GAlgebra Primer

Alan Macdonald
Emeritus Professor of Mathematics
Luther College
Decorah, Towa USA
mailto:macdonal@luther.edu
faculty.luther.edu/~macdonal

January 24, 2018

Abstract

This document describes the installation and basic use of the geometric
algebra/calculus Python module GAlgebra written by Alan Bromborsky.
It was written to accompany my texts Linear and Geometric Algebra and
Vector and Geometric Calculus.

This is only an introduction to the module; many features are not
covered. In some situations there are simpler approaches to those de-
scribed here. But to include them would complicate this introduction.
For complete documentation see GAlgebra.pdf, which is distributed with
GAlgebra.

New features may well be added to GAlgebra. There is even a likely
syntax change in the offing. So please check back for new versions of this
document.

I encourage feedback and will post updated versions of this document
as appropriate.

mailto:macdonal@luther.edu
faculty.luther.edu/~macdonal

Contents
1 Installation

2 Algebra
2.1 Linear Algebra . .
2.2 Geometric Algebra

3 Calculus
3.1 Vector Calculus . .
3.2 Geometric Calculus

4 Printing

5 Jupyter Notebook

BN

10
10
11
12

14

SymPy is a computer algebra system written in the popular computer program-
ming language Python. It provides symbolic computation capabilities. For example, it
can invert symbolic matrices. GAlgebra adds symbolic geometric algebra and calculus
capabilities to SymPy.

This primer does not teach Python or SymPy programming. It describes only what
is necessary to accomplish simple linear algebra, geometric algebra, vector calculus,
and geometric calculus computations with GAlgebra.

1 Installation

You will need Python, SymPy, and GAlgebra. Jupyter (formerly IPython) is optional.
All are free, multiplatform, and downloadable. You will also need a program editor
unless you plan to use Jupyter exclusively — see below.

Python. Install the latest Python 2.7 version (Python 3 will not work) from
https://www.python.org/downloads/.

The Doc folder of a Python installation contains Python documentation. Online
documentation is at https://docs.python.org/2/download.html.

A useful Python tutorial: http://www.tutorialspoint.com/python/index.htm.

SymPy. To install Sympy, open a command line in your Python27\Lib\Scripts folder
and run pip install sympy. To update: pip install sympy --upgrade.
SymPy capabilities: https://en.wikipedia.org/wiki/SymPy.
Full documentation: http://docs.sympy.org.
Tutorial: https://asmeurer.github.io/scipy-2014-tutorial/html/index.html.
mpmath enables floating-point arithmetic with arbitrary precision in SymPy.

Install: pip install mpmath. Documentation: http://mpmath.org/.

GAlgebra. At https://github.com/brombo/galgebra pull down the “Clone or down-
load” menu and choose “Download ZIP”. Copy the folder galgebra-master to the
Python subfolder Lib\site-packages.

Open a command prompt in the galgebra subfolder of galgebra-master. On a
Windows system run “python setgapth.py”. On Linux and OS X systems enter and
run the command “sudo python setgapth.py”.

Program Editor. Geany is one possibility. It is cross-platform. Download and install
it from http://www.geany.org/. There are 32- and 64-bit versions.

For printing to a console (see Section 4) Geany must know the location of the
console program and configure it. This happens automatically on Linux and OS X,
but not Windows. For Windows download and install ConEmu (http://conemu.
github.io/). In Geany go to Edit/Preferences/Tools/Terminal and enter the full
path (your choice) of conemu’s exe file (in quotes), followed by “/WndW 180 /cmd
%c” (no quotes).

Jupyter (formerly IPython) Notebook. The Jupyter Notebook provides a way
to do Python programming interactively. It runs in a web browser. See Section 5.
To install Jupyter run pip install "ipython[notebook]" in a command prompt.

https://www.python.org/downloads/
https://docs.python.org/2/download.html
http://www.tutorialspoint.com/python/index.htm
https://en.wikipedia.org/wiki/SymPy
http://docs.sympy.org
https://asmeurer.github.io/scipy-2014-tutorial/html/index.html
http://mpmath.org/
https://github.com/brombo/galgebra
http://www.geany.org/
http://conemu.github.io/
http://conemu.github.io/

Notation. This document will use lower case italic for scalars (e.g., s), lower case
bold for vectors (e.g., v), upper case bold for blades (e.g., B), and upper case italic
for general multivectors (e.g., M). Python statements will appear in this font.

