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Abstract 

 

Recent analyses of the Canadian Fluoroscopy Cohort Study reported significantly increased 

radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response 

adjusted for dose-fractionation. This cohort includes 63,707 tuberculosis patients from 

Canada who were exposed to low-to-moderate-dose fractionated x-rays in 1930s-1950s and 

were followed-up for death from non-cancer causes during 1950–1987. In the current 

analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically 

motivated nonlinear dose-response models to get a better understanding of the impact of 

radiation damage on IHD. The models were weighted according to their quality of fit and 

were then mathematically superposed applying the multi-model inference (MMI) technique. 

Our results indicated an essentially linear dose-response relationship for IHD mortality at low 

and medium doses and a supra-linear relationship at higher doses (>1.5 Gy). At 5 Gy, the 

estimated radiation risks were 5-fold higher compared to the linear no-threshold (LNT) 

model. This is the largest study of patients exposed to fractionated low-to-moderate doses of 

radiation. Our analyses confirm previously reported significantly increased radiation risks of 

IHD from doses similar to those from diagnostic radiation procedures. 

 

Keywords Ionizing radiation, Ischemic heart diseases, LNT model, Multi-model inference, 

Nonlinear dose-response 
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Introduction 

One of the most important questions in radiation research relates to the shape of the dose-

response for different detrimental health outcomes at low exposures levels. Various 

international radiation protection organizations use the linear no-threshold (LNT) model to 

predict risks of cancer after ionizing radiation (IR) exposures (NCRP 2018, Shore et al. 2018, 

2019, ICRP 2005, UNSCEAR 2000). However, the most recent analysis of the Life Span 

Study (LSS) data suggests a significant quadratic upward curvature, especially for the 

incidence of all solid cancers in males (Grant et al. 2017). For cardiovascular diseases 

(CVD), doses above 5 Gy IR have been shown to be associated with a significantly elevated 

risk (HPA 2010). At doses between 0.5 and 5 Gy, there is clear evidence for an increased risk 

(HPA 2010, Kreuzer et al. 2015, Azizova et al. 2015a, 2015b, Moseeva et al. 2014). 

Radiation risks at low (<0.1 Gy) and low-to-moderate (0.1-0.5 Gy) doses have been 

examined only in a few studies with considerable discrepancies in findings and require 

further research (for example, Shimizu et al. 2010, Mitchel et al. 2011, 2013, Little et al. 

2012, Ozasa et al. 2012, 2017, Schöllnberger et al. 2012, Schöllnberger et al. 2018, Simonetto 

et al. 2014, 2015, Takahashi et al. 2017, Gillies et al. 2017). In this context, the question 

whether even smallest doses of IR may increase the risk of CVD or whether nonlinear dose-

response curves may be better suited to describe the health risk is of special interest. There 

could also be a threshold for the dose below which radiation may have no effect, or lead to 

either a strongly elevated risk or a protective effect. Such questions are of great importance 

for radiation protection, especially against the rising worldwide use of IR in medical 

applications. They are also relevant for occupationally exposed groups of individuals. For 

CVD, the question of the shape of the dose-response is as important as it is for cancer 

because even though relative radiation risks of CVD are smaller than radiation risks of cancer 

(Ozasa et al. 2012), the overall burden of disease is much larger due to high background rates 

of CVD in Western populations (World Health Organization 2013). 

 Recently significantly elevated risks of death from ischemic heart diseases (IHD) in a 

cohort of tuberculosis patients from Canada exposed to low-to-moderate doses of highly-

fractionated x-ray radiation from repeated chest fluoroscopies were reported (Zablotska et al. 

2014). The reported dose-response was strictly linear, and researchers described a novel 

finding of a significant inverse dose-fractionation association in IHD mortality (Zablotska et 

al. 2014). The aim of the present study is to investigate radiation-associated risk of IHD in the 

Canadian Fluoroscopy Cohort Study (CFCS) with a larger set of radio-biologically motivated 

dose-response models and to comprehensively characterize model uncertainties using multi-

model inference (MMI, Burnham and Anderson 2002, Claeskens and Hjort 2008, Walsh and 

Kaiser 2011). 
 

Materials and methods 
 

Data sources 

The CFCS data have been described in detail elsewhere (Zablotska et al. 2014). The cohort 

includes 63,707 tuberculosis patients from Canada who were first treated for tuberculosis 

between 1930 and 1952 and could have received multiple fluoroscopic x-ray examinations to 

maintain therapeutic pneumothorax, one of the preferred treatments in the pre-antibiotic era. 

Most individuals in the cohort were born between 1920 and 1929 (see Table 2 in Zablotska et 

al. 2014). Absorbed lung doses from fluoroscopic examinations were estimated for each 

patient for each year since first admission for treatment of tuberculosis (Zablotska et al. 

2014). For each lung dose to be estimated 100,000 simulations were carried out and an 

arithmetic mean of all simulations was used for dose-response analyses. The lung dose was 
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used because it should be a reasonable surrogate for doses to the heart and associated major 

blood vessels (Zablotska et al. 2014). There could be substantial uncertainties in dose 

estimates. These are partially accounted for in the dose-estimation methods, where doses 

were estimated using Monte Carlo simulation techniques, which sampled from probability 

distributions of various data sources and should provide a reasonable estimate of radiation 

doses to the lung and heart. As stated by Zablotska et al. (2014), the impact of errors in 

exposure estimates in dosimetry was estimated in previous studies and shown to be relatively 

small and primarily of Berkson type (Howe and McLaughlin 1996) and therefore unlikely to 

introduce a substantial bias in risk estimates (Carroll et al. 2006). 

Thirty-nine percent of the cohort (24,932 patients) were exposed to at least one 

fluoroscopy while the remaining 38,775 are considered unexposed to radiation from 

fluoroscopy. On average, exposed patients were treated 64 times with a typical fluoroscopic 

examination delivering a mean lung dose of 0.0125 Gy at a dose rate of approximately 0.6 

mGy second-1. The mean cumulative person-year-weighted lagged lung dose among exposed 

was 0.79 Gy (range, 0 – 11.6 Gy). Doses were lagged by 10 years, a minimal latent period 

that has been used in several studies of long-term risks of radiation exposure on cancer and 

noncancer mortality risk (Zablotska et al. 2014, Little et al. 2012, Darby et al. 2010). 

Study participants had to be alive at the start of follow-up in 1950 and were followed 

up for mortality until the end of 1987 with 1,902,251.68 person-years. During this time, 5818 

deaths from IHD (ICD-9 codes 410–414 und 429.2) were identified through a linkage with 

the Canadian Mortality Database. The cohort was evenly split between men and women. 

Patient age at first admission for tuberculosis treatment ranged from 1 to 81 years. Additional 

characteristics of the CFCS are provided in Table S1 of the Online Resource. 

 

Statistical methods 

The present analysis applied the same dataset cross-classified by sex, Canadian province of 

most admissions (Nova Scotia, other), type of tuberculosis diagnosis (pulmonary, 

nonpulmonary), stage of tuberculosis (minimal, moderate, advanced, or not specified), 

smoking status (unknown, non-smoker, smoker), age at first exposure (0–4, 5–9, 10–19, or 

20–87 years), attained age (0–24, 25–29, … 80–84, or 85–100 years), calendar year at risk 

(1950–1954, 1955–1959, . . . 1980–1984, or 1985–1987), duration of fluoroscopy screenings, 

and 10-year cumulative lagged lung dose as (Zablotska et al. 2014). Poisson regression was 

based on time-dependent person-year–weighted mean cumulative dose in cross-classified 

cells, using excess relative risk (ERR) models in combination with a parametric baseline 

model1. The general form of an ERR model is h = h0(1+ERR(D, Z)), where h is the total 

                                                           
1 In this study, mortality follow-up was conducted through record linkage with the Canadian 

Mortality Database using probabilistic linkage. The term "record linkage" refers to the 

process of comparing two or more records which contain identifying information to 

determine whether those records refer to the same individual enrolled in a cohort study. In the 

absence of personal identifying numbers which would allow definitive linkage to mortality 

outcomes (social insurance numbers were not introduced in Canada until 1964 while the 

study is based on the medical records for patients first admitted for treatment during 1930-

1952), study investigators used a combination of identifying items such as surname; given 

name; day, month, and year of birth to conduct a linkage. Each pair of linked records was 

assigned a probabilistic weight which depends on the likelihood of the link being true (Howe 

1998). A cutoff value was then used to separate possibly true links with higher linkage 

weights from those less likely to be true. A higher cutoff point for the internal dose-response 

analysis was used to avoid dilution of any association due to the presence of false positives 
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hazard function, h0 is the parametric baseline model. ERR(D, Z) describes the change of the 

hazard function with cumulative lagged lung dose D allowing for dose-effect modification by 

co-factor(s) Z, such as sex, age at first exposure or dose-fractionation so that ERR(D, Z) = 

err(D)(Z). Here, err(D) represents the dose-response and (Z) contains the dose-effect 

modifiers2 (DEMs). A parametric baseline model had been developed to analyze the risk for 

IHD in the Mayak Workers Cohort (Simonetto et al. 2014). It was taken as guidance for 

developing a parametric baseline model for the CFCS data. Both models for cohorts Mayak 

and CFCS are provided on pages 4-6 of the Online Resource. The baseline model in equation 

(S4) of the Online Resource was combined with the LNT model and adjusted for dose-

fractionation (Zablotska et al. 2014): 

 

h = h0{1 + 1  D  exp[2(drate – 0.2)]}           (1) 
 

Here, 1 denotes the slope of the linear dose-response and 2 is the parameter associated with 

the DEM drate – 0.2. Parameter drate represents the dose-fractionation, a surrogate for dose 

rate, defined as drate:= D time-1 where time is the overall duration of fluoroscopic 

procedures3. The unit of drate is Gy yr-1. By centering drate parameter 1 corresponds to the 

risk for a patient with radiation exposures at 0.2 Gy yr-1, i.e. approximately 16 fluoroscopic 

procedures per year (Zablotska et al. 2014). 

Subsequently, the dose-response model from equation (1) (i.e. 1D) was substituted 

by the models in Figure 1 (Q-model – Gompertz model). They were chosen with care to 

reflect as many biologically plausible shapes for dose-responses as possible, including 

supralinear and sublinear models. Motivations for these models from the biological scientific 

literature are provided in Table 1 and in the Discussion section. The mathematical forms and 

names of the functions illustrated in Figure 1 are given in column 1 and 2 of Table 1, 

respectively. Columns 3 and 4 of Table 1 state which types of radiation biological 

experiments have previously provided evidence for applying these functions in the present 

analysis, and the relevant citations of the biology papers, respectively. Mathematical details 

of all models in Figure 1 are also given on page 7 of the Online Resource; that also includes 

the categorical model. The threshold-dose parameter (Dth) contained in some models (LTH, 

smooth step, sigmoid, hormesis, two-line spline) was optimized during the model fits. The 

smooth step model was implemented as a modified hyperbolic tangent function, which can 

accommodate various different shapes. With this function, a step is not imposed a priori but 

results from fitting that model to data. 

