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Introduction

William Kindom Clifford

This document describes the implementation, installation and use of a geometric algebra module
written in python that utilizes the sympy symbolic algebra library. The python module ga has
been developed for coordinate free calculations using the operations (geometric, outer, and inner
products etc.) of geometric algebra. The operations can be defined using a completely arbitrary
metric defined by the inner products of a set of arbitrary vectors or the metric can be restricted to
enforce orthogonality and signature constraints on the set of vectors. Additionally, a metric that
is a function of a coordinate set can be defined so that a geometric algebra over a manifold can
be implemented. Geometric algebras over submanifolds of the base manifold are also supported
as well as linear multivector differential operators and linear transformations. In addition the
module includes the geometric, outer (curl) and inner (div) derivatives. The module requires
the sympy module and the numpy module for numerical linear algebra calculations. For KTEX
output a KIREX distribution and pdf viewer must be installed. If the user is interested in using
geometric algebra for strictly numerical purposes I would recommend using the glucat C++



templates which have a python wrapper for python users (http://glucat.sourceforge.net/).


http://glucat.sourceforge.net/
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Chapter 1

Installation on Linux, Windows, and
Mac

1.1 Install python

The galgebra python module, which is an implementation of geometric algebra in python has
two perquisites for a minimal installation, python and sympy. For the python language we have
the following situation®.

0s python installation

linux Comes with all versions of linux

To install python on windows go to https://www.
python.org/downloads/windows/ and install version
windows appropriate for you version of windows. If you wish
a more complete/advanced installation go to https:
//code.google.com/p/pythonxy/.

Basic version comes with OSX. For better in-
mac stallation go to http://docs.python-guide.org/en/
latest/starting/install/osx/.

!Currently galgebra supports python versions 2.7+, but not versions 3.0+ of python.


https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://code.google.com/p/pythonxy/
https://code.google.com/p/pythonxy/
http://docs.python-guide.org/en/latest/starting/install/osx/
http://docs.python-guide.org/en/latest/starting/install/osx/

1.2 Install sympy

For sympy there are two alternatives for installation.

mode method

Go to https://github.com/sympy/sympy/releases
and select option appropriate for your system. Note that

latest release if you have pip (see https://pip.pypa.io/en/latest/
installing.html) installed you can install the latest re-
lease by entering the command “pip sympy.”

Gotohttps://github.com/sympy/sympy and download
zipped archive. Unzip archive. Open terminal/command
line in top directory of unzipped archive. For linux or
osx run “sudo python setup.py install.” For win-
dows run “python setup.py install” from the com-
mand line.

development version

The method for the development version is preferred since that method always builds sympy
with the python system you have installed on your system (32-bits verses 64-bits and particular
python version you are running).

1.3 Install galgebra

Since you are reading this document you have already obtained a copy of galgebra. If you
wish to obtain the very latest version (assuming you have not already done this) go to https:
//github.com/brombo/galgebra and download and extract the zipped archive.

Then with whatever version you are using open a terminal/command line in the galgebra
directory that is in the top directory of the archive. If you are in the correct the directory it
should contain the python program setgapth.py. If you are in linux or osx run the program
with the command “sudo python setgapth.py,” if in windows use “python setgapth.py.”

This program creates the file Ga.pth in the correct directory to simplify importing the galgebra
modules into your python programs. The modules you will use for programming with geometric
algebra/calculus are ga, mv, 1t, and printer®. To import any of these modules into your

2All these modules are in the same directory as setgapth.py.


https://github.com/sympy/sympy/releases
https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html
https://github.com/sympy/sympy
https://github.com/brombo/galgebra
https://github.com/brombo/galgebra

program, say mv, you only have to enter in the program import mv. It does not matter where
the program file is located.

1.4 ETEX Options

In order to use the latex output of the galgebra modules (excluding latex output from Ipython
notebook) you must install a latex distribution. Directions follow if you do not already have
IXTEX installed.?

0s latex installation
linux Open a terminal and run “sudo apt-get texlive-full
install”. It takes about half an hour to install.
windows GO tohttp://miktex.org/download (other downloads).
Download a net installer. Install a full version of MikTex.
mac Go to http://www.tug.org/mactex/ and follow instruc-

tions to install MacTeX.