2 Algebra

2.1 Linear Algebra

Type the Python program below into your editor. The program defines the matrix
M = [} 7] and then prints M ~1, The first line gives the program access to SymPy.

from sympy import *

m = symbols('m', real=True) # Anything following a # is a comment
Without real=True, symbols are complex numbers.

M = Matrix([[1,m],[3,4] 1) # Extra spaces inserted for clarity

print M.inv()

If you use Geany, press F'5 in to run the program. You will be prompted to give the
program a name. (Use a “py” extension.) The output is

[14+3m/(4-3m), -m/(4-3m)]

[-3/(4-3m), 1/(4-3m)]

Thus

o [+ 8 11 4 —m
M= 3 -

_3 _
i—3m i—3m 4-3m

We have used the symbol m in M. Symbols must be declared. One way to do this
is with a symbols statement, as above. You can declare several symbols at once, e.g.,
x1,x2,m,z = symbols('xl x2 m z', real=True)

Elementary matrix methods. SymPy provides several:

M+N # sum

Mx* N # product
M.inv() # inverse
M.T # transpose
M.det() # determinant
M.rank() # rank

Vector methods: norm, inner product. Implement vectors as matrices:
u = Matrix([1,2,3]) # A vector
v = Matrix([4,5,6]) # A vector

print u.norm().evalf(3)
Output: 3.74

print u.dot(v)
Output: 32

print u.cross(v) # 3D only
Output: Matrix([-3], [6], [-3])

Span. The rref method computes a basis for the span of the row vectors of a matrix.
(“rref” is an abbreviation for reduced row echelon form.)
A = Matrix([[1,2,-1], [-2,1,1], [0,5,-1] 1)
print A.rref() [0]

Output (condensed): ([1, 0, -3/5] [0, 1, -1/5] [0, 0, 0])
The vectors [1, 0, -3/5] and [0, 1, -1/5] form a basis for the two dimensional
span of the three row vectors of A.

Least squares.
from mpmath import lu solve, matrix
A = matrix([[0, 1], [1, 11, [2, 1], [3, 111)
b = matrix([[-1], [0.2], [0.9]1, [2.1]11)
print lu_solve(A, b))
Output: [1.0] [-0.95] (Least squares line: y = 1z — 0.95)

Characteristic polynomials.
x = symbols('x')
M = Matrix([[1,2], [2,1]1 1)
charpoly = (x*eye(2) - M).det() # eye(2) = 2 x 2 identity
print charpoly
Output: x**2 - 2*%x - 3
print factor(charpoly)
Output: (x - 3)*(x + 1)

Singular value decomposition.

from mpmath import *

mp.dps = 4 # Set precision

A = matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 01])
U, S, V=svd_r(d). # _r for real matrix; _c for complex

Simplify trigonometric expressions. Use the function trigsimp (which is not
perfect). For example,
x = symbols('x')
print trigsimp(sin(x)**2 + cos(x)#**2)
Output: 1

Functions. Here is a simple Python program using a function:
def absolute_value(n):

if n < O:
n=-n
return(an)
n=-1
print absolute_value(n), n # Output: 1-1
Execution starts with n = -1. The output shows that the value of n is unchanged

by the function. Other object types can change. This has to do with the distinction
between mutable and immutable objects in Python.

Indentations always follow colons. They are essential; leave one out and you will
get a syntax error.