 

Multi-model inference (MMI) method 

                                                                                                                                                                                     

(i.e., false linkages); the change in cutoff would not be expected to bias estimates of relative 

risk. Under quite general conditions, potentially substantial bias could be introduced by using 

absolute risk models. Therefore, analyses with EAR models should not be performed with the 

CFCS data because the linkage of the cohort with the mortality registry is probabilistic which 

could affect absolute mortality but not relative mortality models (Zablotska et al. 2014). 
2 Co-factor(s) Z, such as sex, age at first exposure or dose-fractionation are often referred to 

in radiation epidemiology as risk effect modifiers because they are factors that modulate the 

main central risk per unit dose estimate. 
3 Duration of fluoroscopic procedures respectively fluoroscopy screenings refers to the 

timespan over which fluoroscopic examinations were provided. 
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The term MMI was coined to describe a frequentist approach to model averaging (Burnham 

and Anderson 2002), and has been applied to model selection in radiobiology. In contrast to 

Bayesian model averaging (BMA) (Hoeting et al 1999), which is based on the evaluation of 

model-specific marginal likelihood functions to determine a model average, MMI relies on 

the Akaike Information Criterion (AIC; Akaike 1973, 1974) and AIC-based model weights 

for model building. BMA is computationally more demanding and only a few radiation 

epidemiological studies have used it to account for uncertainties in dose estimation (Little et 

al. 2014, 2015, Land et al. 2015, Hoffmann et al. 2017). Both BMA and MMI apply the 

concept of Occam’s group (Madigan and Raftery 1994, Hoeting et al 1999, Noble et al. 2009, 

Kaiser and Walsh 2013), where a group of models deemed adequate for averaging is selected 

from a larger group of candidate models (see Figure 1). The methods of picking models for 

Occam’s group can vary. For example, Walsh and Kaiser (2011) selected all published 

models, which have been applied to the same LSS dataset for the same endpoint, whereas 

Kaiser and Walsh (2013) developed a rigorous selection process based on likelihood ratio 

tests (LRTs). 

The shape of the MMI-derived dose-response is more reliably determined than the 

shape for any individual dose-response because the MMI dose-response shape accounts for 

strengths of evidence for each of the contributing dose-response shapes. MMI also provides a 

more comprehensive characterization of model uncertainties by accounting for possible bias 

from model selection. It is a statistical method of superposing different models that all 

describe a certain data set about equally well (Burnham and Anderson 2002, Claeskens and 

Hjort 2008). In the present study the MMI approach aims to detect nonlinearities in the dose-

response by combining biologically-plausible dose-responses based on goodness-of-fit. 
 

Model selection 

To assess the influence of model selection criteria on the risk estimates, we used two 

approaches. In the sparse model approach, candidate dose-response models from Figure 1 

were compared using the LRT at a 95% confidence level. With this method, a small set of 

final non-nested models with highly significant dose-responses was identified for Occam’s 

group. Specifically, for each final non-nested model we calculated the AIC using the formula: 

AIC = dev + 2  Npar, 

where dev is the final deviance and Npar is the number of model parameters. Models with 

smaller AIC are favored based on fit (via dev) and parameter parsimony (models with more 

parameters get punished by the factor 2Npar) (Walsh 2007). For a set of final non-nested 

models, AIC-weights are calculated; models with smaller AIC are assigned a larger weight 

(see page 8 of the Online Resource). The resulting weights, multiplied by a factor of 104, 

gave a number of samples for risk estimates to be generated by uncertainty distribution 

simulations. We then combined model-specific probability density functions into one dataset. 

The resulting probability density distribution represents all uncertainties arising from the 

different models and their superposition. Central risk estimates from MMI were calculated 

from AIC-weighted maximum likelihood estimates (MLE) for single risk models. 95% 

confidence intervals (CI) were derived from the final merged MMI probability density 

distributions. 
In the second, rich model approach, an LRT-based reduction of dose-response 

parameters of the candidate models was not performed. The AIC was calculated for each 

different model fit together with the AIC-weights. Models with bilateral AIC-weights smaller 

than 5% did not survive the selection process; all others were included into the set of final 

non-nested models. This approach leads to a larger number of models deemed suitable for 

MMI. The calculation of AIC-weights for the two sets (or Occam’s groups) of dose-response 
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models based on both approaches (“sparse” versus “rich”) is detailed on page 8 of the Online 

Resource. The software used to perform all analyses is briefly introduced on page 9 of the 

Online Resource. 

 

Results 

Similarly to the previously published results (Zablotska et al. 2014), the slope parameter 1 

was not significant without adjustment for dose-fractionation (1 = –0.046 Gy–1, Table 2). 

Adjustment led to a significant ERR per dose = 0.182 Gy–1 with 95% CI: 0.049, 0.325 (Table 

2) (ERR per dose = 0.176 Gy–1 in Zablotska et al. 2014). Subsequently, the LNT model from 

equation (1) was substituted by all other models from Figure 1, keeping the DEM drate – 0.2. 

Considering the relations in Figure S1 of the Online Resource and a sparse model 

approach, four final non-nested models survived the selection process and were included into 

Occam’s group: LNT, Q, two-line spline4 and the Gompertz models. For these four models, 

the model parameters (baseline and radiation-associated), their MLE and symmetric, Wald-

type standard errors are provided in Table S2 of the Online Resource. Details related to 

model selection according to the sparse model approach are provided in the Online Resource 

(see pages 8, 14 and 15 and Table S3). 

According to the rich model approach, 10 models survived the selection process and 

contributed to MMI with normalized weights provided in Table 3. Figure 2 shows the ERR 

plotted against the cumulative lagged lung dose for the four final non-nested models and for 

the simulated dose-response curve from MMI, calculated with the sparse and the rich model 

approaches. Figures 3 and 4 show the best models and MMI for doses <2 and 0.1 Gy, 

respectively. Table 4 provides risk predictions based on MMI (sparse) and the LNT, Q, two-

line spline and Gompertz models. The radiation-associated excess cases according to the four 

final non-nested models and MMI (sparse) are presented in Table 5. 

The Gompertz model had the best fit to the data (Table 3). Both Q and Gompertz 

models predicted no increase in risk below 0.05 Gy (Figure 4). While both models predicted 

a sublinear dose-response at low and medium doses up to ~1 Gy, the two-line spline model 

predicted a risk higher than all other models (Figures 2 and 3). The ERR predictions from 

MMI and LNT model at 0.1 Gy and 1 Gy are identical within their 95% CI (Table 4) and the 

dose-response from MMI is roughly linear at low doses (Figure 4). At low and medium doses 

up to ~1 Gy, MMI and the LNT model predict similar risk values (Figure 3). Consequently, 

up to 1 Gy both models (LNT and MMI) predict very similar excess cases (Table 5). At doses 

>1.5 Gy, the dose-response from MMI predicted a higher risk compared to the LNT model 

(Figures 2 and 3, Table 4). For the entire dose range, the dose-responses from the MMI 

calculated using both the sparse and the rich model approaches were similar to each other 

(Figures 2 to 4). For example, at 1 Gy, MMI predicted an ERR of 0.216 with 95% CI: 0.062, 

0.48 and ERR = 0.218 with 95% CI: 0.058, 0.473, for rich and sparse model approaches, 

respectively. 

Figure S2 of the Online Resource shows the baseline cases as predicted by the ERR-

LNT model versus attained age with the secular trend together with crude rates. 

 

                                                           
4 It is noted that the two-line spline model is nested with the LNT model. This can be seen in 

Figure S1 of the Online Resource: The two-line spline model is nested with the LTH model 

and the latter is nested with the LNT model (in general, Model A is nested in Model B if the 

parameters in Model A are a subset of the parameters in Model B). The reason why the two-

line spline model was nonetheless included into Occam’s group is explained on pages 15 and 

16 of the Online Resource. 
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Discussion 

CFCS is the largest cohort of patients exposed to fractionated low-to-moderate doses of IR 

via fluoroscopic x-rays. About 15.5% of exposed CFCS patients were exposed to doses <0.1 

Gy and thus provide direct evidence of possible risks from low-dose exposures such as CT 

scans (like fluoroscopic examinations, CT scans in their most commonly known form apply 

x-rays). We examined 10 biologically-plausible dose-response models together with a 

categorical model. At low and medium doses the MMI technique predicted an almost linear 

dose-response. 

While the sparse model selection approach led to a set of four final non-nested 

models, the rich model approach yielded an Occam’s group that contained ten out of the 

eleven dose-response models that were fitted to the data. Both sets of dose-response models 

describe the data approximately equally well (see values of AIC in Table 3). 

The reason for MMI-predicted risks being significantly higher compared to the LNT 

model at doses >1.5 Gy is the relatively strong contributions of the Q, two-line spline and 

Gompertz models to the MMI (88% of the total, Table 3). At 5 Gy, MMI predicted an 

approximately 5-fold risk compared to the LNT model, at 10 Gy a 6-fold risk. 

To better understand predicted radiation risks at higher doses, we used a restriction 

analysis based on cohort data with restricted dose-ranges and observed that the second slope 

of the two-line spline model (2) was driven by high doses (>2 Gy). When restricting the data 

to doses smaller than 2 Gy, the first slope (1) of this model became very similar to the slope 

of the LNT model (results not shown). The LNT model was influenced mostly by doses <2 

Gy. The higher doses hardly influence the slope of the LNT model due to the lower number 

of cases in this dose range (212 cases out of 5818). Thus, the fit of the two-line spline model, 

which predicts a more than two times higher number of excess cases than the LNT model 

(Table 5), is consistent with the fit of the latter model. 

The present study applied a larger range of biologically-realistic smooth dose-

response models (Figure 1). Exploring a larger range of different dose-response models is 

motivated by the following biological findings, which are summarized in Table 1. The use of 

the LNT model finds support from the study of Stewart et al. (2006). These researchers 

investigated the effects of a high dose (14 Gy) exposure on the development of 

atherosclerotic plaques (number of lesions, plaque area and plaque composition) in ApoE–/– 

mice. They found that after the high dose exposure the mean number of atherosclerotic 

lesions (initial plus advanced) in carotid arteries of irradiated mice was significantly larger 

than in age- and sex-matched controls. Their study also revealed a significantly enhanced 

inflammatory content and plaque hemorrhage of irradiated carotid artery lesions compared to 

controls (Stewart et al. 2006). Because only one high dose exposure was investigated these 

findings infer an LNT-like dose-response. Analyses with a quadratic or linear-quadratic 

model are supported by the work of Hoving et al. (2008). The found that the number of initial 

atherosclerotic lesions and the plaque area in female mice 30 weeks after exposure to 0, 8 or 

14 Gy clearly exhibit a dose-response consistent with a quadratic or linear-quadratic response 

(see panels B and E in their Figure 3). In addition, some of the findings reported by Hoving et 

al. (2008) support the use of an LNT model. The specific feature of the linear-quadratic 

model that it can exhibit a U-shape at low doses is supported by the findings of Mitchel et al. 

