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Abstract 

This study investigated the effect of carbon sources (n = 2) on the performance of a microbial 

community in an anaerobic moving bed biofilm reactors (MBBR) treating acid mine drainage (AMD). 

The 1.5 L anaerobic MBBR was operated across a range of hydraulic retention times – HRT’s (3-18 

days), using different substrates, i.e. brewing wastewater and lactate as sole carbon sources and electron 

donors. Maximum sulphate reduction and chemical oxygen demand (COD) consumption rate was 21.94 

and 24.28 mg SO4
2- L-1 h-1, and 0.473 and 0.697 mg COD L-1 d-1 for brewing wastewater and lactate 

supplemented bioreactors, respectively, at a HRT of 3 days. The maximum COD/SO4
2- ratio was found 

to be 2.564 in bioreactor supplemented with brewing wastewater at HRT of 15 days. The metal removal 

above 70% followed the order; Be2+ > Fe2+ > Sr2+ > Pb2+ > Mg2+ > Cu2+ > Zn2+> Li1+ > Ca2+ in 

comparison to the system supplemented with lactate, Be2+ > Fe2+ > Sr2+ > Mg2+ > Cu2+ > Li1+ > Zn2+ > 

Pb2+ after HRT of 18 days. Complete removal of beryllium (II) was observed irrespective of the carbon 

source. The results clearly showed that brewing wastewater can be deployed as a nutritional supplement 

in environmental remediation of AMD. 
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Introduction 

Previous and present mining activities, including various industries, discharge large quantities of acidic 

wastewater into the environment. Acid mine drainage (AMD) is a major challenge associated with 

active and abandoned mining sites, particularly whereby remediation strategies are non-existent which 

culminates into intense microbial oxidation of sulphide minerals resulting in leaching of potential toxic 

elements. This AMD usually contains a high concentration of sulphate (350 – 13,000 mg SO4
2-/L) and 

heavy metals (10-3 – 104 mg/L) [1]. Although, sulphate discharges are not a major threat to the 

environment as they are non-volatile, chemically inert and non-toxic, high sulphate concentration can 

cause an imbalance in the natural sulphur cycle [2, 3]. Traditionally, lime neutralisation is used to reduce 

the acidic properties of the wastewater, followed by precipitation of heavy metals as hydroxides [4]. 

However, large quantities of amorphous metal-sludge generated, are difficult to dewater due to high 

sulphate concentration associated with the AMD [5, 6]. In addition, reverse osmosis is another method 

that is prevalent in AMD treatment technologies due to the high quality of the treated water which can 

then be recycled. However, operating with water recycle rate of between 35% and 85%, could lead to 

huge volumes of concentrates as well as brines, which is a major threat to the ecosystem [7]. Therefore, 

there is a need for an environmentally friendly treatment technique for AMD. 

Biological treatment of wastewater including AMD is an effective alternative for high strength sulphate 

containing wastewater such as AMD. This is performed by a consortium of bacteria comprising of 

sulphate reducing bacteria (SRB), and strictly anaerobic bacteria, as well as facultative anaerobic 

bacteria [8]. AMD is known to be amenable to anaerobic digestion with subsequent removal of heavy 

metals as metallic sulphides [9]. The controlled biological treatment of AMD offers some advantages 

which includes permanent removal of sulphur and metals, thus the subsequent production of clean 

water. Biological reduction of sulphates has been successfully applied for the treatment of AMD on a 

large scale for many years because it is considered an efficient and low cost process with varying 

organic carbon sources being used as electron donors [10]. Commonly used electron donors are lactate, 

ethanol, methanol, formate and hydrogen. Regarding the energy and biomass yield requirements, lactate 

is reported as the best carbon source [11]. Although the biological treatment of AMD is environmentally 

benign, the application of this treatment method on a large scale could be hampered by nutrient 

requirements for the sustainable maintenance of the microbial culture and its proliferation for elongated 

periods of time. 

Agro-industrial waste offers an alternative as an organic carbon source for microbial proliferation. 