The following linear algebra functions need another import:

from mv import *

Systems of linear equations. rref (described above) also solves systems of linear
equations. In this context the output from rref is not well formatted for human
readers. The function printrref assumes that rref’s output is from a system of
equations and prints it in a readable form.
12-127 (% 4
As an example, consider the system [—g(lj ég] [z] = [_i] . The augmented
- z
matriz of the system consists of the coefficient matrix augmented with the column
vector on the right side. Assign it to A and printrref it:

A = Matrix([[1,2,-1,2,4], [-2,1,1,0,-1], [2,0,-2,4,1] 1)
printrref(A, 'wxyz')
Output: 1w + Ox + Oy + -2z = 9/4
Ow + 1x + Oy + 0z = 7/4
Ow + Ox + 1y + -4z = 7/4

The output is another system of equations. This system

has two important properties. First, it has the same solutions w 2 9/4
as the original. Second, the solutions can be read directly x 0 7/4
from its equations. Starting from the first equation of our y ~ |4 i+ 7/4
example, w = 2z +9/4, ¢ = 7/4, y = 4z + 7/4, with z not z 1 0

further constrained. Set it equal to ¢. Then the solution is
shown at the right.

Eigenvalues and eigenvectors. SymPy provides M.eigenvects() for the eigen-
vectors of matrix M. But its output is not well formatted for human reading. The
statement printeigen (M) will print the eigenvalues of a matrix M, their multiplicities,
and their eigenvectors.

Gram-Schmidt orthogonalization. It is applied to a list of vectors, each imple-
mented as a matrix:

L = [Matrix([1,2]), Matrix([3,4]1)]
print GramSchmidt (L)
Output: [[1] [2], [4/5] [-2/5]]

A second argument set to True will normalize the eigenvectors:
print GramSchmidt(L, True)

Output: [[v/5/5][2* v/5/5], (2 * v/5/5] [-v/5/5]]

This output is not well formatted for human readers. printGS will print the output
of GramSchmidt in decimal form:

printGS(L, True) (Note change from earlier version)
Output: [[0.447, 0.894] [0.894, -0.447]]

u = Matrix([1,2,3]) # A vector
v = Matrix([4,5,6]) # A vector
print correlation(u,v)

Output: 1

2.2 Geometric Algebra

To use the geometric algebra facilities of GAlgebra, first create a specific geometric
algebra. This code creates the standard 3D geometric algebra and names it g3:

from sympy import *

from ga import Ga # import galgebra

g3coords = (x,y,z) = symbols('x y z')

g3 = Ga('ex ey ez', g=[1,1,1], coords=g3coords) # Create g3
[1,1,1]: norms squared of basis vectors (assumed orthogonal)
Example of 2D nondiagonal metric: g = ‘01,10’

(ex, ey, ez) = g3.mv()

The two sets of coordinate names in the program above, (x y z) and ‘x y z’, are the
same. The same is true of the basis vector names, ‘ex ey ez’ and (ex ey ez). See
Section 4, Printing, for reasons to make them different.

The program produces no output. Add these lines:
A = yxex + 3xexxey
B = x*ey
print AxB

Output: 3xxxex + xxyxex/Aey.

Substitute. Sometimes you want to substitute specific values for variables. Exam-
ple: print (A*B).subs({x:1,y:2}) produces 3*ex + 2«exAey. Note that subs leaves
variables unchanged, e.g., A is unchanged after print A.subs({y:2}).

Arithmetic Operators. If you see the arithmetic expression 2 4+ 3 x 4 you know to
multiply 3 x 4 first and then add 2. This is because mathematics has a convention
that multiplication comes before addition; multiplication has higher precedence than
addition. If you want to add first, write (2 + 3) x 4.

The table shows GAlgebra’s geometric algebra arith- " geometric product
metic operators.1 They are given in precedence order + — add, subtract
(imposed by Python), high to low.? Plus and minus are A outer product
grouped because they have the same precedence, as do | inner product
< and >. < left contraction

The high precedence of + — causes a problem. Con-
sider the simple expression u + v - w. GAlgebra evaluates it as (u + v) - w. If you
intend u+ (v-w), as you probably do, then you must use the parentheses. As another
example, GAlgebra evaluates u:v*w as u- (v*w). If you intend (u-v) * w, then
you must use the parentheses. (For many authors u- v * w does mean (u-v) *w.)