1.5 “Ipython notebook” Options

To use ipython notebook with galgebra it must be installed. To install ipython notebook do the
following.

Google “get-pip.py” and click on the first entry “get-pip.py”. Then follow the instructions to
download “get-pip.py”. Open a terminal/command line in the directory of the download and
execute python get-pip.py for windows or sudo python get-pip.py for linux. The reason for
install pip in this manner is that it insures the correct settings for the version of python you
are using. Then run in a terminal/command line pip install "ipython[notebook]". If you
have already installed ipython notebook you should enter pip install "ipython[notebook]"
--upgrade to make sure you have the latest version. Linux and OSX users will have to use sudo
with the commands. The version of ipython notebook we are using is jupyter and that should
be shown when the notebook is started.

3In order for galgebra to output latex formatted pdf files your distribution of latex must have pdflatex
installed.


http://miktex.org/download
http://www.tug.org/mactex/

Note that to correctly print latex from ipython notebook one must use the Format () function
from the printer module. Go to the section on latex printing for more information.

1.6 The ANSI Console

The printer module of galgebra contains the class Eprint which is described in section (3.12).
This function uses the capabilities of the ansi console (terminal) for enhanced multivector printing
where multivector bases, sympy functions and derivatives are printed in different colors. The
ansi console is native to Linux and OSX (which is really Unix under the hood), but not windows.
The best available free substitute for the ansi console on windows is ConEmu. The web page for
ConEmu is http://conemu.github.io/. In order to install ConEmu download the appropriate
version of the ConEmu installer (exe file) for your system (32 bit or 64 bit) from the website and
and execute it. Instructions for using ConEmu are given in section (3.12).

1.7 Geany Programmers Editor

Geany is a very nice free programmers editor that work well with python. From within geany you
can execute a python program. The galgebra printing system is setup so that you can display the
program output on an ansi terminal or if you are using the X TEXoptions has the terminal launch
a pdf browser to view the IXTEXoutput. To install geany on Linux use the command line “sudo
apt-get install geany’, on Windows go to http://www.geany.org/Download/Releases or
to install geany in OSX go to http://wiki.geany.org/howtos/osx/running.


http://conemu.github.io/
http://www.geany.org/Download/Releases
http://wiki.geany.org/howtos/osx/running

Chapter 2

What is (Geometric Algebra?

2.1 Basics of Geometric Algebra

Geometric algebra is the Clifford algebra of a real finite dimensional vector space or the algebra
that results when the vector space is extended with a product of vectors (geometric product)
that is associative, left and right distributive, and yields a real number for the square (geometric
product) of any vector [2], [1]. The elements of the geometric algebra are called multivectors and
consist of the linear combination of scalars, vectors, and the geometric product of two or more
vectors. The additional axioms for the geometric algebra are that for any vectors a, b, and ¢ in
the base vector space ([1],p85):

a (bc) = (ab) c
a(b+c)=ab+ac

(a+b)c=ac+be (2.1)
aa = a® € R.
If the dot (inner) product of two vectors is defined by ([1],p86)
a-b=(ab+ba)/2, (2.2)

then we have



c=a+b

¢ = (a+0b)?

2 =a®+ ab+ ba + b?
a-b=(*—a*—b)/2cR

N TN N TN
D O~ W
N N N

Thus a - b is real. The objects generated from linear combinations of the geometric products
of vectors are called multivectors. If a basis for the underlying vector space are the vectors

{e1,...,e,} (we use boldface e’s to denote basis vectors) a complete basis for the geometric
algebra is given by the scalar 1, the vectors ey, ..., e, and all geometric products of vectors
€,€i,...€, where 0 <r <n,0<i; <nandi <ip<--- <1, (2.7)

Each base of the complete basis is represented by a non-commutative symbol (except for the
scalar 1) with name e;, ... e;, so that the general multivector A is represented by (A is the scalar
part of the multivector and the A" are scalars)

A=A+ z”: Z Altire; e e, (2.8)
r=1

'7;17""7'5'7‘
0<ij<ijy1<n

The critical operation in setting up the geometric algebra is reducing the geometric product of
any two bases to a linear combination of bases so that we can calculate a multiplication table
for the bases. Since the geometric product is associative we can use the operation (by definition
for two vectors a - b = (ab + ba)/2 which is a scalar)

