2375 11 10 1.4 2377 11 11 1.4 -7 

  TCB 2009 11 11 1.5 1801 12 12 1.4 -7 

  THCB 2423 16 15 1.4 2424 14 14 1.4 8 

  HIB 1948 12 11 1.4 1942 10 10 1.4 14 

  TIB 2527 24 20 1.9 2527 21 18 1.9 9 

  THIB 1556 13 14 1.4 1557 13 13 1.5 8 

PM1 HCB 2375 6 6 1.3 2377 6 6 1.3 -1 

  TCB 2009 7 7 1.4 1801 7 7 1.4 1 

  THCB 2423 12 12 1.4 2424 9 10 1.5 19 

  HIB 1948 8 8 1.3 1942 6 6 1.5 25 

  TIB 2527 14 12 1.7 2527 14 11 1.9 8 

  THIB 1556 8 8 1.4 1557 7 7 1.5 7 

 839 