As a general rule, you must put parentheses around terms with inner or outer
products, to “protect” them from the high precedence £’s bounding them, as in the
u+v-w example. And remember that within terms the geometric product has higher
precedence than the inner and outer products, as in the u- v * w example.

Algebras.py. This file is distributed with GAlgebra. It contains code to create many
different geometric algebras, including g3 and all others used in this document, as well
as others not covered here: homogeneous, spacetime, and conformal algebras.

1Use “<” for the product called the inner product and denoted “-” in my books and this
document. Use “|” for the product called the inner product and denoted “-” in, e.g., books
by Hestenes and Sobczyk and by Doran and Lasenby.

2Click for a complete list of Python’s operator precedences.

https://docs.python.org/2/reference/expressions.html#operator-precedence

Multivector Functions
To use (most of) these, first from mv import #*. There is an alternate form for most,
which do not require the import. Examples: M.dual() and M.grade(r).

In the list below, M is a multivector; A, B are blades; v1, v2 are vectors; and ga
is a geometric algebra, e.g., g3.

ga.EQ Outer product of the basis vectors of ga.
ga.I() Unit pseudoscalar of ga, i.e., ga.E() normalized.
dual (M) M*. Returns MI. My books use M* = MI~*.
For this, issue Ga.dual_mode ('Iinv+')after imports.
even(M) Even grades of M
exp (M) eM. M? must be a scalar constant.
If M? >0, use exp(M, ’+°)
grade (M,r) (M),
grade (M) (M),
inv (M) Mt
norm(M) M|
norm2 (M) | M2
odd (M) Odd grades of M
proj(B,A) Ps(A). Projection of A on B.
rot (itheta,A) Rig(A). Rotation of A by angle if.
refl(B,A) Fe(A). Reflection of A in B.
scalar(M) GAlgebra scalar — sympy scalar.
com(A,B) Commutator: [A,B] = AB — BA
cross(vi,v2) Cross product
Nga(M, prec=k) Round decimals in M to k significant figures.
rev(M) M*. Reverse of M.
ReciprocalFrame(basis) Dbasis is a list of vectors enclosed in parentheses.
ga.r_basis List of reciprocal basis vectors of ga basis.

Each is expanded in the ga basis.
There are also member function versions of these functions, e.g., M.even().

Linear transformations. The following three examples create a linear transfor-
mation (outermorphism) L on the geometric algebra g2. The matrix of the transfor-
mation with respect to the basis {ex, ey} is also shown.

L = g2.1t('A"). Matrix: [i:i ﬁ::] (because g2 has coordinates = and y).

An optional second parameter mode = 's' or mode = 'a’' will generate a general
symmetric or antisymmetric (skew) matrix, respectively.

L = g2.1t([[0,2], [1,1]1). Matrix: [31].
L = g2.1t([2%ey,ex+ey]). Matrix: [31].

An optional second parameter f=True to 1t makes the linear transformation a
function of the coordinates.

If M is a multivector (not necessarily a vector), then L(M) is the result of the
outermorphism L applied to M.

Linear transformations can be added (+), subtracted (—), and composed (*).
L.det() (determinant), L.adj() (adjoint), L.tr() (trace), and L.matrix() are also
available.

General Multivectors

GAlgebra allows assignments of variables to specific multivectors as in A = y*ex +
3xexxey above. GAlgebra can also create general multivectors. For example, this code
creates and prints a general vector Python variable V:

V =g2.mv('V', 'vector')
print V
Output: V_x*ex + V__y*e.y
The double underscore __ is explained in Section 4.

The first parameter is a string, the printing name of the variable. An optional third
parameter f=True makes the coefficients a function of the coordinates, i.e, makes
the multivector a function of the coordinates. Here are the options for the second
parameter:

gnd Result
'scalar’ scalar
'vector' vector
'bivector' bivector
n grade n multivector
'pseudo' pseudoscalar
'even! even multivector (spinor)
'mv' general multivector

The scalar result in the top row is a general scalar multivector, a member of the
geometric algebra. This is different from a SymPy scalar.
In addition, g2.mv(c), where c is a specific scalar, is available.

