Chapter 10

The Conformal Model

Excerpted from Linear and Geometric Algebra by Alan Macdonald.
November 6, 2018

A Jupyter notebook cm3 for 3D conformal model calculations is available at
the book’s webpage. It is also bundled with the GAlgebra distribution.

10.1 The Geometric Algebra G"*.

An orthonormal basis for the indefinite inner product space R™* has r e’s
with e-e = 1 and s e’s with e-e = —1. And as in R", e; - e; = 0 for
i # j.1 According to Sylvester’s law of inertia, r and s are independent of the
orthonormal basis. The special case R™? is the R™ of earlier chapters.

Axioms I1-I3 in the Definition 4.9 of an inner product space are retained,
but 14, “If v # 0, then v-v > 07, is dropped. Set r + s = n. A basis is
commonly written {ej1,...,e,} withe;-e;=1fori=1,...,r and e;-e; = —1
fori=r+1,...,n. Then for u= 3} ue; and v =73 ,v;e; (cf. Eq. (4.8)),

U-v=uv1 + -+ UV — Upp1Vpf1 — "+ — UpUp.

Exercise 10.1. Let e, and e_ be orthogonal vectors in R™® with e; -e; =1
and e_ - e_ = —1. Show that ey +e_ is null: (e +e_)-(eyr +e_)=0.

The existence Theorem 6.1 for G™ extends to an existence theorem for the
geometric algebra G™*.2 The inner and outer products of blades are defined as
in G" A-B=(AB),_; and ANB = (AB),,, . (Blades of G will not be
denoted in bold. We reserve bold for blades in R™*.)

Most properties of G™ extend to G™?, including the duality relations of The-
orem 6.26 and the extended fundamental identity Theorem 6.28. Gram-Schmidt
orthogonalization is an exception; it is not available in G™* (Problem 10.6.4).

Exercise 10.2. Theorem 7.2a is a test for membership in a subspace of R™:
x€B & xAB=0. (B on the left is a set; on the right a multivector.) Its
proof uses Gram-Schmidt orthogonalization. Prove the test for R™* without it.

!Einstein’s relativity theory uses R1:3. It is called spacetime (Cf. Problem 4.3.12).
2A. Macdonald, An Elementary Construction of the Geometric Algebra, Adv. Appl. Clff.
Alg. 12, 1-6 (2002). An improved version is available at this book’s web page.
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10.2 The Conformal Model

The geometric algebra G™ is called the standard model of R"™. The geometric
algebra G™ 1! i called the conformal model of R™.3

Extend R with two vectors e, and e_ orthogonal to R", with e3 = +1.
Then we have R"t11 ) and with it G"T%!. More useful than e, are the vectors

o=1(e_+e;) and co=e_ —ey.

2=00?=0and 0-00 = —1.

Exercise 10.3. Show and memorize: o
Definition 10.1 (Conformal point). The conformal model represents the point

p € R" with the vector
p=o0+p+ jp’co € R"TLL (10.1)

The representation is homogeneous: nonzero scalar multiples ap also represent
p. The vector p in Eq. (10.1) is normalized: the coefficient of o is 1.

Exercise 10.4. a. Show that p is null: p?> = p-p = 0. Important!
b. More generally, show that

p-qg=—-3(P—q)? (10.2)

Translations and rotations preserve (p —q)?, so preserve p- ¢, so are orthogonal
transformations on G™t11, Details are in Section 10.5.

Exercise 10.5. The midplane M of points p and q in R3 consists of points
equidistant from p and q. Show thatre M < r-(p—gq) =0.

Definition (Representations). Let G be a geometric object in R™. We say
that a blade G in G™*1! directly represents Gifx € G < z AG = 0.
By duality, x € § & x-G* = 0. We say that G* dually represents G.

Both representations are homogeneous, e.g., for a # 0, tAG =0 < xAaG = 0.
Exercise 10.5 showed that the vector p — ¢ is a dual representation of M.
Equation (10.1) assigns p = o to p = 0. So o represents the point at the

origin. It is called the origin. Also from Eq. (10.1), limp| 00 p/(%pz) = o0 (the

vector). Thus the choice of 0o to denote this vector. It is called infinity.
Figure 10.1 shows an imperfect but helpful way to vi-
sualize this for R2. Set a unit sphere on R? with its South

Pole on the origin 0. This creates the 1-1 correspondence

shown between points p in the plane and points p on the

sphere, except the North Pole, labeled oco. The vector co
represents oo, a single “point at infinity” appended to the

plane. As p moves farther from 0, p gets closer to oc. Fig. 10.1: p & p.