(2011, 2013) and Ebrahimian et al. (2018). The findings of these three studies will be briefly 

described below in the context of the hormesis model. The application of the linear-

exponential model is justified because of the findings by Mancuso et al. (2015) related to 

atherogenesis in ApoE–/– mice. Although the pattern of radiation-induced aortic alterations 

and their severity increased at 6 Gy compared with a 20-fold lower dose of 0.3 Gy, their 

results tend to be far from linearity and suggest that lower doses may be more damaging than 
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predicted by a linear dose response (Mancuso et al. 2015). The LTH model is another 

realistic possibility for a dose-response related to radio-epidemiological cohorts given the 

findings from animal studies on protective anti-inflammatory effects induced by low doses of 

radiation (Mitchel et al. 2011, 2013, Mathias et al. 2015, Le Gallic et al. 2015, Ebrahimian et 

al. 2018). Investigating the expression of various inflammatory and thrombotic markers in the 

heart of ApoE–/– mice, Mathias et al. (2015) provided evidence for anti-inflammatory effects 

after 0.025 - 0.5 Gy exposures: they found slight decreases of ICAM-1 levels and reduction 

of Thy 1 expression at these doses. In contrast, an enhancement of MCP-1, TNF and 

fibrinogen at 0.05 - 2 Gy indicated a proinflammatory and prothrombotic systemic response 

(Mathias et al. 2015). In such a situation, a LTH model may describe the data better than the 

LNT model. Interestingly, Mitchel et al. (2007) reported that their dermatitis data from 

C57BL/6J mice indicate that low doses may generally produce either no effect or protective 

effects with respect to this autoimmune-type and age-related non-cancer disease that has been 

linked to inflammation (Williams et al. 2012). The findings of anti-inflammatory protective 

effects at low doses (Mitchel et al. 2007, 2011, 2013, Mathias et al. 2015, Le Gallic et al. 

2015, Ebrahimian et al. 2018) and detrimental effects at moderate (0.3 Gy) and higher doses 

(6 Gy) (Mancuso et al. 2015) provide a biological context for applying the smooth step model 

(Figure 1). A step-type response (with a steep slope) may reflect the distinct dose at which 

protective mechanisms are lost. Different tissues and different individuals can be expected to 

have different threshold-doses, leading to an overall smooth transition. While at low doses it 

is feasible that risk increase may be balanced by a protective decrease as in the LTH model, a 

smooth transition zone may exist where risk increases steadily, followed by a plateau. The 

sigmoid model can exhibit similar shapes as the smooth step model. Therefore, the same 

references are relevant as for the smooth step model (Mitchel et al. 2007, 2011, 2013, 

Mathias et al. 2015, Le Gallic et al. 2015, Mancuso et al. 2015, Ebrahimian et al. 2018). The 

empirical hormesis model applied in the current study has been introduced to describe 

stimulation of plant growth after low-dose herbicide exposures (Brain and Cousens 1989). 

Dose-responses which allow for protective effects at low doses, such as LQ, hormesis and 

two-line spline models, can be justified from mouse studies (Mitchel et al. 2011, 2013). 

Mitchel et al. (2011) exposed ApoE–/– mice to 0.025, 0.05, 0.10 or 0.50 Gy 60Co -irradiation 

at either low dose rate (1.0 mGy min-1) or high dose rate (approximately 0.15 Gy min-1) and 

investigated biological endpoints associated with atherosclerosis (aortic lesion frequency, size 

and severity, total serum cholesterol levels and the uptake of lesion lipids by lesion-

associated macrophages). In general, low doses given at low dose rate during either early- or 

late-stage disease were protective, slowing the progression of the disease by one or more of 

these measures (Mitchel et al. 2011). The influence of low doses (0.025, 0.05, 0.10 or 0.50 

Gy) of 60Co -irradiation at low dose rate (1.0 mGy min-1) or high dose rate (approximately 

0.15 Gy min-1) on atherosclerosis in ApoE–/– mice with reduced p53 function was 

investigated by Mitchel et al. (2013). Radiation exposure to doses as low as 25 mGy at early 

stage disease, at either the high or the low dose rate, inhibited lesion growth, decreased lesion 

frequency and slowed the progression of lesion severity in the aortic root. In contrast, 

exposure at late stage disease produced generally detrimental effects. Both low-and high-

dose-rate exposures accelerated lesion growth and high dose rate exposures also increased 

serum cholesterol levels. All effects were highly nonlinear with dose (Mitchel et al. 2013). 

An increase in anti-inflammatory and anti-oxidative parameters resulting in atherosclerotic 

plaque size reduction in ApoE–/– mice after chronic exposure to external low-dose -radiation 

was reported by Ebrahimian et al. (2018). Their results suggest that chronic low-dose gamma 

irradiation induces an upregulation of organism defenses leading to a decrease in 

inflammation and plaque size. Low-dose induced anti-inflammatory effects which play an 
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important role in that context are currently intensely studied (see for example the reviews by 

Rödel et al. 2012a, 2012b, Frey et al. 2015) and have also been reported by Le Gallic et al. 

(2015) and Mathias et al. (2015). Earlier, low doses of -radiation delivered at low dose rates 

exhibited a protective effect related to chronic ulcerative dermatitis, an inflammatory skin 

reaction, in C57BL/6 mice, decreasing both disease frequency and severity and extending the 

lifespan of older animals (Mitchel et al. 2007). The two-line spline model can describe 

supralinear or sublinear dose-responses (Figure 1) but also linear dependences. Therefore, its 

application in the present study finds support from the same studies referenced in the context 

of the LNT model, the linear-exponential, LTH and hormesis models (refer to Table 1). The 

Gompertz model can exhibit linear, sublinear and smooth step dose-responses but also 

supralinear responses. Therefore, its use in the present study is motivated by the same 

biological findings referenced in the context of the LNT model, the linear-quadratic, LTH, 

smooth step and linear-exponential models, see Table 1. 

Interpretation of our findings is limited by the absence of information on important 

independent risk factors for CVD in the CFCS data (Zablotska et al. 2014), particularly 

socioeconomic status and smoking. Only a limited amount of information is available on 

smoking for approximately 20% of the cohort (smoking was therefore not included in the 

baseline model, in accordance with Zablotska et al. 2014). Some studies suggest that these 

factors account for a substantial proportion of observed increase in CVD (see for example 

Yusuf et al. 2004). However, smoking was not associated with radiation (Zablotska et al. 

2014), so could not be considered as a confounding variable in the current analyses. 

Furthermore, numerous recent studies found weak evidence for interaction between radiation 

and smoking (for example, Kreuzer et al. 2018). The CFCS data also lack information on 

other important CVD risk factors, such as family history of heart disease, diabetes, high 

blood pressure, obesity, and cholesterol plasma levels. However, because these factors are 

unlikely to be associated with radiation dose, they are unlikely to have biased the observed 

association between exposure and IHD mortality (Zablotska et al. 2014). 

Another limitation is that all study participants had tuberculosis. We are aware that the 

precise relationship of radiation dose to IHD risk in immunocompromised, chronically ill 

tuberculosis patients may well differ from that in healthy individuals. 

Our study findings are also limited by the end of follow-up in 1987 (Zablotska et al. 

2014). It is noted that out of the 63,707 tuberculosis patients 34,717 individuals were still 

alive at the end of follow-up. CFCS study investigators are in the process of extending 

mortality follow-up by 30 years (1988-2017). In addition, they will also conduct, for the first 

time, cancer incidence follow-up of the cohort during 1969-2017. New doses to all organs 

within and outside the field of fluoroscopic irradiation will be estimated using computerized 

phantoms specific to the CFCS population. 

Within the approach of the present study, the dose-fractionation proportionally affects 

the magnitude of the dose-response function but not the shape of the dose-response. Given 

evidence of a significant inverse dose-fractionation association in the primary analysis 

(Zablotska et al. 2014), it seems to be a hypothesis of interest that the dose-response shape 

might differ by the dose rate, i.e. dose-fractionation (while the person-year-weighted mean 

dose-fractionation within the whole cohort is 0.109 Gy yr-1, for mean cumulative person-

year-weighted lagged lung doses  0.1 Gy and > 0.1 Gy that quantity is 0.008 Gy yr-1 and 

0.101 Gy yr-1, respectively). To investigate whether there may be any difference in the shape 

of the dose-responses at low and high dose-fractionations the analyses of the present study 

could in principle be repeated within several strata of dose-rate. Zablotska et al. (2014) 

performed such an analysis and calculated the ERR for three categories of dose-fractionation. 

For IHD an inverse dose-fractionation association was found using the LNT dose-response 
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model (Table 6 in Zablotska et al. 2014). While such an effort is beyond the scope of the 

present study, there is also concern that such an in-depth analysis performed in the context of 

MMI may outstrip the CFCS data in terms of their ability to characterize risk of subsequent 

IHD in meaningful populations due to the above mentioned absence of information on 

classical modifiable cardiovascular risk factors such as lipids, hypertension, diabetes, 

abdominal obesity, diet, psychosocial factors, etc. as well as family history of IHD. 

Generally, inference based on a set of multiple plausible models is a sound alternative 

to inference relying only on a single "best" model when the uncertainty in the model selection 

is large. The pitfall of using the MMI approach is, however, related to that specific aspect: 

The subjectivity of the model selection. In the present study, this problem is addressed with a 

two-tiered strategy. On the one hand, as already stated above, the models in Figure 1 were 

carefully chosen to reflect as many biologically plausible shapes for dose-responses as 

possible. On the other hand MMI was applied in two different approaches, sparse and rich, as 

described in the Materials and methods section. In the center of the case-weighted means 

(case-weighted mean age, case-weighted mean dose, etc.) all models yield similar risks. Only 

at the borders of the data space where only a few cases are located the calculated risks will 

differ strongly. Here, MMI helps with the comprehensive characterization of uncertainties.  

 In the context of subjectivity of model selection the following aspect is noted. It 

would be generally possible to choose a larger number of non-nested plausible models (of the 

same or similar number of parameters) that could lead to fits of similar shapes. That way one 

could end up with a situation of having a very large number of models in the set of final non-

nested models, each of which with a very small AIC-weight. This situation is prevented by 

only including into Occam’s group those non-nested models with a bilateral AIC-weight 

larger than 5% (see Table S3 of the Online Resource including the related footnote e). 