General multivectors can be useful to test a conjecture about geometric algebra,
especially when first learning. For example, let B be a bivector. After finding that
v-B is in B for several vectors v, one might wonder if this is always so. The following
code proves this.

v = g3.mv('v', 'vector') # Construct a symbolic vector in g3.
B = g3.mv('B', 'bivector') # Construct a symbolic bivector in g3.
W= (v<B) AB #W=0<%&v-Be€B.
print W.simplify() # Do not use simplify(W).

Output: 0.

Thus the statement “v- B is in B” is true. The code is for G3. Does the statement
remain true in higher dimensions? Not for general bivectors B. But recall that a
general bivector B in G? is an outer product of two vectors. So the statement in G2
is about three vectors. Thus it remains true in higher dimensions if B is an outer
product of two vectors. For then it involves three vectors in some 3D subspace.

Try adding code to show that v - B is orthogonal to v.

3 Calculus
3.1 Vector Calculus

Differentiation, including partial differentiation.

X,y = symbols('x y') # Define the symbols you want to use.
print diff (y*x**2, x)

Output: 2*x*y

print diff (diff (y*x**2,x),y)

Output: 2*x

f = yHxk*2

print diff(f,x)

Output: 2*x*y

Jacobian. Let X be an m X 1 matrix of m variables. Let Y be an n X 1 matrix of
functions of the m variables. These define a function f: X € R™ — Y € R™. Then
Y.jacobian(X) is the n X m matrix of £}, the differential of f at x.

r, theta = symbols('r theta')

X = Matrix([r, thetal)

Y = Matrix([r*cos(theta), r*sin(theta)])

print Y.jacobian(X) # Print 2 x 2 Jacobian matrix.

print Y.jacobian(X).det() # Print Jacobian determinant (only if m = n).

Sometimes you want to differentiate Y only with respect to some of the variables
in X. Then replace X in Y. jacobian(X) with only those variables. For example, print

Y.jacobian([r]) produces the 2 x 1 matrix [$259].

Integration. integrate(f, x) returns an indefinite integral [f dz.
integrate(f, (x, a, b)) returns the definite integral f: fdz.
x = Symbol('x')
print integrate(x**2 + x + 1, x)
Output: x**3/3 + x**2/2 + x

Iterated integrals.

This code evaluates [,_; [, 5 (% +y) dy d:
X, y = symbols('x y')

I1 = integrate(x + y, (y, 0, 1-x))

I2 = integrate(Il, (x, 0, 1))

evalf.
print log(10), log(10).evalf(3)
Output: log(10) 2.30

10

3.2 Geometric Calculus

grad = g3.grad assigns to grad (your choice) the gradient operator of the geometric
algebra g3, V = e;0; + ,0y + e.0.. If F is multivector valued, then grad*F,
grad<F, and grad AF are defined and are called the gradient, divergence, and curl of
F, respectively.

The directional derivative of F' in the direction a is (a<grad)*F.

Curvilinear coordinates. Curvilinear coordinates are implemented by creating an

appropriate geometric algebra. For example, this code creates sp3, the standard geo-

metric algebra in R3, in spherical coordinates:

sp3coords = (r, phi, theta) = symbols('r phi theta')

sp3 = Ga('er ephi etheta', g=None, coords=sp3coords, \

X=[r,r*sin(phi)*cos(theta) ,r*sin(phi)*sin(theta) ,r*cos(phi)] ,norm=True)

\” is Python’s line continuation character.
“norm=True” returns normalized basis vectors, often denoted F, (3, 6.
Mathematics naming convention: ¢ colatitude, 8 longitude.

(er, ephi, etheta) = sp3.mv()

sp3grad = sp3.grad

Now sp3grad = e-8, + e47 "0y + eq(rsin ¢) " 0y, the gradient operator of sp3.