€16 = 2ei]-+1 "€, —€4,€4, (29)

These processes are repeated until every basis list in A is in normal (ascending) order with no
repeated elements. As an example consider the following

10



=2 (82 . 63) € — €y (2 (61 . 63) — 6183) (212)
=2((ex-e3)e; — (e1-e3)er) + ezeres (2.13)
=2((ex-e3)e; — (e -e3)ex+ (e - ez) e3) — ereses (2.14)

which results from repeated application of eq. (2.9). If the product of basis vectors contains
repeated factors eq. (2.9) can be used to bring the repeated factors next to one another so that
if e;;, = e;,,, then e; e;, , = e;, - e;, , which is a scalar that commutes with all the terms in the
product and can be brought to the front of the product. Since every repeated pair of vectors in a
geometric product of r factors reduces the number of non-commutative factors in the product by
r — 2. The number of bases in the multivector algebra is 2" and the number containing r factors
is (Z) which is the number of combinations or n things taken r at a time (binomial coefficient).

The other construction required for formulating the geometric algebra is the outer or wedge
product (symbol A) of r vectors denoted by a; A ... A a,. The wedge product of r vectors is
called an r-blade and is defined by ([1],p86)

aN...Na, = Z eijl“'ifraijl Gy (2.15)

by g

where €1-%r is the contravariant permutation symbol which is +1 for an even permutation
of the superscripts, 0 if any superscripts are repeated, and —1 for an odd permutation of the
superscripts. From the definition a; A ... A a, is antisymmetric in all its arguments and the
following relation for the wedge product of a vector a and an r-blade B, can be derived

a A B, = (aB, + (~1)"B,a)/2 (2.16)

Using eq. (2.16) one can represent the wedge product of all the basis vectors in terms of the
geometric product of all the basis vectors so that one can solve (the system of equations is lower
diagonal) for the geometric product of all the basis vectors in terms of the wedge product of all
the basis vectors. Thus a general multivector B can be represented as a linear combination of a
scalar and the basis blades.

B=B+Y )  Bve,Ae,A...Ne, (2.17)

=1 i1,.iy, V 0<ij<n

11



Using the blades e;, A e;, A ... A e, creates a graded algebra where r is the grade of the basis
blades. The grade-r part of B is the linear combination of all terms with grade r basis blades.

2.1.1 Grade Projection

The scalar part of B is defined to be grade-0. Now that the blade expansion of B is defined we
can also define the grade projection operator (B), by

(B) = Z Biire, Ney, N...Ne, (2.18)
and

(B) = (B), = B (2.19)

2.1.2 Multivector Products

Then if A, is an r-grade multivector and B, is an s-grade multivector we have

A.B; = (A,By), , +(A:B), o+t (ABy), (2.20)
and define ([2],p6)
A, NB,=(A,By), .. (2.21)
_ [ rands#0: (A.By),
4 Bs:{ rors=0: 0 (2.22)

where A, - By is called the dot or inner product of two pure grade multivectors. For the case of
two non-pure grade multivectors

AANB =) (A), N(B), (2.23)

12



A-B=Y(4),(B), (2.24)
7,570

Two other products, the left (]) and right (|) contractions, are defined by

A|B = Z { <A’“Bos>r—s rzs } (2.25)

r<<s
_ (A;By), , s>r
AJB:Z{ 0 i, (2.26)

2.1.3 Reverse of Multivector

A final operation for multivectors is the reverse. If a multivector A is the geometric product of
r vectors (versor) so that A = ay ...a, the reverse is defined by

Al=a, .. .4 (2.27)

where for a general multivector we have (the the sum of the reverse of versors)

AT = A+ (—1)ythre o Avte Ney Al Ne, (2.28)
r=1

i1 yeein, ¥ 0<i;<n

note that if A is a versor then AA" € ® and (AAT # 0)

AT
Al= " 2.29
A (2.29)

The reverse is important in the theory of rotations in n-dimensions. If R is the product of an
even number of vectors and RR" = 1 then RaR' is a composition of rotations of the vector a. If
R is the product of two vectors then the plane that R defines is the plane of the rotation. That
is to say that RaR' rotates the component of a that is projected into the plane defined by a and
b where R = ab. R may be written R = egU, where 6 is the angle of rotation and U is a unit
blade (U? = +1) that defines the plane of rotation.