 At low and medium doses our results are in agreement with the earlier findings 

(Zablotska et al. 2014) and based on a more comprehensive analysis with a larger series of 

biologically-plausible dose-responses. An essential difference with the primary analysis 

(Zablotska et al. 2014) is the use of a different baseline model. The present study applied the 

parametric baseline model given in equation (S4) of the Online Resource with 21 baseline 

parameters while in (Zablotska et al. 2014) a stratified baseline model with one free 

parameter for each possible combination of available categories in the data was used. Their 

baseline model contained several thousand free parameters and was not suitable for AIC-

based MMI analysis for which parsimony in parameters is essential (Walsh and Kaiser 2011). 

In a recent MMI-based analysis of the LSS mortality data for heart diseases observed 

during 1950-2003 an ERR of 0.08 at 1 Gy with 95% CI: (0, 0.20) was reported 

(Schöllnberger et al. 2018). Shimizu et al. (2010) reported an ERR per dose of 0.14 Gy–1 with 

95% CI: (0.06, 0.23). Within the error bars these values are consistent with our estimate of 

0.216 at 1 Gy with 95% CI: 0.062, 0.48. For IHD, however, these authors did not find a 

significant association between radiation exposure and IHD (refer to Web Table B in Shimizu 

et al. 2010). The latest analysis of the LSS mortality data with extended follow-up from 

1950-2008 found no significant association between radiation exposure and IHD either 

(Takahashi et al. 2017). For IHD mortality in male Mayak workers, an ERR per dose of 0.09 

Gy–1 with 95% CI: 0.02, 0.16 was reported (Simonetto et al. 2014). This value is consistent 

with the risk prediction from the present study. For females, no significant elevation in risk 

was found (Simonetto et al. 2014). Azizova et al. (2015a) did not find a significant 

association of total dose from external -rays with IHD mortality in Mayak workers. A 

population-based case-control study of major coronary events (i.e., myocardial infarction, 

coronary revascularization, or death from ischemic heart diseases) in 2168 women who 

underwent radiotherapy for breast cancer between 1958 and 2001 in Sweden and Denmark 
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was conducted by Darby et al. (2013). The study included 963 women with major coronary 

events and 1205 controls. Rates of major coronary events increased linearly with the mean 

dose to the heart by 7.4% per gray (95% confidence interval, 2.9 to 14.5; P < 0.001), with no 

apparent threshold (this corresponds to an ERR per dose of 0,074 with 95% CI: (0,029, 

0.145)). Darby and colleagues had applied a linear dose-response model. In that context it is 

noted that Schneider et al. (2017) put forward arguments that the dose-response may not 

necessarily be linear. It follows from Darby et al. (2013) that for a mean heart dose of 5 Gy 

ERR = 0.37 with 95% CI: (0.15, 0.73). The value of ERR = 0.37 is considerably lower than 

our MMI estimate for 5 Gy (Table 4: ERR = 4.70 at 5 Gy with 95% CI: 0.60, 10). Ghobadi et 

al. (2012) report results from rodent experiments showing that irradiation of heart, lung, or 

both independently induces specific cardiac dysfunction and pulmonary vascular damage, 

mutually enhancing each other. Their findings suggest that irradiation of an already diseased 

lung can indirectly increase the IHD risk, compared to irradiation of a healthy lung. We may 

hypothesize that this biological effect increases the IHD risk significantly compared to LNT 

behavior at doses above 2 Gy, which are concomitantly associated with long duration of 

tuberculosis. 

There remains considerable controversy over the effects of dose protraction on long-

term health outcomes. In fact, the ICRP is putting a major effort into evaluating the many 

modern studies with dose-protraction (Shore et al. 2017). Survivors of atomic bombings in 

Hiroshima and Nagasaki were exposed to acute exposure and could not provide useful 

information on the effects of dose-fractionation. Limited data exist on the dose rate effects in 

Mayak workers, primarily in the form of annual absorbed doses. In contrast, the CFCS has 

detailed exposure information on the dose and dose rate of a typical fluoroscopic examination 

and number of fluoroscopic procedures for each patient per year. Altogether, the CFCS is the 

largest study of patients exposed to moderately fractionated low-to-moderate doses of IR and 

presents one of the most valuable cohorts worldwide to derive information related to 

radiation effects at low, moderate and high doses of IR. 
For IHD mortality among 308,297 nuclear industry workers from France, United 

Kingdom and United States, as part of the International Nuclear Workers Study 

(INWORKS), an ERR per dose of 0.18 Sv–1 with 90% CI: (0.004, 0.36) was reported (Gillies 

et al. 2017). Recently, the CFCS data for IHD (Zablotska et al. 2014) were combined with a 

cohort of tuberculosis fluoroscopy patients from Massachusetts and analyzed with a linear 

dose-response model applying two different dose regimes with a fixed cut-point at 0.5 Gy 

(Tran et al. 2017). The authors reported increasing trends for doses <0.5 Gy; over the entire 

dose range a negative dose trend was observed (Tran et al. 2017). This is probably due to the 

inability to adjust for dose-fractionation effects in the Massachusetts data where only 

cumulative doses to the lung have been estimated. The present study used a more 

comprehensive and flexible approach by analyzing the data with a variety of different linear 

and non-linear models including those that exhibit flexible threshold-doses without applying 

artificial cut-points at certain doses and without relying on LNT as a foregone conclusion 

(Little et al. 2012, Little 2016). 

 

Conclusions 

The present study confirms previous findings in a number of studies of essentially linear 

dose-response for death from IHD at low and moderate doses (0 – 1 Gy). Our analyses 

suggest that different biological mechanisms may operate at low and medium doses 

compared to high doses and that at higher doses, the LNT model may underestimate the risk 

compared to the dose-response from MMI by a factor of 5. Our results should be of particular 

interest to international radiation protection organizations, which largely rely on analyses of 
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radio-epidemiological cohorts using the LNT model. We conclude that our findings have 

important implications for risk assessment of IR in the context of medical applications (such 

as CT scans and radiotherapy), nuclear energy production and accident related long term 

risks. 
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Figure legends 

 

Fig. 1 Typical shapes of the functions that were used to analyze the dose-response for IHD 

mortality in the Canadian Fluoroscopy Cohort Study (follow-up 1950–1987). 1st row: linear 

no-threshold (LNT) model, quadratic (Q), linear-quadratic (LQ); 2nd row: linear-exponential 

(LE) model, linear threshold (LTH), smooth step model; 3rd row: sigmoid model, hormesis 

model, two-line spline model; 4th row: Gompertz model, categorical model. Additional 

dashed lines show the flexibility of some of the models 

 

Fig. 2 ERR for IHD mortality in the Canadian Fluoroscopy Cohort Study (follow-up 1950–

1987) versus cumulative lagged lung dose for the four final non-nested ERR models (Table 

3) and the simulated dose-response curves from MMI, calculated with the sparse model 

approach and the rich model approach. The shaded area represents the 95% CI region for the 

MMI (sparse model approach). For AIC-weights see the insert. The dotted straight line shows 

the risk prediction from (Zablotska et al. 2014). The ERR-LNT model from the present study 

and the LNT model from Zablotska et al. (2014) give almost identical risk predictions. The 

figure is valid for males and females. A dose-fractionation of 0.2 Gy yr-1 was assumed. Point 

estimates and related 95% CI from the fit of an ERR-categorical model that divides the dose 

range into the following categories (D < 10-6 Gy, 10-6 Gy  D < 1 Gy; 1 Gy  D < 2 Gy, 2 Gy 

 D < 6 Gy, and D  6 Gy) are as follows: ERR = 0.0089 (–0.0173; 0.0348), ERR = 0.1820 (–

0.0652; 0.428), ERR = 1.002 (–0.225; 2.23), ERR = 10.3 (–17.8; 38.1). In the categorical fit, 

zero risk was assigned to the dose range D < 10-6 Gy. The point estimates and their 95% CI 

are not shown in the figure because of the very large 95% CI for the highest dose category. 

Online version contains color 

 

Fig. 3 ERR for IHD mortality in the Canadian Fluoroscopy Cohort Study (follow-up 1950–

1987) versus cumulative lagged lung dose up to 2 Gy for the four final non-nested ERR 

models (Table 3) and the simulated dose-response curves from MMI, calculated with the 

sparse model approach and the rich model approach. Vertical dotted lines represent the 95% 

CI region for the MMI (sparse model approach). For AIC-weights see the insert. The dotted 

straight line shows the risk prediction from (Zablotska et al. 2014). The figure is valid for 

males and females. A dose-fractionation of 0.2 Gy yr-1 was assumed. Online version contains 

color 

 

Fig. 4 ERR for IHD mortality in the Canadian Fluoroscopy Cohort Study (follow-up 1950–

1987) versus cumulative lagged lung dose up to 0.1 Gy for the four final non-nested ERR 

models (Table 3) and the simulated dose-response curves from MMI, calculated with the 

sparse model approach and the rich model approach. Vertical dotted lines represent the 95% 

CI region for the MMI (sparse model approach). For AIC-weights see the insert. The dotted 

straight line shows the risk prediction from (Zablotska et al. 2014). The figure is valid for 

males and females. A dose-fractionation of 0.2 Gy yr-1 was assumed. Online version contains 

color 
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Electronic Supplementary Material 

 

The Online Resource provides in Table S1 characteristics of the Canadian Fluoroscopy 

Cohort Study Data. Subsequently, the baseline model from Simonetto et al. (2014) that had 

been developed for the Mayak workers cohort is presented. This is followed by the baseline 

model applied in the present study. Page 7 gives the mathematical form of all dose-response 

models that were tested in the present study. The next section provides a detailed explanation 

how the AIC-weights are calculated for both, the sparse and rich model approaches. It 

supplies an equation that was used to calculate the normalized AIC-weights given in Table 3 

(main text). Page 10 contains the section “Software” and gives a brief introduction to the 

software package used for the analyses. Figure S1 provides the number of model parameters 

for the applied dose-response models and relation between the models regarding their 

nestedness. Table S2 supplies model parameters (baseline and radiation-associated), 

maximum likelihood estimates and Wald-type standard errors for the four final non-nested 

models that were used for MMI (sparse model approach). The next section gives a detailed 

description of how the model selection was performed according to the sparse model 

approach. This is followed by Table S3 on page 17. This table is an extension of Table 3 