Vectors do double duty in R™ and in G™, representing both vectors and points
(Figure 1.23). Null vectors p do single duty in the conformal model, representing
points and only points. Other kinds of vectors represent other kinds of objects.
For example, p — ¢ dually represents a midplane (Exercise 10.5).

3Much of this chapter was drawn from Geometric Algebra for Computer Science (Revised
Edition) by L. Dorst, D. Fontijne, and S. Mann.
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10.3 Dual Representations

This section and the next show that the conformal model represents several
different kinds of geometric objects. Figure 10.2 lists them. Actually, they are
only a small fraction of the total available (p. 196). All representations here are
of R3 objects, the most important case, although much can be generalized.

Spheres. Equation (10.2) immediately gives an equation of the sphere with
center ¢ and radius p: z-c = —% 2. This is equivalent to z - (¢ — %pgoo) =0.
Thus the vector _ 1.2

o=c—5p"00
is a dual representation of the sphere! More succinctly: o is a dual sphere.

Exercise 10.6. Show that p can be extracted from o: p? = o2.

Exercise 10.7. Let p = 0+ p + $p*co represent a point and o = ¢ — 1p?00
dually represent a sphere. Show that 2p- o = p? — (p — c)?. Thus p is inside,
on, outside the sphere according as p- o is >0, =0, < 0.

Rewrite o in terms of the center ¢ of the sphere and a point p on it:
a:c—%pQOo:—(p-oo)c—i—(p-c)ooip-(c/\oo). (10.3)
Step (3) used Problem 9.6.6a. This is a second dual representation of a sphere.

Planes. The conformal model represents a unit normal vector n as ™ =
n + doo. (See Exercise 10.13 about normal vectors.) The normal vector is a
dual representation of the plane orthogonal to n and at distance d from the
origin. To see this, compute

2+ (n+doo) = (0+x+ 1x?00) - (n+ doo) = —d + x - n.
Setting this to zero gives the point-normal equation of the plane (Problem 4.1.3b).
Exercise 10.8. Extract d from n + doo.

A given point p in the plane satisfies p- (n+doo) = 0, so d = —(p-n)/(p- 00).
Substitute this into n + doo and multiply by the scalar* —p- oo to obtain a dual
representation of the plane through p and orthogonal to n:

m=—(p-oo)n+(p-n)oo=p- (nco). (10.4)
Step (3) used Problem 9.6.6a. This is a second dual representation of a plane.

Circles. We seek a dual representation of the circle with center c, with
radius p, and is orthogonal to the unit vector n. It is the intersection of the
dual sphere o = ¢ — 1p?c0 (Eq. (10.3)) and the dual plane 7 = c- (noo) (Eq.
(10.4)). From Theorem 10.3 the circle’s dual representation is the bivector

c=0Am=(c— 3p*0) A (c- (nx0)).

Squaring the circle © gives ¢ = —p2.

Lines. Let m; and 7y represent intersecting dual planes. Then the bivector
A = 71 A mg dually represents their line of intersection (Theorem 10.3 again).

4Remember, representations are homogeneous.



188 CHAPTER 10: THE CONFORMAL MODEL

10.4 Direct Representations

We obtain direct representations of the geometric objects of the last section.

Lines. A direct representation of the line determined by points p and q is
L =pAqgA oo. See Exercise 10.20. Thus a point x is on the line if and only if
xAPAgA0)=0.

Neither p nor q can be extracted from L. But the distance between them
can: L? = (p — q)%

If x, p, q are not collinear, then x A p A ¢ A oo # 0. This leads to a measure
of noncollinearity in numerical work.

Specify a line by a point p on it and a vector d parallel to it. Then pAd A oo
is a second direct representation of a line. See Problem 10.5.2 for d A co here.

Circles. A direct representation of the circle determined by noncollinear
points p, q, r is C = p A ¢ Ar. See Exercise 10.20. Its center is at C'ooC. Its
radius p is given by p? = —C?/(C' A c0)?. See Problem 10.6.1.

Intuitively, the lines p A ¢ A co above are “circles through infinity”.

Planes. A direct representation of the plane determined by noncollinear
points p, q, ris P=pAqAr A oco.

The area A of the triangle is given by A% = —P?/4.