13



2.1.4 Reciprocal Frames

If we have M linearly independent vectors (a frame), ay,...,ays, then the reciprocal frame is

a',...,a™ where q; -/ = (517, 5g is the Kronecker delta (zero if i # j and one if ¢ = 7). The

reciprocal frame is constructed as follows:

EM:CI,l/\.../\CLM (230)
E
1 M
Then
CLi = (—1)i_1 (CLl /\/\Cvlz/\/\CLM) E]T/[l (232)

where a; indicates that a; is to be deleted from the product. In the standard notation if a
vector is denoted with a subscript the reciprocal vector is denoted with a superscript. The set
of reciprocal vectors will be calculated if a coordinate set is given when a geometric algebra is
instantiated since they are required for geometric differentiation when the Ga member function
Ga.mvr () is called to return the reciprocal basis in terms of the basis vectors.

2.2 Manifolds and Submanifolds

A m-dimensional vector manifold', M, is defined by a coordinate tuple (tuples are indicated by

the vector accent “ ")
= (xl,...,xm) , (2.33)

and the differentiable mapping (U™ is an m-dimensional subset of ™)
eM (@) U™ CR™ =V, (2.34)

where V is a vector space with an inner product?® (-) and is of dim (V) > m.

!By the manifold embedding theorem any m-dimensional manifold is isomorphic to a m-dimensional vector
manifold
2This product in not necessarily positive definite.

14



Then a set of basis vectors for the tangent space of M at Z, Tz (M), are

DeM
M
M — i 2.
e; e (2.35)
and
gi/;-/‘ (7) = eM - ej\/‘. (2.36)

A n-dimensional (n < m) submanifold N of M is defined by a coordinate tuple

U= (ul,...,u") , (2.37)
and a differentiable mapping
r(uw): U" CR" - U™ CR™, (2.38)
which induces a mapping
eM(Z (@) : UM CR" > V. (2.39)

Then the basis vectors for the tangent space Tz (N) are (using eV (@) = eM (& (i)) and the chain
rule)?

oeN (@)  0eM(F) 0! 07
N (= _ _ _ Mz
and ek o]
- T° 0T A o/
g () = o i (7 (). (2.41)

Going back to the base manifold, M, note that the mapping e (%) : U™ C R* — V allows us
to calculate an unnormalized pseudo-scalar for Tz (M),

™M@ =e' (@) N... e (D). (2.42)

With the pseudo-scalar we can define a projection operator from )V to the tangent space of M
by

Ps(v) = (v- TM(2) (IM (%) Vo eV. (2.43)
In fact for each tangent space 7Tz (M) we can define a geometric algebra G (7z (M)) with pseudo-
scalar I so that if A € G (V) then

Pe(A) = (A- M (@) (IM(2) " € G(Tz (M) YA€ G (V) (2.44)

3In this section and all following sections we are using the Einstein summation convention unless otherwise
stated.

15



and similarly for the submanifold .

If the embedding e (&) : U" C R" — V is not given, but the metric tensor g7} (%) is given
the geometric algebra of the tangent space can be constructed. Also the derivatives of the
basis vectors of the tangent space can be calculated from the metric tensor using the Christoffel
symbols, Ffj (@), where the derivatives of the basis vectors are given by

e

a—:Zi =TI}, (@) e (2.45)
If we have a submanifold, N, defined by eq. (2.38) we can calculate the metric of N from eq. (2.41)
and hence construct the geometric algebra and calculus of the tangent space, Tz (N) C Tz (M).

If the base manifold is normalized (use the hat symbol to denote normalized tangent
vectors, &, and the resulting metric tensor, 43') we have eM.eM=+1 and 93! does
not posses enough information to calculate g{}f . In that case we need to know g{}", the
metric tensor of the base manifold before normalization. Likewise, for the case of a
vector manifold unless the mapping, e™ (Z) : U™ C ®™ — V, is constant the tangent
vectors and metric tensor can only be normalized after the fact (one cannot have a

mapping that automatically normalizes all the tangent vectors).