(main text) and provides the results of fitting the dose-response models from Figure 1 as ERR 

models to the CFCS data. Among other information, the final deviance values are provided 

together with the AIC-values, normalized and bilateral AIC-weights. All of this information 

is given for the sparse and the rich model approaches. Figure S2 shows the baseline cases as 

predicted by the ERR-LNT model versus attained age with the secular trend together with 

crude rates. The references are provided on page 21. 
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Table 1 Dose-response models used for MMI and related biological studies that motivate the use of these specific models in the present study; 

Canadian Fluoroscopy Cohort Study, 1950-1987 

 

err(D) Name of model Biological outcome and dose type investigated References 

1 × D LNT Number of carotid artery lesions per animal, plaque 

area and inflammatory content of carotid artery 

lesions in ApoE–/– mice; 0 or 14 Gy of X-rays 

 

see Q model 

Stewart et al. (2006) 

 

 

 

Hoving et al. (2008) 

1 × D2 Q Number of atherosclerotic lesions in carotid arteries 

per animal, plaque area and plaque phenotype in 

ApoE–/– mice; 0, 8 Gy or 14 Gy of X-rays 

Hoving et al. (2008)a 

 

1 × D + 2 × D2 LQb see Q model 

see hormesis model 

see hormesis model 

see hormesis model 

see LE model 

Hoving et al. (2008) 

Mitchel et al. (2011) 

Mitchel et al. (2013) 

Ebrahimian et al. (2018) 

Mancuso et al. (2015) 

1 × D × exp(2 D)  LE Atherosclerotic features (plaque density, plaque size 

and plaque vulnerability) in ApoE–/– mice; acute 

irradiation with single doses of 0.3 or 6 Gy X-rays at 

0.89 Gy min-1; low dose rate exposures with 137Cs -

rays (22 hr day-1) yielding cumulative total doses of 

0.3 or 6 Gy in 300 days (dose rate of 1 mGy day-1 or 

20 mGy day-1, respectively) 

Mancuso et al. (2015) 
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Table 1 continued 

 

err(D) Name of model Biological outcome and dose type investigated References 

1

0 for

( ) for



   

th

th th

D D

D D D D
 

LTH Disease frequency and severity of chronic ulcerative 

dermatitis in Trp53 normal (Trp53+/+) or heterozygous 

(Trp53+/–) female C57BL/6 mice; fractionated low-

dose and low-dose rate 60Co -radiation (0.33 mGy 

per day delivered at 0.7 mGy hr-1; 5 days week-1; for 

30 weeks, 60 weeks or 90 weeks yielding 48 mGy, 97 

mGy or 146 mGy, respectively 

 

see hormesis model 

see hormesis model 

see hormesis model 

 

Inflammatory and thrombotic markers in the heart of 

ApoE–/– mice; total body irradiation (60Co -

irradiation) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low 

(1 mGy min-1) or high dose rate (150 mGy min-1) 

 

Atherosclerotic features (plaque size and phenotype, 

plaque inflammatory profile and oxidative stress 

status) in ApoE–/– mice; chronic internal exposure to 
137Cs via drinking water; the resulting absorbed doses 

were 3, 15, and 75 mGy after 6 months and 6, 30, and 

150 mGy after 9 months exposure to 4, 20 and 100 

kBq l-1 of 137Cs, respectively 

Mitchel et al. (2007) 

 

 

 

 

 

 

 
Mitchel et al. (2011) 

Mitchel et al. (2013) 

Ebrahimian et al. (2018) 

 

Mathias et al. (2015) 

 

 

 

 

Le Gallic et al. (2015) 

 

 

 

 

 



Table 1 continued 

 

err(D) Name of model Biological outcome and dose type investigated References 

0.5  scale  [tanh(s (D  Dth)) – tanh(s Dth)] Smooth step see LTH model 

see LTH model 

see LTH model 

see hormesis model 

see hormesis model 

see hormesis model 

see LE model 

Mitchel et al. (2007) 

Mathias et al. (2015) 

Le Gallic et al. (2015) 

Mitchel et al. (2011) 

Mitchel et al. (2013) 

Ebrahimian et al. (2018) 

Mancuso et al. (2015) 

1
0

1
1

1



 
 
 

  
  

   
  th

D

D
 

Sigmoidc see LTH model 

see LTH model 

see LTH model 

see hormesis model 

see hormesis model 

see hormesis model 

see LE model 

Mitchel et al. (2007) 

Mathias et al. (2015) 

Le Gallic et al. (2015)  

Mitchel et al. (2011) 

Mitchel et al. (2013) 

Ebrahimian et al. (2018) 

Mancuso et al. (2015) 

 



Table 1 continued 

 

err(D) Name of model Biological outcome and dose type investigated References 

1

0 2
0

1



  
 

 
  
 th

D

D

D
 

Hormesisd Atherosclerotic features (aortic lesion frequency, size 

and severity, total serum cholesterol levels and the 

uptake of lesion lipids by lesion-associated 

macrophages) in ApoE–/– mice; 0, 0.025, 0.05, 0.10 or 

0.50 Gy 60Co -irradiation at either low dose rate (1.0 

mGy min-1) or high dose rate (app. 0.15 Gy min-1) 

 

Atherosclerotic features (aortic lesion frequency, size 

and severity, total serum cholesterol levels)  

in ApoE–/– mice with reduced p53 function (Trp53+/–); 

0, 0.025, 0.05, 0.10 or 0.50 Gy 60Co -irradiation at 

either low dose rate (1.0 mGy min-1) or high dose rate 

(app. 0.15 Gy min-1) 

 

Atherosclerotic development (plaque size and 

phenotype, inflammatory profile and oxidative stress 

status) in ApoE–/– mice; chronic -irradiation for 8 

months at 12 or 28 Gy hr-1, yielding cumulative 

doses of 67 and 157 mGy, respectively 

Mitchel et al. (2011) 

 

 

 

 

 

 

Mitchel et al. (2013) 

 

 

 

 

 

 

Ebrahimian et al. (2018) 



Table 1 continued 

 

err(D) Name of model Biological outcome and dose type investigated References 

1

1 2

for

( ) for

  

      

th

th th th

D D D

D D D D D
 

Two-line splinee see LNT model 

see LNT model 

see LTH model 

see LTH model 

see LTH model 

see hormesis model 

see hormesis model 

see hormesis model 

see LE model 

Stewart et al. (2006) 

Hoving et al. (2008) 

Mitchel et al. (2007) 

Mathias et al. (2015) 

Le Gallic et al. (2015)  

Mitchel et al. (2011) 

Mitchel et al. (2013) 

Ebrahimian et al. (2018) 

Mancuso et al. (2015) 

1×exp{–2 exp[–3  (D–Dth)]} –  

1×exp{–2 exp[–3  (–Dth)]} 

Gompertzf see LNT model 

see LQ model 

see LTH model 

see LTH model 

see LTH model 

see LTH model 

see LTH model 

see LTH model 

see LE model 

Stewart et al. (2006) 

Hoving et al. (2008) 

Mitchel et al. (2007) 

Mitchel et al. (2011) 

Mitchel et al. (2013) 

Mathias et al. (2015) 

Le Gallic et al. (2015) 

Ebrahimian et al. (2018) 

Mancuso et al. (2015) 
a The publication by Hoving et al. (2008) shows that female mice 30 weeks after a 14 Gy exposure exhibited a higher number of initial 

atherosclerotic lesions per animal compared to a linear extrapolation from the number of lesions obtained after 8 Gy (Figure 3, panel B). Panel E 

of Figure 3 in Hoving et al. (2008) shows a similar result for the mean of the individual plaque area for initial lesions in female mice 30 weeks 

after exposure. These findings exhibit a quadratic or linear-quadratic dose-response. 
b The LQ model has the capability to describe shallow U-shaped or J-shaped dose-responses (Figure 1). Therefore, in addition to the reference 

Hoving et al. (2008), which gives support for the use of quadratic or linear-quadratic dose-response models, the same references are provided as 

for the hormesis model. In addition, the LQ model can describe supralinear dose-responses. Consequently, the reference Mancuso et al. (2015) is 

also listed in this context. 
c The sigmoid model can exhibit similar shapes as the smooth step model. Therefore, the same references are relevant as for the smooth step 

model. 



d This empirical hormesis model has been introduced by Brain and Cousens (1989) to describe stimulation of plant growth after low-dose 

herbicide exposures. Some adaptations to the model by Brain and Cousens (1989) have been made by Cedergreen et al. (2005) and Simonetto et 

al. (2014) to yield the specific mathematical form applied in the present study. 
e The two-line spline model was applied because of its capability to describe supralinear or sublinear dose-responses (Figure 1). Therefore, the 

same references are provided as for the LE, LTH and hormesis models. Because it can also describe LNT dose-responses, the references Stewart 

et al. (2006) and Hoving et al. (2008) were added. 
f The Gompertz model is very flexible and can exhibit linear no-threshold dose-responses, sublinear and smooth step responses but also 

supralinear dose-responses. Therefore, its use in the present study is motivated by the same biological findings referenced in the context of the 

LNT model, the linear-quadratic, LTH, smooth step and linear-exponential models. 



Table 2 Maximum likelihood estimates of model parameters, related 95% confidence intervals and final deviances of fitting ERR-LNT models 

to the mortality data for ischemic heart diseases (Zablotska et al. 2014); Canadian Fluoroscopy Cohort Study, 1950-1987 

 

Parameter Zablotska et al. (2014), LNT 

model without dose-

fractionation adjustmenta 

Zablotska et al. (2014), LNT 

model with dose-fractionation 

adjustmenta 

Present study, LNT model 

without dose-fractionation 

adjustmenta,b 

Present study, LNT model 

with dose-fractionation 

adjustmenta,c,d 

1 0.007 Gy–1  

(–0.044, 0.072) 

0.176 Gy–1 

(0.011, 0.39) 

–0.046 Gy–1 

(–0.075, –0.013) 

0.182 Gy–1  

(0.049, 0.33) 

2  –10.2 years Gy–1  

(–25, –2.1) 