Globally, 1.6 X 109 tonnes of agro-industrial waste are generated annually, and such waste contains 

remnants of proteins, reducible sugars, trace elements and minerals that could sustain a low cost 

bioprocess, such as those designed for AMD treatment [12, 13]. Several organic waste materials have 



been investigated for such process including animal manure, molasses, leaf mulch, saw dust, wood 

chips, and sewage sludge [14-16]. The selection of a substrate to use depends on the biodegradability 

of the substrate. Approximately 2.0 X 108 L of reducable sugar rich wastewater, is generated annually 

in South Africa from sorghum beer industries, with some nutrient components including proteins, fats 

and some trace elements [17]. The availability of this quantity of brewing wastewater in South Africa 

could provide a suitable feedstock for microbial proliferation in the treatment of AMD. Therefore, a 

comparative analysis of the performance of microbial community supplemented with lactate and 

brewing wastewater as sole carbon sources in anaerobic MBBR systems treating AMD, was studied to 

promote the application of agro-industrial waste in environmental remediation. 

2.0 Materials and Methods 

2.1 Acid mine drainage (AMD) collection sampling 

AMD samples were collected from a coal mining location in Mpumalanga Province (South Africa) 

using a standard sampling approach [18]. The AMD was screened for particulate matter removal prior 

to storage at 4°C. The physicochemical characteristics of the AMD (n = 3) showed that the wastewater 

was comprised of 8080 ±10.35 mg SO4
2-/L, metallic ions (mg/L): 485 ±3.25 Al3+, 0.07 ±0.01 Be2+, 

422.66 ±3.17 Ca2+, 0.5 ±0.11 Cd2+, 2.33 ±0.21 Co2+, 0.46 ±0.05 Cu2+, 0.13 ±0.01 Cr3+, 2308 ±5.51 Fe2+, 

297.6 ±2.67 Mg2+, 0.53 ±0.05 Li1+, 60.8 ±1.89 Mn2+, 5.47 ±0.43 Pb2+, 1.0 ±0.11 Sr2+, and 7.93±0.34 

Zn2+. The sample temperature was 20±2°C, pH 2.98±0.2, and conductivity of 7.48±0.5 mS/cm, 

including, a redox potential of 229.5 ±3.58 mV and a turbidity of 145 ±2.24 NTU. An inductively 

coupled plasma optical emission spectrometer (ICP-OES) (ICP Expert II, Agilent Technologies 720 

ICP-OES) was used to measure metal ion concentrations while a COD and Multiparameter Bench 

Photometer HI 83099 (Hanna Instruments Inc., USA) was used to measure both the COD and sulphate 

(𝑆𝑂4
2−) concentration in the AMD samples. Comparatively, the sulphate ion concentration and 

conductivity observed in this location are within the range reported (1265 – 14070 mg SO4
2-/L) and 

(2.41 – 11.85 mS/cm), respectively, at different points along different paths of the AMD in the 

surrounding communities of Mpumalanga province [19], meanwhile [20] a much higher sulphate 

concentration (20980 mg SO4
2-/L) and 12.41 mS/cm conductivity from waste coal dump in Witbank 

South Africa. For the metallic ions, Fe (II) concentration was the highest in all cases as seen in this 

study with pH < 3 [19, 20]. 

2.2 Isolation and growth media preparation 

Biotechnological approach using sulphate reducing bacteria (SRB) is considered an effective method 

for simultaneous removal of sulphate and heavy metals in wastewater. The sulphate acts as the electron 

acceptor while a carbon substrate serves as the electron donor in an anaerobic process that leads to the 

formation of bicarbonate ions and sulphides [21]. The metal ions are precipitated by the sulphides while 



the bicarbonate raised the pH of the wastewater [22, 23]. The use of refined carbon substrate such as 

lactate has significant effect both on the SRB growth and economic viability of the process in an 

industrial scale [23, 24]. Hence, the use of an agro-industrial waste that is usually thrown away, to 

mitigate the cost.  

The isolation of sulphate reducing bacteria (SRB) was done using a modified Postgate (1984) isolation 

media as described in a previous study, in two different reactors with lactate (L) in one and brewing 

wastewater (BW) in the other reactor, as carbon sources and electron donors [1]. The darkening of the 

medium indicated a successful incubation and proliferation of the microbial consortium of SRB. The 

experiments were conducted as triplicate. 

2.3 Composition of the brewing wastewater as a carbon source 

Brewing wastewater was collected from a sorghum beer manufacturer in Potchefstroom, South Africa. 