2.3 Geometric Derivative

The directional derivative of a multivector field F'(x) is defined by (a is a vector and h is a
scalar)
F h)—F
(a-V,)F =lim (z+ah) (m)

h—0 h (2.46)

Note that a - V, is a scalar operator. It will give a result containing only those grades that
are already in F. (a-V,) F is the best linear approximation of F'(z) in the direction a. Equa-
tion (2.46) also defines the operator V, which for the basis vectors, {e;}, has the representation
(note that the {e’} are reciprocal basis vectors)

OF

VIF =e/— 2.47

e (2.47)
If F, is a r-grade multivector (if the independent vector, z, is obvious we suppress it in the
notation and just write V) and F, = Fi-re; A...Ae;, then

8F77:1 oy
ozl

VF, = e (e, N...Ne;) (2.48)

16



Note that e’ (e;, A ... Ae;,) can only contain grades r — 1 and r + 1 so that VF, also can only
contain those grades. For a grade-r multivector F, the inner (div) and outer (curl) derivatives
are

- OF,
V-F, = (VF,,)P1 =e’. 5 (2.49)
and
- OF,
VAF, = (VFT)T+1 =e’ A 9 (2.50)

For a general multivector function F' the inner and outer derivatives are just the sum of the inner
and outer derivatives of each grade of the multivector function.

2.3.1 Geometric Derivative on a Manifold

In the case of a manifold the derivatives of the e;’s are functions of the coordinates, {z'}, so that
the geometric derivative of a r-grade multivector field is

i OF, i O i
VFTZG%ZB%(FTI eil/\.../\eir)
OF-ir D 0
= #ez (e, N...Ne;)+ Fi're' e (e, N...Ne;) (2.51)

.0
where the multivector functions GZW (e, A...Ae;) are the connection for the manifold.*
x

The directional (material/convective) derivative, (v - V) F,. is given by

OF, .0 .
7 r__ 1 110 o .
@xi —U@(Fr 611/\"'/\617->
4We use the Christoffel symbols of the first kind to calculate the derivatives of the basis vectors and the prod-
uct rule to calculate the derivatives of the basis blades where (http://en.wikipedia.org/wiki/Christoffel_

(v-V)F. =v

symbols)
1 (0g;k Agik 09ij
Do = - 2k k99
k=g ((“)xl Yo ok )
and 5
e.
871"1 = Fijkek.

17


http://en.wikipedia.org/wiki/Christoffel_symbols
http://en.wikipedia.org/wiki/Christoffel_symbols

21...0
Ui 8Fr i

i (62‘1 /\.../\eir)—i—vFrl'“*—(eil /\.../\eir), (252)

oxt

0
so that the multivector connection functions for the directional derivative are Ere (e, N...Nej,).
x

Be careful and note that (v- V) F, # v - (VF,) since the dot and geometric products are not
associative with respect to one another (v - V is a scalar operator).

2.3.2 Normalizing Basis for Derivatives

The basis vector set, {e;}, is not in general normalized. We define a normalized set of basis
vectors, {€&;}, by

é; = =—. (2.53)

This works for all e? # 0. Note that &7 = +1.

Thus the geometric derivative for a set of normalized basis vectors is (where F, = F'ré; A

... A& and [no summation] Fit-ir = Fi-ir g, | |&:]).
JOF,  OFp- A iir i 04 5
VE. =e o = o€ (€, N...NE&)+ Er"e %(eil AN NE;). (2.54)

To calculate e’ in terms of the é;’s we have
el — gijej
e' =g |ej| &;. (2.55)

This is the general (non-orthogonal) formula. If the basis vectors are orthogonal then (no sum-
mation over repeated indexes)

ei — gii ’el| éz

The Christoffel symbols of the second kind,

Ik — % kl (69“ + 995 ‘99@‘) 7

ij -

oz Oxt ozt

could also be used to calculate the derivatives in term of the original basis vectors, but since we need to calculate
the reciprocal basis vectors for the geometric derivative it is more efficient to use the symbols of the first kind.