 –12.0 years Gy–1  

(–21, –5.1) 

dev 9884.50 9879.76 13250.95 13247.75 

Abbreviations: dev, final deviance; ERR-LNT, linear no-threshold model implemented as excess relative risk model. 
a The difference between the model applied by Zablotska et al. (2014) and the one from the present study is the baseline model (stratified in the 

first case, parametric in the present study; see Web Appendix 5). 
b Fit was performed with model given in equation (1) with 2 = 0. 
c Fit was performed with model given in equation (1). 
d As a comparison, the fit of the parametric baseline model alone with its 21 parameters led to dev = 13252.68. 
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Table 3 Results of fitting the dose-response models from Figure 1 as ERR models to the mortality data for ischemic heart diseases (Zablotska et 

al. 2014); Canadian Fluoroscopy Cohort Study, 1950-1987 

 

 deva devb Npar AICc AICd Normalized AIC- 

weights, sparse model 

approache 

Normalized AIC- 

weights, rich model 

approachf 

ERR-LNT 13247.75 6.19 23 13293.75 2.19 0.1183 0.0776 

ERR-Q 13246.01 4.46 23 13292.01 0.46 0.2815 0.1847 

ERR-LQ 13245.38 3.83 24 13293.38 1.83  0.0930 

ERR-LE 13245.68 4.13 24 13293.68 2.13  0.0802 

ERR-LTH, Dth = 0.58 Gy 13246.81 5.26 24 13294.81 3.26  0.0455 

ERR-smooth step, Dth = 4,47 Gy 13244.45 2.90 25 13294.45 2.90  0.0546 

ERR-sigmoid, Dth = 41,53 Gy 13245.94 4.39 25 13295.94 4.39  0.0259 

ERR-hormesis, Dth = 3,28 Gy 13242.84 1.29 26 13294.84 3.29  0.0449 

ERR-two-line spline, Dth = 1.72 Gy 13242.28 0.73 25 13292.28 0.73 0.2461 0.1615 

ERR-Gompertz, Dth = 0 13241.55 0 25 13291.55 0 0.3541 0.2323 

ERR-categorical 13242.19 0.63 29 13300.19 8.63   

Abbreviations: AIC, Akaike Information Criterion; dev, final deviance; ERR-LNT, linear no-threshold model implemented as excess relative 

risk model; ERR-Q, quadratic model implemented as excess relative risk model; ERR-LQ, linear-quadratic model implemented as excess 

relative risk model; ERR-LE, linear-exponential model implemented as excess relative risk model; ERR-LTH, linear-threshold model 

implemented as excess relative risk model. 
a As a comparison, the fit of the baseline model alone with its 21 parameters led to dev = 13252.68. 
b The difference in final deviance is denoted by dev with respect to the model with the smallest final deviance.  
c AIC = dev + 2  Npar, where Npar is the number of model parameters.  
d The difference in AIC-values with respect to the model with the smallest AIC-values is denoted by AIC.  
e According to the sparse model approach four models survive the selection process and are used for MMI. The normalized AIC-weights 

provided here were calculated with equation (S5) from Web Appendix 4. 
f According to the rich model approach all models except the categorical model survive the selection process because when compared to the 

model with AIC = 0 they have an AIC-weight > 0.05 (see Table S3 of the Online Resource). The normalized AIC-weights provided here were 

calculated with equation (S5) from Web Appendix 4. 
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Table 4 Values for ERR for mortality from ischemic heart diseases (Zablotska et al. 2014) at various cumulative lung doses calculated with 

MMI (sparse model approach) and the four final non-nested models; Canadian Fluoroscopy Cohort Study, 1950-1987 

 

Lung dose (Gy) MMIa,b ERR-LNT modelb,c ERR-Q modelb ERR-two-line splineb ERR-Gompertzb 

0.1 0.01263 (0.00075; 0.048) 0.0182 (0.0045; 0.032) 0.0014 (0.00049; 0.0024) 0.036 (0.017; 0.054) 0.0036 (0.0013; 0.0060) 

0.2 0.0266 (0.0028; 0.095) 0.0364 (0.0089; 0.064) 0.0057 (0.0020; 0.0094) 0.071 (0.035; 0.11) 0.0089 (0.0033; 0.015) 

0.5 0.079 (0.016; 0.24) 0.091 (0.022; 0.16) 0.036 (0.012; 0.059) 0.179 (0.087; 0.27) 0.040 (0.015; 0.066) 

1 0.216 (0.062; 0.48) 0.182 (0.045; 0.32) 0.142 (0.049; 0.24) 0.36 (0.17; 0.54) 0.188 (0.070; 0.31) 

2 0.88 (0.21; 1.7) 0.364 (0.089; 0.64) 0.57 (0.20; 0.94) 1.17 (0.64; 1.7) 1.1 (0.41; 1.8) 

5 4.70 (0.60; 10) 0.91 (0.22; 1.6) 3.6 (1.2; 5.9) 7.2 (2.3; 12) 5.2 (1.9; 8.5) 

10 11 (1.2; 26) 1.82 (0.45; 3.2) 14.2 (4.9; 24) 17.2 (4.8; 30) 6.4 (2.4; 11) 

Abbreviations: ERR-LNT, linear no-threshold model implemented as excess relative risk model; ERR-Q, quadratic model implemented as 

excess relative risk model; MMI, multi-model inference. 
a Calculated with the sparse model approach.  
b 95% CI are provided in parenthesis.  
c As a comparison, the ERR per dose from Zablotska et al. (2014) is 0.176 Gy–1 with 95% CI: 0.011, 0.393. 

   

 

table 4 Click here to access/download;table;Table 4.doc

https://www.editorialmanager.com/rebs/download.aspx?id=55804&guid=3907f595-68ea-4d2a-be1c-1de382e81304&scheme=1
https://www.editorialmanager.com/rebs/download.aspx?id=55804&guid=3907f595-68ea-4d2a-be1c-1de382e81304&scheme=1


Table 5 Radiation-associated excess cases for the mortality data for ischemic heart diseases 

(Zablotska et al. 2014) according to the four final non-nested models and MMI (sparse model 

approach); Canadian Fluoroscopy Cohort Study, 1950-1987 

 

Dose-bin MMIa ERR-LNT ERR-Q ERR-two-line spline ERR-Gompertz 

0 - 0.05 Gy 2.8 5.7 0.2 7.4 0.6 

0.05 - 0.1 Gy 1.1 2 0.2 2.7 0.3 

0.1 - 0.2 Gy 1.3 2.2 0.3 3.3 0.3 

0.2 - 0.3 Gy 2.8 4 0.8 7.5 0.7 

0.3 - 0.4 Gy 2.6 3.8 1.1 6.4 0.7 

0.4 - 0.5 Gy 3.6 4.8 1.8 8.4 1.4 

0.5 - 0.75 Gy 8.9 10 4.6 20.2 4 

0.75 - 1 Gy 11.5 11.7 7.2 23.1 6.9 

1 - 1.5 Gy 19.7 15.6 12.3 33.9 17 

1.5 - 2 Gy 14 8.9 9.4 19.9 15.2 

2 - 3 Gy 18 6.2 8.2 32.6 19.7 

3 - 4 Gy 7.8 2 3.8 13.3 9.1 

4 - 5 Gy 3.3 0.7 1.7 5.4 3.9 

5 Gy - 4.7 1.1 3.6 7.3 5 

sum: 102.1 78.7 55.2 191.4 84.8 

Abbreviations: ERR-LNT, linear no-threshold model implemented as excess relative risk 

model; ERR-Q, quadratic model implemented as excess relative risk model; MMI, multi-

model inference. 
a Calculated with the sparse model approach. 
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Table S1 Characteristics of the Canadian Fluoroscopy Cohort Study Data (n=63,707), 1950-

1987 (Zablotska et al. 2014) 

 

Characteristic No. Mean Median Range 

Person-years of follow-up 1,902,252    

Follow-up, years  31  0-37 

Age at end of follow-up, years  65  1-99 

Time since first exposure, years  39  0-57 

Number of fluoroscopic proceduresa   64 1-2041 

Duration of fluoroscopy screenings, yearsa   2 0-35 

Dose fractionation, Gy yr-1 a   0.36 0-7.30 

Total dose, Gyb  0.79  0-11.60 

All values within this table were taken from Table 1 in Zablotska et al. (2014). 
a Exposed subjects only. 
b Cumulative person-time-weighted lung dose. 
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Baseline model of Simonetto et al. (2014) developed for the Mayak workers cohort 
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       (S1) 

 

Here, h0 is the baseline hazard, referred to in the main text as parametric baseline model. 

Summands in cat evaluate to zero for non-smoker, non-drinker, for persons with normal 

body mass index, normal blood pressure and for reactor workers. Otherwise they evaluate to 

some value determined by the fit. The lower case Greek symbols are free parameters. The 

quantities a, b, f and m denote attained age, birth date, date of first employment at Mayak 

Production Association (PA) and date of emigration from Ozyorsk, the closed city in which 

the Mayak workers have lived throughout the operation of the Mayak PA. The quantities ,i 

and ,i denote so called age knots. Furthermore, the Heaviside step function  was applied 

together with a function LT(t): 

 

0 for 0 0 for 0
( ) LT( )

1 for 0 for 0

t t
t t

t t t

  
   

  
      (S2) 

 

For some further explanations the reader is referred to the Appendix in Simonetto et al. 

(2014). 
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Baseline model applied in the present study 

 

The parametric baseline model that was applied in the present study is as follows. 
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       (S3) 

 

For all parameters a distinction according to sex was allowed for. The actual baseline model 

that was fitted to the CFCS data in the present study is as follows: 

 

h0 = 10–4  exp{c_m + c_f + prov_m + prov_f + cdur_m + cdur_f +  

  diag_m + diag_f + nostg_m + nostg_f + 

  stg1_m + stg1_f + stg2_m + stg2_f  + stg3_m + stg3_f + 

  ba_mln(a/50) + ba_fln(a/50) + 

  basq_mln2(a/50)(a–50) + basq_fln2(a/50)(a–50) + 

  bb_m((b–1900)/10) + bb_f((b–1900)/10) + 

  bbsq_m((b–1900)2/100) + bbsq_f((b–1900)2/100)}    (S4) 

 

Model parameters in equation (S4) are italicised. The free parameters c_m and c_f relate to 

males and females, respectively. The free parameters prov_m and prov_f relate to males and 

females admitted to hospitals outside the Canadian province of Nova Scotia, respectively. 

The parameters cdur_m and cdur_f are associated with duration of fluoroscopy screenings in 

male and female patients, respectively. The parameters diag_m and diag_f relate to males and 

females with diagnosis pulmonary tuberculosis, respectively. Furthermore, nostg_m relates to 

male patients who - related to the stage of tuberculosis - contain the status not assigned (i.e. 

not specified). The parameter stg3_f is associated with females with advanced stage of 

tuberculosis. The free parameter ba_m describes the dependence of males on attained age a. 

In addition, basq_m relates to the quadratic age-dependence in males, associated with the 

term ln2(a/50)(a–50). According to equation (S2) this expression is equal to ln2(a/50) for 

attained ages larger or equal 50 years, otherwise it is zero. The remaining parameters are 

related to the linear and quadratic dependence from birth date b: bb_m and bb_f, for example, 

are the free parameters related to the linear dependence of male and female patients from 

birth year, respectively.  