The analysis of the wastewater using High Performance Liquid Chromatograph (HPLC, Agilent 1290 

Infinity) equipped with a 300 m x 7.8 mm Aminex HPX-97H column [25] revealed the presence of 

mainly fat (0.26 ±0.03 g/100mL), protein (0.33 ±0.01 g/100mL), lactose (0.5 ±0.02 g/100mL), glucose 

(0.5 ±0.02 g/100mL), fructose (0.5 ±0.03 g/100mL), sucrose (0.5 ±0.02 g/100mL), maltose (0.5 ±0.03 

g/100mL) and dry matter (0.42 ±0.02 g/100mL). 

2.4 Process overview: anaerobic moving bed biofilm reactor 

The experiments were performed in different 1.5 L anaerobic MBBRs fitted with overhead stirrers at a 

speed of 200 rpm. High density polyethylene (HDPE) Mutag Biochip 25TM bio-carriers – 15% working 

volume were used [26]. The bio-carriers have an active surface area of 4,850 m2/m3, diameter of 25 

mm, and a 1.1 mm thickness. The bioreactors were operated at 35°C in a circulating waterbath and pH 

7 ± 0.5 was maintained for the growth media until the AMD was introduced into the bioreactors.  

Each reactor contained 900 mL Postgate media with the reactor being seeded with a 10% (v/v) 

inoculum. Fresh medium was fed into the reactor weekly for 4 weeks. All glass lids and fittings were 

sealed with vacuum grease, and the reactors were purged with nitrogen gas in order to maintain 

anaerobic conditions. After establishing viable microbial growth, raw AMD was pumped into the 

reactors at a feed rate of 1.6 L/h and the systems were operated at different hydraulic retention times 

(HRTs). The microbial growth assessment was based on optical density (OD) at a wavelength of 600 

nm using a GENESYSTM 10S UV-Vis spectrophotometer (Thermo Fisher ScientificTM, Waltham, MA, 

USA). For each HRT, microbial growth was measured (OD) at interval over a period of time until 

stationary phase is reached. Microbial growth rate was calculated as the slope of the plot of OD against 

time for the exponential phase of microbial growth. The sulphate concentration and chemical oxygen 

demand (COD) were measured using a COD and Multiparameter Bench Photometer HI 83099 (Hanna 

Instruments Inc., USA). The metal ions concentration in the samples were measured after HRT of 18 



days using the inductively coupled plasma optical emission spectrometer (ICP-OES) (ICP Expert II, 

Agilent Technologies 720 ICP-OES, California, USA). The control experiments were not inoculated 

with microbial consortium. All measurements were in triplicate. 

3. Results and discussion 

3.1 Microbial growth rate 

Among the many factors affecting the microbial proliferation in AMD systems is reactor configurations. 

Different reactor types such as continuously stirred tank reactor, gas-lift bioreactor, submerged 

membrane bioreactor, fluidised bed bioreactor, and up-flow anaerobic granular sludge bed bioreactor, 

amongst others have been reported for AMD treatment [27]. In this study, an anaerobic moving bed 

biofilm reactor (MBBR) was used for the treatment of AMD at different hydraulic retention times 

(HRTs). A steady microbial growth was observed for both carbon sources (L and BW), see – Fig. 1. At 

lower HRTs (3 to 9 days HRT), the systems supplemented with BW showed a lower microbial growth 

due to the time taken to degrade the agro-industrial waste; however, a higher growth rate was observed 

as the HRT increased (12-18 days HRT). This can be attributed to the residency time increases at higher 

HRTs for which the excess and residual carbon sources were readily available to the microbial 

community. In the system utilising the refined carbon source (L), there was an initial rapid increase in 

the microbial growth at the initial stage (i.e. lower HRT) – 3 to 9 days, due to the availability of the 

processed carbon source; however, as the HRT increased, the microbial growth decreased because of 

the depletion of the carbon source. The maximum microbial growth rate (𝜇𝑚𝑎𝑥) were 0.3134 and 

0.3317 per day for BW and L at HRT of 3 days. These values are within the range of available kinetic 

parameters for SRB communities [28-31]. 