Specify a plane by a point p on it and a bivector D parallel to it. Then
p AD A oo is a second direct representation of a plane. See Problem 10.6.2.

Spheres. A direct representation of the sphere determined by noncoplanar
points p, q, r, sis S = pAgArAs. Its radius p is given by p? = S%/(S A 00)?.
Its center is at SooS (unnormalized).

Intuitively, the planes p A ¢ A A 0o above are “spheres through infinity”.

Vectors. The vectors of vector algebra represent several different kinds of
vector-like objects in R™: direction vectors (Problem 10.5.2), normal vectors
(Exercise 10.13), and tangent vectors (Problem 10.7.4). The conformal model
represents these different kinds of geometric objects differently, as we will see.

Vector algebra vectors also represent points (Figure 1.23). The conformal
model represents them as null vectors (Definition 10.1).

The various objects sometimes transform differently, for example, direction,
normal, and null vectors under a translation by a (Problem 10.5.2). Yet the
single linear transformation T, in the next section correctly translates them all.

Problems 10.4

10.4.1. a. Set E = 0 Aco. Show that E? = 1. Hint: Show that o Aco = e e_.
b. Show that pE = (0 — $p®c0) + pE. This is called a conformal split of p.
c. Expand pE = ), pie;E. Show that the trivectors o; = e;E have the
properties of an orthonormal vector basis for R™: o, - o; = 1, and for i # j,
o;-0j; =0. (Hence the use of bold for the o;.)

10.4.2. Consider the plane through e;,2es,3e3. Take the dual of its direct
representation to find a normal vector and distance to the origin. Use GAlgebra.
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10.5 Transformations of Points

Exercise 10.9. a. Let p € R”. Show that (o +p +y0)? = —2ay + p2 Hint:
Treat the o = 0 and « # 0 cases separately.
b. Show that null vectors in R"*1! are of the form gp (p € R"), oo, or 0.

According to Part (b), null vectors, excluding 0, provide a (homogeneous)
=nNn

algebraic representation of R =R"™ U {oo}. We will see that oo gives sensible

results in calculations when thought of as representing oo, the point at infinity.

A conformal transformation of R" preserves scalar angles (not necessarily
orientations) between intersecting curves. Examples include several fundamen-
tal geometric transformations: rotations, translations, reflections, dilations, in-
version. Every conformal transformation is a (not unique) composition of these.

An orthogonal linear transformation O on R"™*!:! leaves inner products of
vectors invariant (Exercise 9.20a). So p-p =0 = O(p)- O(p) =0, i.e, O
represents a mapping from R"onto R".

The conformal model G™*t1" represents
. —n
conformal transformations of R
with orthogonal transformations on R?+1:1,

We will show this for the five aforementioned conformal transformations.
Theorem 10.2f and Problem 10.6.3 together show that the transformations pre-
serve inner products of vectors, and so are indeed orthogonal.

Rotations. The rotation of a point p by angle if is represented In G™ by
Rig(p) = e19/2 p €1%/2 (Section 7.2). In G™*1! the rotation is represented by

Rio(p) = e /2 p /2 = ¢7/2 (04 p+ I p?00) €l/2 = 0+ Rip(p) + 3 Rig (p) 0.
Exercise 10.10. Verify the just used Rjp(0) = 0 and Rjp(c0) = 0.

Translations. The translation p — p + a in R” is represented in the
conformal model by To(p) = e—229/2 p ao0/2.

Intuitively, this is a “rotation around infinity”.
Translations in R” are not linear: (p +q)+a # (p+a)+ (q+ a). The
conformal model linearizes them with the linear transformations T,, a boon.

Exercise 10.11. Show that e*2°/2 = 1 + aco/2 (exactly).
Exercise 10.12. Show: a. Ta(0) =a. b. Ta(oo) =00. ¢ TaTp = Tatp-

Exercise 10.13. Show that a normal vector n + doo (Section 10.3) has no
position; translating it in a direction a orthogonal to n leaves it invariant.
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Reflections. Let n be a vector orthogonal to a hyperplane in R™. The
standard model represents the reflection of point p in the hyperplane as My, (p) =
—npn~! (Theorem 7.9). The conformal model represents it as

Mn(p) = —npn~!, (10.5)
Exercise 10.14. Prove Eq. (10.5). Hint: First compute My (0) and My, (00).