Because a limited amount of smoking information is available for only approximately 

20% of the cohort, smoking was not included in the baseline model, in accordance with 
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Zablotska et al. (2014). The baseline model in equation (S4) contains the same explanatory 

variables as the stratified baseline model applied by Zablotska et al. (2014). 
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Mathematical functions used for the 11 parametric dose-response models from Figure 1 

 

The general form of an ERR model is h = h0  (1 + ERR(D, Z)), where h is the total hazard 

function, h0 is the baseline model and ERR(D, Z) describes the change of the hazard function 

with dose D allowing for dose-modification by association-modifying factor(s) Z. It is 

ERR(D, Z) = err(D) × ε(Z). Here, err(D) describes the shape of the dose-response function, 

ε(Z) contains the dose-effect modifiers. For h0 the model in equation (S4) was applied. 

 

For err(D) the following dose-response models were used. 

 

err(D) = 1 × D           LNT model 

 

err(D) = 1 × D2                  Quadratic model 

 

err(D) = 1 × D + 2 × D2                  Linear-quadratic model 

 

err(D) = 1 × D × exp(2 D)          Linear-exponential model 
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The hormesis model was introduced by Brain and Cousens (1989). Some adaptations to the 

model by Brain and Cousens (1989) were made by Cedergreen et al. (2005) and Simonetto et 

al. (2014) to yield the specific mathematical form applied in the present study. 
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Calculation of AIC-weights 

 

For a set of n non-nested models, the AIC-weight, pm, was calculated for model m according 

to the following equation (Burnham and Anderson 2002, Claeskens and Hjort 2008): 

 

 

 
1

exp AIC / 2

exp AIC / 2

m

m n

j

j

p







          (S5) 

 

Here, AICm = AICm  AIC0, where AICm is the AIC-value for model m and AIC0 is the 

smallest AIC-value of all n models. The resulting weights, multiplied by a factor of 104, give 

the number of samples for risk estimates to be generated by uncertainty distribution 

simulations. 

 

In the sparse model approach, nested dose-response models with inferior final deviances were 

eliminated by applying the LRT at a 95% confidence level (details related to this selection 

process are provided on pages 14-15 of the Online Resource). Subsequently, the criterion for 

inclusion of a model into the set of final non-nested models, which was used for multi-model 

inference (MMI), is whether p1 > 0.05 when comparing with the best model, i.e. the one with 

AIC = 0 (6, 7). In that case equation (S5) reduces to pm = exp(–AICm/2)/[exp(–AICm/2) + 

1] with m = 1. With this equation it is easy to show that for AIC1 < 5.9 one obtains p1 > 

0.05. Applying this formula to the four final non-nested models for IHD mortality (Table 3, 

main text), one finds for the ERR-LNT, ERR-Q and ERR-two-line spline models p1 = 

0.2503, p1 = 0.4429, and p1 = 0.4101, respectively (refer to Table S3). Consequently, these 

three models together with the ERR-Gompertz model, which has the smallest AIC-value, 

survive the selection process. The AIC-weights provided in Table 3 (main text) for the 

models selected with the sparse model approach were calculated using equation (S5), i.e. they 

are normalized to 1 to be useful for MMI. 

 

In the rich model approach, each model is compared with the best model (i.e. the one with 

AIC = 0), applying pm = exp(–AICm/2)/[exp(–AICm/2) + 1]. Models with p1 > 0.05 

survive the selection process (Hoeting et al. 1999, Walsh 2007). The AIC-weights provided 

in Table 3 (main text) for the models selected with the rich model approach were calculated 

using equation (S5) because to be useful for MMI they need to sum up to 1. 

 

For all dose-response models that were tested in the present study, the normalized and 

bilateral AIC-weights and all related details in the context of the sparse and rich model 

approaches are provided in Table S3. 
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Software 

 

All analyses and model fits of the parametric baseline model (equation (S4)) combined with 

the dose-response models from Figure 1 and the MMI analyses (sparse and rich model 

approaches) were performed with MECAN, a C++-based software package (Kaiser 2010). It 

uses the maximum likelihood method and Poisson regression to estimate the values of the 

adjustable model parameters by fitting the model to the grouped CFCS data. Because 

maximizing the likelihood L is equivalent to minimizing the ln(L), the latter problem, which 

is numerically better tractable, is solved in MECAN to find the best model solution. For 

grouped person-year data such as the grouped CFCS data, the likelihood corresponding to a 

Poisson model is used:    
i

iiiii nnnL /ln)ln(  where ni is the observed number 

of cases (i.e. the number of fatalities from IHD) in group i and i is the calculated (expected) 

number of cases in group i. The deviance is defined as dev := 2  ln(MaxL). Here, MaxL 

denotes the maximized likelihood. For the minimization of the deviance, MECAN applies the 

MINUIT package for function minimization (Moneta and James 2010). 

 

ERR and EAR estimates can be calculated directly from h and h0: 

 

ERR = (h/h0) – 1 

                        (S6) 

EAR = h – h0. 

 

Confidence intervals (CI) for the ERR and EAR estimates (both, for the final non-nested 

models that are included into Occam’s group and for MMI) were simulated using multi-

variate normal distributions for parameter uncertainties that obey the parameter correlation 

matrix (Kaiser and Walsh 2013). For a risk variable such as ERR, a probability density 

distribution of 104 realizations is generated, which is used to estimate 95% CI. Central risk 

estimates were calculated from the maximum likelihood estimates of the model parameters. 

The MECAN package and all model-related input and result files are available from the 

authors. 
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2 3 4 5 

  sigmoid hormesis 

    

  smooth step Gompertz 

    

 LTH two-line spline  

    

LNT LE   

    

Q LQ   

    

    

Figure S1 Number of model parameters in the dose-response models from Figure 1 and 

relation between the models (the categorical model is not shown because due to its higher 

number of model parameters and biologically implausible shapes it is not suited for MMI). 

Two models are nested if they are connected by an arrow. The smooth step model (modified 

hyperbolic tangent) and the Gompertz model are not nested with any of the other models. 

Here, parameter 2 from equation (1) (main text) was counted as a model parameter for all 

the dose-response models because all of them contain it within the dose-effect modification. 
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Table S2 Model parameters, maximum likelihood estimates and Wald-type standard errors 

(in parenthesis) for the four final non-nested models that were identified for Occam’s group 

and used for MMI (sparse model approach), Canadian Fluoroscopy Cohort Study, 1950-1987 

 

# Parametera ERR-LNT modelb ERR-Q modelb 

1 c_m 3.485 (0.144) 3.482 (0.144) 

2 c_f 1.528 (0.208)  1.521 (0.208) 

3 prov_m –0.2144 (0.0572) –0.2138 (0.0571) 

4 prov_f –0.1207 (0.0975) –0.1182 (0.0975) 

5 cdur_m –0.00662547c –0.0111411c 

5 cdur_f –0.00662547c –0.0111411c 

6 diag_m 0.0224 (0.119) 0.0247 (0.119) 

7 diag_f 0.471 (0.147) 0.476 (0.147) 

8 nostg_m 0.0951 (0.119) 0.0949 (0.119) 

9 nostg_f 0.542 (0.140) 0.543 (0.140) 

 stg1_m 0 0 

 stg1_f 0 0 

10 stg2_m  0.0217 (0.0444) 0.0284 (0.0443) 

11 stg2_f   0.1256 (0.0696) 0.1331 (0.0695) 

12 stg3_m 0.0867 (0.0475) 0.0958 (0.0472) 

13 stg3_f 0.2937 (0.0742) 0.3028 (0.0740) 

14 ba_m 5.885 (0.197) 5.879 (0.197) 

15 ba_f 6.49457 (0.402) 6.492 (0.402) 

16 basq_m –4.374 (0.398) –4.372 (0.398) 

17 basq_f –1.669 (0.687) –1.673 (0.687) 

18 bb_m (yr–1) –0.1160 (0.0180) –0.1138 (0.0180) 

19 bb_f (yr–1) –0.2716 (0.0282) –0.2689 (0.0281) 

20 bbsq_m (yr–2) 0.03931 (0.00821) 0.03884 (0.00821) 

21 bbsq_f (yr–2) 0.0317 (0.0129) 0.0312 (0.0129) 

22  1 = 0.1823 Gy–1 (0.0692) 1 = 0.1420 Gy–2 (0.0474) 

23  2 = –12.01 yr Gy–1 (3.39) 2 = –14.57 yr Gy–1 (3.86) 

    

 dev 13247.75 13246.01 
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# Parametera ERR-two-line spline 

modeld 

ERR-Gompertz modele,f,g 

1 c_m 3.449 (0.145)     3.479 (0.145) 

2 c_f 1.493 (0.208)     1.507 (0.208) 

3 prov_m –0.2165 (0.0572) –0.2180 (0.0572) 

4 prov_f –0.1192 (0.0976)    –0.1127 (0.0975) 

5 cdur_m –0.0409877c           –0.0208749c 

5 cdur_f –0.0409877c            –0.0208749c 

6 diag_m 0.029 (0.120)    0.0232 (0.119) 

7 diag_f 0.476 (0.147)     0.482 (0.147) 

8 nostg_m 0.097 (0.119)     0.0930 (0.119) 

9 nostg_f 0.541 (0.140)     0.544 (0.140) 

 stg1_m 0 0 

 stg1_f 0 0 

10 stg2_m  0.0290 (0.0446)     0.0270 (0.0447) 

11 stg2_f   0.1306 (0.0697)    0.1440 (0.0695) 

12 stg3_m 0.0922 (0.0478)     0.0903 (0.0484) 

13 stg3_f 0.2956 (0.0744)    0.3227 (0.0739) 

14 ba_m 5.882 (0.198)    5.871 (0.198) 

15 ba_f 6.489 (0.402)    6.499 (0.402) 

16 basq_m –4.371 (0.399)   –4.357 (0.399) 

17 basq_f –1.661 (0.687)     –1.695 (0.687) 

18 bb_m (yr–1) –0.1132 (0.0182)     –0.1152 (0.0182) 

19 bb_f (yr–1) –0.2693 (0.0282)    –0.2654 (0.0281)  

20 bbsq_m (yr–2) 0.03934 (0.00822)     0.03914 (0.00824)  

21 bbsq_f (yr–2) 0.0319 (0.0129)   0.0305 (0.0129) 

22  1 =  0.3571 Gy–1 (0.0922)     1 = 6.48 (9.82) 

23  2 =  2.006 Gy–1 (0.755)     2 = 7.28 (2.11) 

24  Dth = 1.7246 Gy (0.0649) 3 = 0.684 Gy–1 (3.49) 

25  3 = –9.32 yr Gy–1 (1.85) 4 = –10.60 yr Gy–1 (2.86) 