18



. leil . €l .
e = |g:1| é = ’e;|ei. (2.56)
7

Additionally, one can calculate the connection of the normalized basis as follows

ori Oz’
oxi " Yo Oxd’

% . 1 (‘3ei _ 8|ez\é
ori e \Oxi  Oxi ')’
1 (9ei 1 a|€i’,\
== — 7T Q&= €,
le;| 0x7  |e;| Oxd
1 Oe; 1 0gii
- - Y ‘e, 9.57
|6i| oxd 29“ oxJ € ( )

Oe; . : .
where —— is expanded in terms of the &;’s.

oxJ

2.3.3 Linear Differential Operators

First a note on partial derivative notation. We shall use the following notation for a partial

derivative where the manifold coordinates are xq, ..., x,:
9 Y
aj1+"'+jn
T agn = i (2.58)
oxi'...0xy

If ji, = 0 the partial derivative with respect to the k'® coordinate is not taken. If j, = 0 for
all 1 < k < n then the partial derivative operator is the scalar one. If we consider a partial
derivative where the z’s are not in normal order such as

jl jn’
oxlt. ..oz

11 in

and the i;’s are not in ascending order. The derivative can always be put in the form in eq (2.58)
since the order of differentiation does not change the value of the partial derivative (for the
smooth functions we are considering). Additionally, using our notation the product of two
partial derivative operations is given by

OirviinOjy.jin = Oyt oovsim - (2.59)

19



A general general multivector linear differential operator is a linear combination of multivectors
and partial derivative operators denoted by

D = D", (2.60)

1enln

Equation (2.60) is the normal form of the differential operator in that the partial derivative
operators are written to the right of the multivector coefficients and do not operate upon the
multivector coefficients. The operator of eq (2.60) can operate on mulitvector functions, returning
a multivector function via the following definitions.

F as o

Do F = DJtJn o 8j1_..jnF’ (2.61)
or

FoD =09, ;FoDm" (2.62)

where the D7tJ» are multivector functions and o is any of the multivector multiplicative opera-
tions.

Equations (2.61) and (2.62) are not the most general multivector linear differential operators,

the most general would be o
D (F) = D" (0;

where D71 () are linear multivector functionals.

F), (2.63)

1-~~,jn

The definition of the sum of two differential operators is obvious since any multivector operator,
o, is a bilinear operator ((Da+ D)o FF'=Dyo F + Dgo F), the product of two differential
operators D4 and Dp operating on a multivector function F' is defined to be (o and oy are any
two multivector multiplicative operations)

(Da oy D)oy F = (D' 01 0y, i, (DR7"0;,.5.)) 02 F
= (D5 01 (Bhcsy D) s D) i) 02 F
= (D4 01 (04y..in DB")) 02 05y I 4 (D" 01 D) 09 03y itju F

1.ln

where we have used the fact that the 0 operator is a scalar operator and commutes with o; and
Og.

Thus for a pure operator product D4 o Dg we have
DyoDp = (Dzzn © (aleanjn)) aj1~~-jn + (le;ln 01 DJBIJH) ai1+j1,m,in+jn (2'64)

and the form of eq (2.64) is the same as eq (2.61). The basis of eq (2.64) is that the 0 operator
operates on all object to the right of it as products so that the product rule must be used in all

20



differentiations. Since eq (2.64) puts the product of two differential operators in standard form
we also evaluate I oy (D4 01 Dp).

We now must distinguish between the following cases. If D is a differential operator and F' a
multivector function should D o F' and F' o D return a differential operator or a multivector. In
order to be consistent with the standard vector analysis we have D o F' return a multivector and
F o D return a differential operator. Then we define the complementary differential operator D
which is identical to D except that D o F' returns a differential operator according to eq (2.64)°
and F o D returns a multivector according to eq (2.62).

A general differential operator is built from repeated applications of the basic operator building
blocks (V o A), (A o V), (V o V), and (A + V). Both V and V are represented by the operator

V=V=¢

. 2.
oxt’ (2.65)

but are flagged to produce the appropriate result.

In the our notation the directional derivative operator is a - V, the Laplacian V - V and the
expression for the Riemann tensor, R, is

(VAV)e = %R;kl (' Nev) e (2.66)
We would use the complement if we wish a quantum mechanical type commutator defining
[z,V] =2V — Vaz, (2.67)
or if we wish to simulate the dot notation (Doran and Lasenby)

FV =FV. (2.68)

2.3.4 Split Differential Operator {These methods are not yet imple-
mented }

To implement the general “dot” notation for differential operators in python is not possible.
Another type of symbolic notation is required. I propose what one could call the “split differential
operator.” For V denote the corresponding split operator by two operators Vg and Vp where

5Tn this case Dg“'j“ = I’ and 0; =1.