Here is a different Ga statement to create sp3:
sp3=Ga('er ephi etheta',g=[1,r**2,r**2*sin(theta)**2],sp3coords,norm=True)

Manifolds. This example creates the unit sphere sp2 in R® as a submanifold of the
geometric algebra g3 from Section 2.2:
sp2coords = (phi,theta) = symbols('phi theta', real=True)
sp2param = [sin(phi)*cos(theta), sin(phi)#*sin(theta), cos(phi)]
Parameterize sp2 in terms of the x,y, z coordinates of g3

sp2 = g3.sm(sp2param, sp2coords, norm=True)
(ephi, etheta) = sp2.mv() # sp2 basis vectors
(rphi, rtheta) = sp2.mvr() # sp2 reciprocal basis vectors
sp2grad = sp2.grad
Now sp2grad = es0, + eo(sin) "0y, the gradient operator of sp2. Note that it is
the restriction of sp3grad to the sphere.

Multivectors can be expressed in either the sp2 basis (ephi, etheta) or the g3 basis
(ex, ey, ez).

Here is another way to create the unit sphere in R3, this time as a submanifold of
the geometric algebra sp3 from Section 2.2:
sp2coords = (p,t) = symbols('p t', real=True) # p = phi, t = theta
sp2param = [1, p, t] # Parameterization of unit sphere
sp2 = sp3.sm(sp2param, sp2coords)

11

4 Printing

GAlgebra has two modes of output: to a console (terminal) or to a pdf with beautiful
TEX typesetting.

Subscripts and superscripts. With the code
sp2coords = (ph,th) = symbols('phi theta', real=True)
the short “th” is used in the program, e.g., print th. However, and this is the point,
the print statement sends “theta” to a console, and “6” to a pdf.

Similarly, with the code
sp3 = Ga('e_r e_phi e_theta', ...)
(er, eph, eth) = sp3.mv()
the “eth” is used in the program, e.g., print eth. However, the print statement sends
“e_theta” to a console and “ep” to a pdf.

The statement
print g2.mv('V', 'vector') sends “V_x*ex + V__y*ey” to the console and
“V%es; + VVe,” to a pdf.

With console output, ’\n ’ (note space) in a string in a print statement starts a
new line.

Fmt. The command Fmt (n) specifies how multivectors are split over lines:

n = 1: The multivector is printed on one line. (The default.)

n = 2: Each grade of the multivector is printed on a separate line.

n = 3: Each component of the multivector is printed on a separate line.
The n = 2 and n = 3 options are useful when a multivector will not fit on one line.

The code print A.Fmt(n) will print A as specified. And print A.Fmt(n,'A') will
print the string A = followed by A, as specified. You can print a variable with one n
and later with another. An earlier Fmt (n) remains in force after these print versions
of Fmt.

Enhanced printing. With enhanced printing to the console, multivector bases,
functions, and derivatives are printed in different colors for easier reading. To invoke
enhanced printing, issue these commands:

from printer import Eprint

Eprint () # right after the import statements

The color coding is automatic on Linux and OS X. But on Windows the default
colors of ConEmu (Section 1) should be changed. For this, right click on its Title Bar.
Choose Settings, then Colors. I use Text:0; Back: #7; Popup: #0; Back: #7; and @
Extend foreground colors with background #13. If you find a color combination that
looks better to you, let me know.

12

BETEX output. When a program using BTEX mode ends, its output is opened in the
default pdf reader. (In Windows, you must close the pdf reader, or at least the tab
for your file, before rerunning your program. Otherwise your program will hang.) It
is helpful, but not necessary, to know a bit of BTEX for this. Of course you need a
KTEX system on your computer.?

You need these statements to use BTEX printing:
from printer import *
Format () # after the import

xpdf () # last statement of program.

Here is an example using KTEX with GAlgebra. When printing a string, an underscore
“_” designates a subscript. A caret “~” (not a double underscore) designates a
superscript. The statement

print r'\alpha 1\bm{X}/\gamma r A3’

produces the output a1 X /'7;9’ . Note the r preceding the string. It prevents certain
undesirable (from GAlgebra’s point of view) Python processing of strings with back-
slashes. An alternative is to everywhere replace a “\” with “\\”.