   Dth = 0 

    

 dev 13242.28 13241.55 
a Parameters 1 to 21 are the baseline parameters, parameters 22 to 25 are the radiation-

associated parameters. 
b For the ERR-LNT and ERR-Q models parameter 2 is related to the adjustment for dose-

fractionation modifications (see equation (1) in the main text). 
c The parameters cdur_m and cdur_f have been included into the baseline model to reflect 

their use in the dose-effect modifier but were not found to be significant. Therefore, they 

were fixed at their maximum likelihood estimates to stabilize the model fit. Without this 

fixation of cdur_m and cdur_f the parameter 1 would have turned out to be not significant: 

For example, in the fit of the ERR-LNT model with cdur_m as a free parameter and cdur_f 

linked to it it was found that 1 = 0.182 Gy–1 (0.111) with p = 0.10. The situation of other 

baseline parameters that were found to be not significant either such as, for example, diag_m 

is different. Whether allowing parameter diag_m to be free during a model fit or fixing it to 
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its maximum likelihood estimate, did not change the maximum likelihood estimates of the 

other free parameters (results not shown). 
d For the ERR-two-line spline model the adjustment for dose-fractionation is associated with 

parameter 3. 
e For the ERR-Gompertz model the adjustment for dose-fractionation is associated with 

parameter 4. 
f It was found that for the fit of the Gompertz model the parameter Dth was not significantly 

different from zero. Therefore, Dth was fixed at zero. Consequently, this model has four 

radiation-associated model parameters (compare with Figure S1 where the five listed 

parameters still include Dth). 
g It is noted that for the error calculations related to Figures 2 to 4 two of the dose-response 

parameters of the Gompertz model (2 and 3) were fixed at their maximum likelihood 

estimates. Otherwise the 95% CI of the model-related risk predictions and in consequence the 

MMI-related 95% CI would turn out as too large. 
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Aspects of model selection according to the sparse model approach 

 

Table 3 (main text) provides the main results of fitting the parametric dose-response models 

from Figure 1 as ERR models to the mortality data for IHD. Considering Figure S1 and 

applying the LRT four ERR models were identified according to the sparse model approach 

and were used for MMI. The selection process was performed as follows. The final deviance 

of the ERR-LNT model (13247.747) was compared with the final deviance of the parametric 

baseline model (dev = 13252.676). According to the LRT one would argue that adding model 

parameters 1 and 2 (see equation (1) in the main text) to the baseline model did not lead to 

a significant improvement of the fit at the 5% level because dev = 4.93 < 5.99. When 

comparing the final deviance of the ERR-Q model with the one of the parametric baseline 

model one finds dev = 6.66. The problematic of applying the LRT when comparing a 

baseline model with a dose-response model such as the LNT and Q-models that are 

multiplied with a dose-effect modifier (Liu and Shao 2003) is, however, known to the authors 

(in that case the LRT should not be applied because setting parameter 1 = 0 also eliminates 

parameter 2, which is contained in the dose-effect modifier). Both models (ERR-LNT and 

ERR-Q) were included into Occam’s group for the following reasons: The ERR-LNT model 

because, when compared with the best model, it contains an AIC-weight larger than 0.05 

(Walsh 2007): According to the formula given on page 8 of the Online Resource (pm = exp(–

AICm/2)/[exp(–AICm/2) + 1]) it is easy to see that p1 = 0.25 (see Table S3). For the ERR-Q 

model one finds p1 = 0.44 > 0.05. The ERR-LQ model is nested with the ERR-LNT and 

ERR-Q models (Figure S1). A comparison of the final deviances between ERR-LQ and ERR-

LNT models yields dev = 2.36 < 3.84. Therefore, the additional parameter of the LQ model 

(2) is not statistically significant at the 5% significance level and consequently the ERR-LQ 

model was not included into the set of final non-nested models used for MMI. Analogous 

considerations hold for the ERR-LE model, which is nested with the ERR-LNT model: dev 

= 2.07 < 3.84. For the ERR-LTH model one compares with the ERR-LNT model to find 

dev = 0.93 < 3.84. Thereby, the ERR-LTH model was not included into the set of final non-

nested models either. The smooth step model was implemented as a modified hyperbolic 

tangent function and is not nested with any of the other dose-response models (Figure S1). 

Therefore, its final deviance needs to be compared with the one of the baseline model: dev 

= 13252.676 – 13244.451 = 8.22. Because 8.22 < 9.49 this model was not included for MMI. 

The final deviance of the sigmoid model, not nested with any of the models that contain only 

two or three parameters (Figure S1), was compared with the final deviance of the baseline 

model to find dev = 6.74 < 9.49. Therefore, the sigmoid model did not survive the selection 

process as its four parameters were not significant. Although the hormesis model is nested 

with the sigmoid model, its final deviance needs to be compared with the final deviance of 

the baseline model because the sigmoid model was not significant. One obtains dev = 9.83 

< 11.07. That eliminated the hormesis model. The two-line spline model is nested with the 

LTH model (Figure S1). The latter was, however, not significant. Consequently, comparison 

needs to be made with the baseline model and one finds dev = 10.39 > 9.49 (the bilateral 

weight of the two-line spline model turned out to be p1 = 0.41 > 0.05; see Table S3). The 

problematic of applying the LRT in segmented regression (Feder 1975), as it is the case for 

the two-line spline model, is known to the authors. Instead of applying the LRT one would 

have to simulate the deviance-distributions of the two models (ERR-two-line spline and 

streamlined baseline models); if the two distributions do not overlap by more than 5%, then 

they are significantly different and consequently 1, 2 and Dth would be significant at the 

95% level. Such in-depth analyses are, however, out of scope of the present study. Although 
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standard LRTs should not be applied for the two-line spline model, the latter was included 

into Occam’s group based on the considerable reduction of the final deviance compared to 

the baseline model. 

The Gompertz model is not nested with any of the applied models. Therefore, its final 

deviance needs to be compared with the final deviance of the baseline model. It was found 

that parameter Dth was not significant and was therefore set to zero. That reduced the number 

of parameters to four (compare with Figure S1). Because dev = 11.12 > 9.49 the ERR-

Gompertz model was included into the set of final non-nested models.  

The categorical model with its high number of parameters and biologically 

implausible shapes does not qualify for MMI. It was applied for a non-parametric 

characterization of the dose-response. It did, however, turn out that the risk prediction for the 

highest dose category ( 6 Gy; ERR = 10.3) was accompanied with a very large 95% CI. 

Therefore, the risk predictions from the categorical model are not shown in Figures 2 to 4 

(instead, they are provided in the legend of Figure 2). 
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Table S3 Results of fitting the dose-response models from Figure 1 as ERR models to the mortality data for IHD including the two different 

types of AIC-weights, Canadian Fluoroscopy Cohort Study, 1950-1987 (Zablotska et al. 2014) 

 

Sparse model approach 
Model dev Δdeva Npar AICb ΔAICc Normalized 

AIC-weightsd 

Bilateral 

AIC-weightse 

Rounded nsimf 

ERR-LNT  13247.75 6.19 23 13293.75 2.19 0.1183 0.2503 1183 

ERR-Q 13246.01 4.46 23 13292.01 0.46 0.2815 0.4429 2815 

ERR-two line spline, Dth = 1.72 Gy 13242.28 0.73 25 13292.28 0.73 0.2461 0.4101 2461 

ERR-Gompertz, Dth = 0 13241.55 0 25 13291.55 0 0.3541  3541 

 

Rich model approachg 
Model dev Δdev Npar AIC ΔAIC Normalized 

AIC-weights 

Bilateral 

AIC-weights 

Rounded nsim 

ERR-LNT 13247.75 6.19 23 13293.75 2.19 0.0776 0.2503 776 

ERR-Q 13246.01 4.46 23 13292.01 0.46 0.1847 0.4429 1847 

ERR-LQ 13245.38 3.83 24 13293.38 1.83 0.0930 0.2859 930 

ERR-LE 13245.68 4.13 24 13293.68 2.13 0.0802 0.2566 802 

ERR-LTH, Dth = 0.58 Gy 13246.81 5.26 24 13294.81 3.26 0.0455 0.1639 455 

ERR-smooth step, Dth = 4.47 Gy 13244.45 2.90 25 13294.45 2.90 0.0546 0.1902 546 

ERR-sigmoid, Dth = 41.53 Gy 13245.94 4.39 25 13295.94 4.39 0.0259 0.1004 259 

ERR-hormesis, Dth = 3.28 Gy 13242.84 1.29 26 13294.84 3.29 0.0449 0.1620 449 

ERR-two-line spline, Dth = 1.72 Gy 13242.28 0.73 25 13292.28 0.73 0.1615 0.4101 1615 

ERR-Gompertz, Dth = 0 13241.55 0 25 13291.55 0 0.2323  2323 

ERR-categorical 13242.19 0.63 29 13300.19 8.63  0.0132  

         

Baseline 13252.68  21 13294.68     
a The difference in final deviance is denoted by dev with respect to the model with the smallest final deviance. 
b AIC = dev + 2  Npar, where Npar is the number of model parameters. 
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c The difference in AIC-values with respect to the model with the smallest AIC-values is denoted by AIC. 
d The normalized AIC-weights were calculated with equation (S5). 
e For the bilateral AIC-weights one model at a time is compared to the best model, i.e. the one with AIC = 0, so that equation (S5) reduces to 

the following equation: pm = exp(–AICm/2)/[exp(–AICm/2) + 1] with m = 1 (refer to page 8 of the Online Resource). Except for the ERR-

categorical model, all bilateral AIC weights of both the rich and the sparse model approaches exceed 0.05. Thus, all corresponding models are 

eligible for MMI. 
f The normalized AIC-weights, multiplied by a factor of 104, give the number of samples (nsim) for risk estimates to be generated by uncertainty 

distribution simulations. 
g For the error calculations within the rich model approach some of the dose-response parameters of 5 out of the 10 surviving models were fixed 

at their maximum likelihood estimates. Otherwise the 95% CI of the model-related risk predictions would turn out as too large. 
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Figure S2 Baseline cases (i.e. baseline hazard h0) per person-year as predicted by the ERR-LNT model plotted against attained age for calendar 

years 1952.5, 1962.5, 1972.5 and 1982.5. To produce the model predictions equation (S4) was evaluated with the maximum likelihood estimates 
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of the ERR-LNT model from Table S2. The model predictions are valid for non-smoking male tuberculosis patients admitted in the Canadian 

province of Nova Scotia, diagnosed with a minimal stage of nonpulmonary tuberculosis. The figure also shows crude rates (i.e. IHD cases 

divided by person-years), which were calculated for males admitted in the Canadian province of Nova Scotia with vanishing cumulative person-

year-weighted lagged lung doses for specific age ranges and calendar year ranges (1950-1955, 1980-1985). For each of these age ranges the rates 

were plotted at the case-weighted mean ages. It is noted that for the crude rates it was not possible to select the same stratifications as for the 

model predictions because that would have resulted in low statistical power. 
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