Dilations. The map p — ap, a > 0, is a dilation (by «). It is represented
in the conformal model by

Da(p) _ eElna/2p e—Eln(x/Q )

To normalize the result, divide by the coefficient of o (which is a™1).

Dilation can be thought of as a “rotation” in the E-plane. Recall: i? = —1
and '%/2 = cos(0/2) + isin(#/2). In contrast, E? = 41 (Problem 10.4.1a) and
ePB/2 = cosh(3/2) + E'sinh(B/2), as a power series expansion reveals.

Inversion. The map p — p~! = p/|p|? is called inversion (in the unit

hypersphere). Points inside the sphere are mapped to the outside and vice-
versa. Inversion in R™ is not linear ((p +aq) t#Ep L+ q_l)7 but is linearized
in the conformal model:

I(p) = —(0 — 300)p(o — 2o0)~ L. (10.6)

Note: (0 — 200)~! =0 — £00. To normalize the result, divide by the coefficient

of o (which is p?). Inversions reverse orientations.

Exercise 10.15. a. Which points in R" are represented by %oo and 207
b. Show that I(0) = Joo. Intuitively, 0~ = oo.
c. Show that I(c0) = 20. Intuitively, co~! = 0.

d. Show that I(p) represents inversion.

Lines, planes, circles, and spheres map to the same under rotations, trans-
lations, reflections, and dilations. Inversion is the exception.

Under inversion, lines not through the origin map to circles through the
origin and vice versa (Exercise 10.21). Planes not through the origin and spheres
through origin are similarly related.

Problems 10.5

10.5.1. Show that inversion | is reflection in the hyperplane normal to e;..

10.5.2 (Direction vectors). A direction vector d has a direction, but not a
position. They are like the oriented lengths of Section 1.1 — also called direction
vectors there. The conformal model represents a direction vector d with d A co.
The line through a point p and parallel to a direction vector d is directly
represented by p A (d A oo) (Sections 10.4 and 10.6).
a. Show that dAoco has no position, i.e., is fixed under T,: Ta(dAoco) = dAoo.
b. Show that direction vectors rotate as expected: Rig(d Aoo) = Rip(d) Acc.
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10.6 Covariance

The representations of rotations, translations, and dilations of points in
Section 10.5 are of the form O(p) = VpV~!. Extend O to all M € G"+11:
O(M) =VMV~t Then O is invertible: V=Y (VMV -1V = M.

Theorem 10.2. Transformations of the form O(M) = VMV ~! preserve the
entire algebraic structure of G**+1:!:
a. O(aM) = aO(M). d. B a blade = O(B) a blade (same grade).
b. O(M + N)=0(M) + O(N). e. O(MN)=0(M)O(N).
c. OOM AN)=0(M)AO(N). £ O(M-N)=0(M)-O(N).

Parts (a)-(c) tell us that O is an outermorphism of G**+1:1.

Exercise 10.16. Show that O preserves the inner product of vectors in R™+1:1,
Hint: Recall cyclic reordering from Theorem 6.6.

Proof. a, b. These are obvious.
e. OO MN)=V(MN)V~! = (VMVfl)(VNV*) = O(M)O(N).

d. Let B =05b; A---Ab,., ablade of grade r. Then also B = ¢;---¢,, a
product of 7 orthogonal vectors.> From Part (e), O(B) = O(c1) -+ - O(c;). From
Exercise 10.16, the O(¢;) are orthogonal, so O(B) is a blade of grade r.

c, f. See Exercise 10.17. O

Exercise 10.17. Prove Parts (c¢) and (f) of the theorem. Hint: Consider first
blades M and N. Use Part (d) and Definitions 6.12 and 6.13.

Let the blade M € G"*%! represent a geometric object M C R™. Let
O(z) = VaV~! represent a transformation of the points x of M, as in the
last section. Remarkably, we need not transform M pointwise: O transforms a
geometric object as a whole!

Theorem (Covariance). O(M) represents M transformed.

Proof. Suppose that M directly represents M. Then

O(z) € O(M) & O@)AO(M) =0 & O(xAM)=0 & aAM =0 & z e M.

Steps (1) and (4) use Exercise 10.2. Step (2) uses covariance. Step (3) uses the
invertibility of O. O

Exercise 10.18. Give a similar argument when M dually represents M.