 

Fig. 1: Maximum microbial growth rate for each hydraulic retention time 
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3.2 Effect of HRT on pH and redox potential 

Previously, bioreactors treating AMD were usually neutralised and the pH had a direct effect on the 

microbial community that thrives within a bioreactor [27]. However, the presence of acid tolerant 

microorganisms has offered the possibility of treating AMD directly without prior neutralisation [32-

34]. In this study, the pH of the process increased with an increasing HRT, an indication that the 

microbial community generated alkalinity itself which allows for metal precipitation – Fig. 2. This 

observation is similar to the report on microbial community treating AMD which were dominated by 

Thiobacillus spp. and thus raised the pH of the reactors [35]. Thermodynamically, Gibbs free energy is 

the major driving force of microbial growth. Previous reports have shown that higher Gibbs free energy 

is obtained at low pH during sulphate reduction [36]. This explains the sulphate reduction observed at 

low pH in this study. Higher pH was observed in BW than L supplemented reactors, although below a 

neutral pH. Conversely, there was a reduction in the redox potential for both reactors, an indication of 

microbial growth over time. The movement of various elements in biological systems depend on the 

redox reaction conditions. The potential difference in the solution leads to the oxidation/reduction 

reaction in the system [9, 37]. 

 

Fig. 2: Effect of HRT on pH and redox potential 
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There are several factors affecting sulphate reduction efficiency in an anaerobic MBBR. The effects of 
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accepted that metal sulphides precipitate between 3 and 5 days, and that any HRT below 3 days will 
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reduction reduces with an increasing HRT. This was attributed to the depletion of readily available 

carbon and/or energy source as well as reducing microbial activities in the bioreactor [39]. Improved 

reactor performance was observed in the bioreactor supplemented with refined carbon source (L) at low 

HRT. At elevated HRT, higher sulphate reduction rates were observed in system supplemented with 

agro-industrial waste compared to the refined carbon source, which can be traced to the availability of 

diverse soluble sugars in the BW. Therefore, we can conclude that low HRT is an appropriate 

operational strategy for a system supplemented with the refined carbon source while a system operating 

on agro-industrial waste requires a longer HRT. A similar pattern was reported for sulphate removal in 

AMD by mixed SRB in an up-flow anaerobic packed bed reactors, with the highest sulphate reduction 

rate being after 2 days [9]. The highest average sulphate reduction rate in this study was 21.94 and 24.28 

mg SO4
2-/ (L h) for BW and L, respectively, and compares well with approaches previously used in the 

treatment of AMD [9, 22, 39, 40]. 

 

Fig. 3: Variation in sulphate reduction rate 

In addition, the bioreactor supplemented with L, removed the COD more efficiently than the bioreactor 
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COD/SO4
2- ratio at elevated HRTs, resulting in better sulphate reduction rates. Generally, bio-carriers 

are known to improve the rate of COD removal in wastewater treatment. When HRT was increased, the 

rate of COD consumed increased due to improved biofilm formation in the MBBR, with subsequent 

pollutant removal [26, 41]. 

A 

 

B 

 

Fig. 4: Effect of hydraulic retention time on rate of COD consumed (A) and COD/SO4
2- (B) 

3.4 Metal ions removal 
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The metal removal was as a result of metal sulphides precipitation due to the activities of SRB. Previous 

reports have shown that Al3+, Cu2+, Fe2+ and Pb2+ are precipitated at pH below 7 [43, 44]. The 

metal removal above 70% followed the order; Be2+ > Fe2+ > Sr2+ > Pb2+ > Mg2+ > Cu2+ > Zn2+> 

Li1+ > Ca2+ for system supplemented with BW while that of the system supplemented with L 

followed the order; Be2+ > Fe2+ > Sr2+ > Mg2+ > Cu2+ > Li1+ > Zn2+ > Pb2+. This can be attributed 

to the relatively high pH (below 7) in both bioreactors, given that metals become insoluble at 

higher pH. The Al3+ removal was the lowest (29%) in the system supplemented with L, which 

may be due to the fact that Al3+ does not form stable sulphides in the presence of water (Jong 

& Parry 2003). Furthermore, Co2+ removal of 19% was observed in system supplemented with 

BW. Previous reports have shown that optimum Co2+ removal occurs at pH of 6 [45, 46]. The 

low removal of Co2+ was as a result of the acidic pH of the systems. 

 

Fig. 5: Metal ions removal after HRT of 18 days 

4 Conclusion 
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relative to lactate, as a suitable carbon source for proliferation of microbial community in an anaerobic 

MBBR treating acid mine drainage.  
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