If the string contains an “=", e.g., r'XXX = YYY', then substitu- grad | V
tions are made in XXX (only) according to the table. Thus A
r'grad A”B | * = grad ATB | *' *
< 1]

prints as VA A B- = gradAZ |«
A newline \n cannot appear in a string preceded by an r. Instead use r'A' +\
n' +xr'B' to split ‘AB’ into two lines. The +’s glue (concatenate) strings.

The parameters Format (Fmode=True, Dmode=True) give additional formatting op-
tions. Use just one or both.

Fmode=True. Use f, not the default f(z,y).

Dmode=True. Use O f, not the default %.

The default output page size is 8% x 11 (North American letter). You can change
this. For example, xpdf (paper=(8.5,100)) prevents page breaks in a pdf file to be
read in a reader.

The file Symbols.pdf lists common 4TEX symbols. It is distributed with GAlgebra.

3TeX Live is known to work, as are MiKTeX on Windows and MacTex on OS X. I think
that it is only necessary that the IATEX system provide pdflatex. Please let me know if you
find otherwise.

13

5 Jupyter Notebook

IPython has been renamed Jupyter. This section is not an Jupyter Notebook tutorial.
(For one thing, I don’t know enough to write one.) But it will help get you get started
with the software. Please send me suggestions about ways to make it easier to use the
notebook on Windows, Linux, and/or OS X.

Description and many links: https://en.wikipedia.org/wiki/IPython

Introduction: http://ipython.org/notebook.html

Quick tutorials:
http://ipython.org/ipython-doc/1/interactive/notebook.html
Another Click (The URL is too long.)

Documentation:
http://ipython.org/documentation.html.
http://ipython.org/ipython-doc/stable/notebook/index.html.
Another Click.

Example presentations: http://ipython.org/presentation.html.

Start Notebook. Jupyter files have an ipynb extension. After installation of Jupyter,
jupyter-notebook.exe is in the Python27/Scripts folder. On my PC, I associate ipynb
files to it. Then I can double click on an ipynb file to open Jupyter. To start a new
notebook I open jupyter-notebook.exe.

Enter Statements. Press “enter” to start a new line.
Execute. To execute a notebook cell, press “shift+enter”

Output. All output is typeset by BTEX. Thus, as described in the BTEX page in
Section 4, you need to execute these lines:
from printer import *
Format () # after all imports

Do not use print: Use ex, not print ex; use A.Fmt(), not print A.Fmt(). Do
not use xpdf ().

If you want to produce output more than once in a cell (e.g., in a loop) use, e.g.,
display(ex). You must first from IPython.display import display.

If ph is a variable with value w/4, then Latex(r'$\phi = '+ str(ph) + '$')
produces the output ¢ = 7.

I have written several “get started” notebook files, one for each geometric algebra
in Algebras.py (See Section 2.2). For example, g3.ipynb imports SymPy and GAlgebra
and sets up the geometric algebra g3. I can open the notebook and execute g3’s cell,
and be ready to make g3 calculations interactively. Better, make g3.ipynb read-only.
Then when starting a new g3 notebook, copy g3.ipynb to MyNewNotebook.ipynb (not
read-only) and use it for the notebook.

GAlgebra’s option to print to a pdf is not available in a notebook. However, it is
possible to convert a Notebook to a Python program (and other formats):
http://ipython.org/ipython-doc/1/interactive/nbconvert.html.

14

https://en.wikipedia.org/wiki/IPython
http://ipython.org/notebook.html
http://ipython.org/ipython-doc/1/interactive/notebook.html
http://ipython.org/ipython-doc/rel-0.10.2/html/interactive/tutorial.html
http://ipython.org/documentation.html
http://ipython.org/ipython-doc/stable/notebook/index.html
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/Index.ipynb
http://ipython.org/presentation.html
http://ipython.org/ipython-doc/1/interactive/nbconvert.html

	1 Installation
	2 Algebra
	2.1 Linear Algebra
	2.2 Geometric Algebra

	3 Calculus
	3.1 Vector Calculus
	3.2 Geometric Calculus

	4 Printing
	5 Jupyter Notebook