5The proof of this for G™ (Theorem 6.19a), uses Gram-Schmidt orthogonalization,
which is not available in G™*°. Nevertheless, the result remains true in G™* (C. Doran
and A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press (2007),
p- 88; https://en.wikipedia.org/wiki/Geometric_algebra#Blades.2C_grades.2C_and_
canonical_basis). Problem 10.6.4 has an example.


https://en.wikipedia.org/wiki/Geometric_algebra#Blades.2C_grades.2C_and_canonical_basis
https://en.wikipedia.org/wiki/Geometric_algebra#Blades.2C_grades.2C_and_canonical_basis
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As an example, translate by a the direct line L = p A ¢ A co. According
to the theorem, the result is To(L). As a check, use covariance directly and
Ta(o0) = 00: Ta(L) = Ta(p) A Ta(q) A 0o, which represents L translated.

The rest of this section illustrates the power of covariance.

Line through p in direction d. We show that the trivector L = pAd A oo
is a direct representation of the line through the point p and in the direction d.

Start with p = 0. We need to solve 2 A (0 AdAoo) = 0. The o and oo factors
in the parentheses kill the o and co terms in z, leaving x A (0 Ad A 00). This is
zero if and only if x € span{o,d, oo}, i.e., if and only if x is a scalar multiple of
d. This establishes the result for p = o.

To finish, translate oAd Aoo by p to obtain L (Step (2) uses Problem 10.5.2):

TploAdA0) =Tp(o) A Tp(d A o) ZpAdAoco.
We have just seen an example of a common strategy:

Establish a representation of some well chosen geometric objects.
Ezxtend the representation to transformations of the objects using covariance.

Exercise 10.19 (Dual line). Let C represent a circle. Show that the bivector
A =00 C dually represents the line orthogonal to C' and through its center.

Exercise 10.20 (Direct lines and circles). Justify the direct representations
L =pAgAooof lines and C = p A g Ar of circles from Section 10.4. The
justifications for planes and spheres are similar, but more complicated.

Here is another example of the coherence of the conformal model (without
proof): e L70/2 ¢ ¢L™0/2 represents the rotation by angle 6 of C' about L.

Exercise 10.21. Show that under inversion lines not through the origin and
circles through the origin map to each other.

Representations of reflections and inversions are of the form p — —VpV 1.
Define an extension M — —VMV~! Tt is not covariant (Problem 10.6.3).
However, we can use the covariance of the VMV ~! part. Here is an example.

Reflect a line in a plane. The reflection of the point p in the plane
through the origin with normal n is represented by —npn~! (Theorem 7.9).

The formula extends to the reflection of the line L = o Ad A oo in the plane.
To see this, first use the covariance of M +— +nMn~' (Theorem 10.2):

nIn~'=(non"')A(ndn" ')A (noon!) = (—0) A (ndn"!) A (—00).

Negate this: —nLn~! = 0 A (—ndn~!) A co. This represents L reflected, since
—ndn~! represents d reflected.

Angle between lines. We compute the angle 6§ between intersecting lines.
Consider first lines intersecting at the origin: L; = oAd; Aoco, Ly = o Ads Ao,
with |dy| = |dz2| = 1. Because of the simple form of L; and L, one can compute
Li-Ly =d;-dy = cosf. Now translate the lines to an arbitrary position. By
covariance, the left side with the new lines still gives cos 6.
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Angle between circles. First note that the condition |d;| = |d2| = 1 for
the lines above is equivalent to d? = d% = 1. Consequently, L? = L3 = 1.

Let C be a direct circle determined by p,q,r. Application of the results for
circles and planes from Section 10.4 gives C? = —p?(C'A00)? = —p? P% = 4p2 A2,
Thus C can be normalized to square to 1: divide by 2pA.

Now let C7 and Cy directly represent coplanar circles intersecting at two
points, both normalized to C? = 1. Translate the circles so an intersection point
is at the origin. Invert with |. This angle preserving conformal transformation
maps the circles to straight lines (Exercise 10.21), and C? =1 to L? = 1 (since
[(1) = —1). Thus the angle between the circles is given by the same formula as
for the lines: cosf = Cy - Cs.

Translate rotations. Rjy(p) = e 19/2  ¢19/2 represents a rotation around
0 by angle i (Section 10.5). To rotate around a by angle if, translate by —a,
rotate by if around 0, and translate back by a:

P (Ta o Ry 0 Tfa)(p) _ efaoo/2 (efi9/2<eaoo/2pefaoo/2) ei9/2 ) eaoo/2
— (e—aoo/Q e—i0/2 eaoo/2)p (e—aoo/Q ei0/2 eaoo/2) — Ta(e—iﬂ/Q)pTa(eiﬂ/Q).

