
= lim
h→0

Fr (v (x) + h (a · ∇x) v, x+ ha)− Fr (v (x) , x)

h
,

= (((a · ∇x) v) · ∇v)Fr (v, x) + (a · ∇x)Fr (v, x) . (63)

In eq. (63) one must be careful of the parenthesis since ((a · ∇x) v) ·∇v is (must be) a scalar operator. The second
term in eq. (63) is only non-zero if the coordinate connection is non-zero.

We now evaluate the vector operator, (∇xv) ·∇v, for a given coordinate system (using gij = ei ·ej and ei = gijej)
gives

(∇xv) · ∇v =
�
ei∂xi

�
vjej

��
· ek∂vk ,

= ei
��
∂xivj

�
ej + vj (∂xiej)

�
· ek∂vk ,

= ei
��
∂xivj

�
δkj + vj (∂xiej) · gklel

�
∂vk ,

= ei
��

∂xivj
�
∂vj +

1

2
vjgkl (∂xigjl) ∂vk

�
(64)

and

∇xFr (v (x) , x) =

��
∂xivj

�
∂vj +

1

2
vjgkl (∂xigjl) ∂vk

�
F i1...ir
r (v) ei (ei1 ∧ . . . ∧ ei1)+

F i1...ir
r (v) ei∂xi (ei1 ∧ . . . ∧ ei1) . (65)

1.9.4 Linear Differential Operators

First a note on partial derivative notation. We shall use the following notation for a partial derivative where the
manifold coordinates are x1, . . . , xn:

∂j1+···+jn

∂xj1
1 . . . ∂xjn

n

= ∂j1...jn . (66)

If jk = 0 the partial derivative with respect to the kth coordinate is not taken. If the jk = 0 for all 1 ≤ k ≤ n
then the partial derivative operator is the scalar one. If we consider a partial derivative where the x’s are not in
normal order such as

∂j1+···+jn

∂xj1
i1
. . . ∂xjn

in

,

and the ik’s are not in ascending order. The derivative can always be put in the form in eq (66) since the order of
differentiation does not change the value of the partial derivative (for the smooth functions we are considering).
Additionally, using our notation the product of two partial derivative operations is given by

∂i1...in∂j1...jn = ∂i1+j1,...,in+jn . (67)

A general general multivector linear differential operator is a linear combination of multivectors and partial
derivative operators denoted by (in all of this section we will use the Einstein summation convention)

D ≡ Di1...in∂i1...in . (68)
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Equation (68) is the normal form of the differential operator in that the partial derivative operators are written
to the right of the multivector coefficients and do not operate upon the multivector coefficients. The operator of
eq (68) can operate on mulitvector functions, returning a multivector function via the following definitions.

F as (Einstein summation convention)

D ◦ F = Dj1...jn ◦ ∂j1...jnF, (69)

or
F ◦D = ∂j1...jnF ◦Dj1...jn , (70)

where the Dj1...jn are multivector functions and ◦ is any of the multivector multiplicative operations.

Equations (69) and (70) are not the most general multivector linear differential operators, the most general would
be

D (F ) = Dj1...jn (∂j1...jnF ) , (71)

where Dj1...jn () are linear multivector functionals.

The definition of the sum of two differential operators is obvious since any multivector operator, ◦, is a bilinear
operator ((DA +DB) ◦ F = DA ◦ F +DB ◦ F ), the product of two differential operators DA and DB operating
on a multivector function F is defined to be (◦1 and ◦2 are any two multivector multiplicative operations)

(DA ◦1 DB) ◦2 F ≡
�
Di1...in

A ◦1 ∂i1...in
�
Dj1...jn

B ∂j1...jn

��
◦2 F

=
�
Di1...in

A ◦1
��

∂i1...inD
j1...jn
B

�
∂j1...jn +Dj1...jn

B

�
∂i1+j1,...,in+jn

�
◦2 F

=
�
Di1...in

A ◦1
�
∂i1...inD

j1...jn
B

��
◦2 ∂j1...jnF +

�
Di1...in

A ◦1 Dj1...jn
B

�
◦2 ∂i1+j1,...,in+jnF,

where we have used the fact that the ∂ operator is a scalar operator and commutes with ◦1 and ◦2.

Thus for a pure operator product DA ◦DB we have

DA ◦DB =
�
Di1...in

A ◦
�
∂i1...inD

j1...jn
B

��
∂j1...jn +

�
Di1...in

A ◦1 Dj1...jn
B

�
∂i1+j1,...,in+jn (72)

and the form of eq (72) is the same as eq(69). The basis of eq (72) is that the ∂ operator operates on all object
to the right of it as products so that the product rule must be used in all differentiations. Since eq (72) puts the
product of two differential operators in standard form we also evaluate F ◦2 (DA ◦1 DB).

A special case we must consider is ∇ ◦ F or F ◦ ∇. Should it return a multivector or a differential operator? We
can make this situation unambiguous by defining an alternative geometric derivative operator ∇̄ so that ∇ ◦ F
always immediately evaluates the derivatives of F and returns a multivector while ∇̄ ◦F defers evaluation of any
derivatives and returns a differential operator. If the Dj1...jn are scalar functions these definitions agree with those
used for the operator of quantum mechanics. For example consider the expectation value of the commutator of
position and momentum:

�
dx ψ∗

�
i�

∂

∂x
, x

�
ψ =

�
dx ψ∗

�
i�

∂

∂x
x− xi�

∂

∂x

�
ψ

= i�
�

dx ψ∗
�

∂

∂x
(xψ)− x

∂

∂x
ψ

�
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= i�
�

dx ψ∗ψ.

A general differential operator is built from repeated applications of the basic operator building blocks
�
∇̄ ◦A

�
,�

A ◦ ∇̄
�
,
�
∇̄ ◦ ∇̄

�
, and

�
A± ∇̄

�
. Both ∇ and ∇̄ are represented by the operator

∇ = ∇̄ = ei
∂

∂xi
, (73)

but are flagged to produce the appropriate result.

For example if we wanted the commutator of the position and geometric derivative operating on a multivector
function F we would write

�
x, ∇̄

�
F =

�
x∇̄ − ∇̄x

�
F

= x∇̄F − ˙̄∇ẋF − ˙̄∇xḞ . (74)

If we could use ∇ instead of ∇̄ we would get

[x,∇]F = (x∇−∇x)F

= x∇F − (∇x)F, (75)

but we cannot use ∇ unless we define (in general)

∇ ◦A ≡ ∇̄ ◦A, (76)

but then we would have no way of writing the immediate evaluation of ∇◦A. Thus for the purpose of a computer
algebraic representation of mulitvector differential operators we need both ∇ and ∇̄ since, at least in python, we
cannot implement the dot notation for differentiation without writing a custom parser.

In the ∇̄ notation the directional derivative operator is a · ∇̄, the Laplacian ∇̄ · ∇̄ and the expression for the
Riemann tensor, Ri

jkl, is �
∇̄ ∧ ∇̄

�
ei =

1

2
Ri

jkl

�
ej ∧ ek

�
el. (77)

1.10 Manifolds and Submanifolds

A m-dimensional vector manifold2,M, is defined by a coordinate tuple (tuples are indicated by the vector accent
“� ”)

�x =
�
x1, . . . , xm

�
, (78)

and the differentiable mapping (Um is an m-dimensional subset of �m)

eM (�x) : Um ⊆ �m → V, (79)

where V is a vector space with an inner product3 (·) and is of dim (V) ≥ m.

2By the manifold embedding theorem any m-dimensional manifold is isomorphic to a m-dimensional vector manifold
3This product in not necessarily positive definite.
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