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CONTRIBUTIONS
Our main contribution is the design of optimal O(N) sequential

and O(N/p + log p) parallel SFC-based partitioning algorithms
that produce high-quality partitions.

•Method: Since SFCs are defined in a recursive manner, they con-
verge progressively to the ideal work-load balanced partition, but in-
crease the partition surface in the process. By using a performance
model to determine the tradeoff between work-load imbalance and
communication costs, we can terminate this recursion early and ob-
tain a better partition.
• Experimental Evaluation: We conduct experiments to demon-

strate the efficiency and scalability of our algorithm on ORNL’s
Titan upto 262,144 cores. We also include energy measurements
for resulting MATVEC operations on CloudLab and demonstrate
up to 22% savings. We will also release our code on github.
(https://github.com/orgs/paralab)

Figure 1: Octree partitioned using space filling curve, color coded by the process id
(MPI rank).

METHODOLOGY
Modified SFC Ordering

Problem: Given that we are interested in generating a space-
traversal, more so of application specific coordinates or regions.

Approach (TREESORT): It is efficient to consider this problem as
one of generating a quadtree or an octree, in 2D and 3D respectively.
Specifically, we construct the tree in a top-down fashion, one level
at a time, arranging the octants based on the recurrence rules for the
specific SFC, say Hilbert.
Key advantage
• If the SFC can dictate the ordering based on the level, as in the case

of Hilbert, then these are applied to the ordering at this level with
an O(1) cost. Hence the run time is independent from the SFC
curve (i.e HILBERT , MORTON ) being used.

Distributed TREESORT
•Unlike the sequential TREESORT, we have to traverse the tree in a

breadth first fashion, as the data needs to be distributed across pro-
cessors.
•Note that at each level, we split each octant 8 times (for 3D), so in
log8(p) steps we will have p buckets. A reduction provides us with
the global ranks of these p buckets.
•Using the optimal ranks (n/p ± tol) at which the data needs to be

partitioned, we selectively partition the buckets to obtain the correct
partitioning of the local data.

The expected running time (Tp) for the staged distributed
TREESORT is,

Tp = tc
N

p
+ (ts + twk) log p + tw

N

p
. (1)

p number of MPI tasks in comm
N global number of elements in A
α constant that depends on the application
Wmax max. of work assigned to an individual processor
Cmax max. of data communicated
tw interconnect slowness (1/bandwidth)
ts interconnect latency
tc intranode memory slowness (1/ RAM bandwidth)
k Number of stages in MPI data exchange

Table 1: Here we summarize the notation used in this poster.

Architecture Optimal Partitioning
Desirable qualities of any partitioning strategy are
• load balancing
•minimization of overlap between the processor domains.

Why simple partitions perform better ? SFC-based partitioning
does a very good job in load balancing but do not permit an explicit
control on the level of overlap. Simple partitions, such as those produc-
ing relatively cuboid partitions have a smaller overlap compared with
more irregular partitions (see Fig. 2 & Fig. 3), as might be produced
by a SFC-based partitioning algorithm.

(a) l=1, λ=2, s=16 (b) l=2, λ=1.2, s=24 (c) l=3, λ=1.05, s=28 (d) l=4, λ=1.01, s=30

Figure 2: Illustration of the increase in communication costs with low tolerance
(ideal load balancing). Partitions for the case of p = 3 are drawn with the boundary
of the partition (s) and the load-imbalance (λ) given along with the level (l) at which
the partition is defined. At each level, the orange partition (�) gets the extra load
that is progressively reduced. The green partition (�) gets the largest boundary that
progressively increases.

(a) tolerance=0.001 (b) tolerance=0.1 (c) tolerance=0.5

Figure 3: Octree partition which assigned to MPI rank 3 with varying tolerance.
Note that the partition get smoother (reduced number of boundary surfaces) with
higher tolerance value.

Energy & MATVEC
•We provision resources and configure an 32-node cluster of physical

machines on CloudLab.
•We collect power draw measurements (obtained from on-board

IPMI sensors) for every node every second.
•CloudLab node specs: 2 Intel E5-2630 v3 8-core Haswell CPUs

(2.40 GHz), 128GB ECC Memory, 10Gb Ethernet.

Can we predict the optimal tolerance value ?
•We would like to automatically determine the optimum tolerance

based on the data and the machine characteristics.
• Computational time of MATVEC operation will be dominated by the

processor that has the maximum load (Wmax ) or has to communi-
cate the maximum (Cmax ) amount.

•We can try predict the execution time of distributed TREESORT us-
ing following model.

Tp = αtcWmax + twCmax. (2)

RESULTS

Weak scaling in Titan
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Figure 4: Total execution time for HILBERT & MORTON curve based partitioning
scheme with, 106 grain size (minimum problem size of 80M & maximum problem
size of 1.3T points), in ORNL’s Titan varying number of cores from 16 to 262144.
The total time is divided into time for computing the partition (partition) and the cost
of actually exchanging data (all2all).

Strong scaling in Titan
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Figure 5: Strong scaling results for HILBERT & MORTON curve based partitioning
scheme with, problem size of 16 × 106 points, in ORNL’s Titan varying number of
cores from 16 to 1024. The parallel efficiency for each case (rounded) is listed above
the bars.
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Figure 6: Maximum MATVEC execution time across all processes for weak scaling
experiment with a grain size of 100K octants per process on Titan. HILBERT is faster
for all cases.

Energy consumed by MATVEC
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Figure 7: Comparison for number of non-zeros (nnz) elements in the communi-
cation matrix corresponding to perform MATVECoperation based on HILBERT and
MORTON based partitioning schemes for a mesh size of 1B nodes with 4096 cores
with varying tolerance values in TACC’s Stampede . Note that the scale difference
between the axes in the plots, and for both partitioning schemes we can reduce the
nnz (overall communication cost) by increasing the tolerance value.
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Figure 8: (left) Total energy consumption for 100 iterations of MATVEC(distributed)
operations and (right) Load imbalance (work max/work min) and communication
imbalance (bdy max/bdy min) plots for HILBERT curve based partitioning. In both
cases we use an initial point grain size with 105 with maximum depth (of octree) of
30 across 1792 MPI tasks on the Clemson CloudLab cluster.
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Figure 9: Energy consumed
by each node while performing
MATVECoperation , with ideal load
balancing (for both HILBERT and
MORTON ) Vs. flexible load balancing
with a tolerance of 0.3 for 95M mesh
nodes with 256 cores in CloudLab8
node cluster.
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Figure 10: Total energy consumed
by the 100 MATVECoperations with 256
cores in Wisconsin CloudLab cluster
and the interpolated energy values for
HILBERT and MORTON based partition-
ing, using the model αtcWmax + tw ∗
Cmax.

CONCLUSIONS
•We presented a new partitioning algorithm that by being architecture

and application aware is able to reduce parallel runtime as well as
overall energy consumption (22%).
• The key idea is to assign unequal work to processes in order to re-

duce overall communication costs.
More information and animations can be

found via this qr.
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