So Ta(e™1%/2) is the representative of the rotation about a. It is the translation
by a of the representative e /2 of the rotation about 0. Coherence!

Notice how easy it was to compose the rotation and translations. Try the
composition in G™, where translation by a is p — p + a. You won’t like it.
The problem is that in G™ translation is additive and rotation is multiplicative.
Each is simple, but their combination is not.

Exercise 10.22. a. Show that T,(e!?/2) = ¢T=(9/2, Thus the rotation about
a can also be written e~ Ta(9/2 p eTa(i)/2 " Coherence again!
b. Show that T,(i) is a 2-blade with (T.(i))? = —1.

Problems 10.6

10.6.1 (Center, radius of a circle). Let C' = p A g A r represent a circle.
a. Show that its center is C'ooC.
b. Show that its radius p is given by p? = —C?/(C' A 00)?.

10.6.2 (Plane through p in direction D). A direction bivector D has a
direction but not a position. The conformal model represents the direction
bivector with D A oo, which is translation invariant (cf. Problem 10.5.2).

Show that p A (D Aoo) is a direct representation of the plane through p and
parallel to D. Hint: See “Line through p in direction d” above.

10.6.3. a. Define S(M) = —VMV~!. Show that S does not preserve the
geometric product. Thus Theorem 10.2 does not apply to it.

b. Show that S is an orthogonal transformation, i.e., preserves the inner
product of vectors.

10.6.4. Show that Gram-Schmidt orthogonalization as used in Theorem 6.19
fails for o A co. Nevertheless, the theorem is true for this blade: o Aoo =eqe_.
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10.7 Intersections

Geometric objects in R™ meet in lower dimensional objects, their intersec-
tion. Examples: The meet of a line and plane intersecting in a point is that
point. The meet of distinct intersecting planes is their line of intersection.

Theorem 10.3 (Representation of intersections). Let A and B be blades in
G"*+11 directly representing geometric objects A and B in R™. Let J be a blade
representing span(A, B). Take duals with respect to it: A* = A/J, etc.

Then A* A B* is a dual representation of the meet A N B.

Proof. (Gregory Grunberg.) Let x € J. Steps (1) and (5) below use the defi-
nition of dual and direct representations (Section 10.2). Step (2) follows from
Theorem 6.30a,° Step (3) from Theorem 6.26, and Step (4) from Theorem 6.29a:

xeAd & xeB > z-A*=0 & z-B* =0
2 2. (B°AAY)=0 & z-(A*"AB*)=0
2 2A(B*-A) =0 & zA(A*-B)=0
L 2AA=0 & zAB=0.

2 xed & xeB.
This chain of implications circles around on itself, so all of its statements are
equivalent. In particular, forz € J, x€e A & x€B < z-(A*AB*)=0. O

To apply the theorem we need the blade J. It represents the join of the
geometric objects A and B. Examples: The join of distinct intersecting lines is
the plane containing them. The join of a line and a point not on it is the plane
containing them.

Unfortunately, there is no general geometric algebra formula expressing J in
terms just of A and B. But there are efficient algorithms which compute it.

The join of distinct points p and q is a new kind of geometric object for us,
a point pair, consisting of just the two points. It has a direct representation pAgq
(Problem 10.7.3). It can also be thought of as representing the 0-dimensional
analog of 1-dimensional circles (pAgAr) and 2-dimensional spheres (pAgATAS).

Example. Let o and 7w be dual representations of a sphere and plane inter-
secting in a circle. The join of the sphere and plane is R3, so the circle’s dual
representation in G3t11 is o A 7.

Example. Let m; and w9 be dual representations of distinct intersecting planes
in R3. Their join is R?, so m; A 7 is the dual representation of their line of
intersection.

There is an analog of this example in R? vector algebra: the cross product
of vectors normal to two planes is a vector along the intersection of the planes.

6For the application of the theorem here, we must be sure that A* N B* = {0}:
yeA*&yeB* = y-A=0&y-B=0 = y-span(4,B)=0 = y-J=0 = y=0.



SECTION 10.7: INTERSECTIONS 195

Exercise 10.23. Let n and n + doo be dual representations of parallel planes.
a. Find a dual representation of their intersection.
b. Show: No p is in the dual representation, but oo is. That is, the intersec-
tion of the planes in R" is . Intuitively, this makes sense.

Exercise 10.24. Use Theorem 10.3 to compute the intersection of the line
containing the points —e; and e; with the line containing the points e; + e
and e; — eo. Hint: First determine .J.

Object Dual Representation Direct Representation
Sphere ach%p%o S=pAgArTAs
oc=p-(choo)
Plane T=n+dx P=pAgArNoo
T =p-(noo) P=pADAx
Circle c=0AT C=pAgAT
Line A=m1 Ao L=pAqgAN©
A=oc0-C L=pAdAoo
Point pair pAq

Fig. 10.2: Representations of geometric objects in the conformal model.

Problems 10.7

10.7.1. Let o1 and o9 be dual spheres in R? of radius p centered at Le;.

a. Compute C' = g1 A gy from Theorem 10.3. If p > 1, then C is the dual
representation of the intersection of the spheres, a circle.

b. Show that C? = 4(1 — p?). Thus the spheres intersect in a circle, a point,
or not at all, according as C? < 0, = 0, > 0. By covariance this test works for
all sphere pairs of equal radii.

10.7.2. Refer to the first example following Theorem 10.3. Take ¢ = 0 — %oo
(unit sphere centered at o) and m = ez + doo (plane parallel to zy plane at
distance d away). Compute ¢ = o A . Interpret ¢ for different values of d.

10.7.3. Show that p A ¢ represents the point pair {p,q}. Hint: By covariance
it is sufficient to show this for two (carefully chosen) points. I used GAlgebra.

10.7.4 (Tangent vectors). Let ¢ — %oo7 c = *eq, dually represent two circles in
R? of radius 1. They intersect at the origin with common tangent vector es.

a. Find a dual representation of the intersection of the circles. Ans. o A 2e;.
b. Show that origin is the only point in the intersection, as expected.

c. The dual tangent vector o A 2e; represents what is common to the circles:
the point 0 and the tangent vector es, represented dually. Give reasons for:

Tp(oA2eq) e Tp(o) A Tp(2e1) 2 pA(p- (261 Aoo)).
For Step (2) use GAlgebra. This (not p A 2eq) is a dual tangent vector at p.
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Conformal Model: Final Words

The geometric objects and their representations in this chapter are only a
fraction of those available. Pablo Colapinto has compiled two remarkable lists.
One lists 25 different kinds of geometric objects representable in the conformal
model. The other lists 200 constructions in total for them!”

Figure 10.3 shows a small sample of the 200, seven (of nine) ways to construct
a dual line. The first item says that a dual line can be constructed as an inner
product of co and a direct circle (Exercise 10.19). (For | see the footnote to
Definition 6.12.)

ol I L eed, MO Q1O @)

Inf|Cir PssxLin Pnt]Drb Par|Drt Drv]Sph Flp|/Sph Flp]|Pln
Fig. 10.3: Operations that Construct a Dual Line

Compare this richness with vector algebra, where vectors are the only kind
of geometric object.

We have two geometric algebras for Euclidean n-space: the standard model
G™ and the conformal model G™*1:1. In both, blades represent geometric ob-
jects. In the standard model an outer product of three vectors represents an
oriented volume. In the conformal model an outer product of three null vectors
represents a circle. The semantics are different: oriented volumes are not circles.
But the syntax is the same: the same rules of geometric algebra apply to both.
Thus we need learn the rules only once to work with both.

It is even better than this. With suitable software it is possible to reap the
benefits of the conformal model without knowing the rules.

The software must provide functions to (i) construct geometric objects (e.g.,
a sphere from a center and radius), (ii) transform geometric objects (e.g., trans-
late them), and (iii) retrieve information about geometric objects (e.g. the
center of a sphere or the intersection of two spheres).

A user can then think just in terms of geometric objects and transformations,
with the conformal calculations hidden away in a magic “black box”. Various
software does this to various degrees, including the GAlgebra notebook cm3.

It is natural to couple such software with graphing software. The dimension
of the 3D conformal model G**11 is 25 = 32 (Problem 6.1.1). Surprisingly,
efficient conformal model based graphics programs are only slightly less efficient
than those using traditional methods. One estimate is 10%.

Surveying recent applications of geometric algebra to computer science and
engineering shows that

The conformal model is where it is at!

7P. Colapinto, VERSOR: Spatial Computing with Conformal Geometric Algebra. See pp.
25 and 67 for the lists. Figure used with permission of Colapinto.
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