1-Jn
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in practice Vg is a tuple of vectors and Vp is a tuple of corresponding partial derivatives. Then
the equivalent of the “dot” notation would be

v (ABO) — Vs (A(VpB)C). (2.69)

We are using the G subscript to indicate the geometric algebra parts of the multivector differential
operator and the D subscript to indicate the scalar differential operator parts of the multivector
differential operator. An example of this notation in 3D Euclidean space is

VQ - (ewey’ez) s (270)
o 0 0
==, =, = 2.71
To implement Vg and Vp we have in the example
0B 0B 0B
B = —, —, — 2.72
oB . 0B _ 0B
B =—0C —(C,— 2.
(VpB)C <8:1: C, 3y C, 5, C’) (2.73)
0B 0B 0B
A B =(A—C A—C, A— . 2.74
(VpB)C ( 8350’ 8yc’ 320) (2.74)
Then the final evaluation is
0B 0B 0B

which could be called the “dot” product of two tuples. Note that V = VgVp and FV =FV =
(VpF) Vg.

For the general multivector differential operator, D, the split operator parts are Dg, a tuple of
basis blade multivectors and Dp, a tuple of scalar differential operators that correspond to the
coefficients of the basis-blades in the total operator D so that

D (ABC) = Dg (A(DpB)C). (2.76)

If the index set for the basis blades of a geometric algebra is denoted by {n} where {n} contains
2™ indices for an n dimensional geometric algebra then the most general multivector differential
operator can be written®
D= €Dy (2.77)
le{n}

6For example in three dimensions {3} = (0,1,2,3, (1,2),(2,3),(1,3),(1,2,3)) and as an example of how the
superscript would work with each grade e® = 1, e! = e!, e1'?) = e! A e?, and e(1:23) = el Ae? A ed.
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D (ABC> = Dg (A(DpB)C) = ) € (A(DB)C) (2.78)
le{n}

or (ABC) D = (A(DpB)C) Dg = Z (A(D,B)C) €. (2.79)
le{n}

The implementation of equations 2.69 and 2.76 is described in sections 3.2 and 3.6.

2.4 Linear Transformations/Outermorphisms

In the tangent space of a manifold, M, (which is a vector space) a linear transformation is the
mapping T: Tz (M) — Tz (M) (we use an underline to indicate a linear transformation) where
for all z,y € Tz (M) and a € R we have

T(x+y) =T (z)+T(y) (2.80)
) (2.81)

The outermorphism induced by T is defined for z1, ..., z, € Tz (M) where r < dim (Tz (M))
T@AN...Nx) =T (x)AN...ANT (z,) (2.82)

If I is the pseudo scalar for Tz (M) we also have the following definitions for determinate, trace,

and adjoint (7") of T

T(I)=det(T)1] (2.83)

tr (L) =V, T(y)° (2.84)
Ty =y-T(x)® (2.85)
(2.86)

If {e;} is a basis for Tz (M) then we can represent T’ with the matrix 77 used as follows
(Einstein summation convention as usual) -

T (&) = Tey, (2.87)

"Since T is linear we do not require 12 = +1.

8In this case y is a vector in the tangent space and not a coordinate vector so that the basis vectors are not a
function of y.

9Both = and y are vectors in the tangent space.
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where

T)=e -T(e). (2.88)

The let (I_I)Z be the inverse matrix of zgf so that (I_l)zzi =6/, and

T (d'e;) = a (T7Y) e (2.89)

— 3

and calculate

T (Z(a)) =T (T (a'es))
=T (a'Tle;)
= d' (L7)] Tfex

=d'dle; = d'e; = a. (2.90)

Thus if eq 2.88 is used to define the 77 then the linear transformation defined by the matrix
(I_l); is the inverse of 7.

In eq. (2.87) the matrix, 77, only has it’s usual meaning if the {e; } form an orthonormal Euclidean
basis (Minkowski spaces not allowed). Equations (2.83) through (2.85) become

det(T)=T(esA...Ney)(er A...Ney) ", (2.91)
tr () = T3, (2.92)
T! = gy, 17, (2.99)

A important form of linear transformation with a simple representation is the spinor transfor-
mation. If S is an even multivector we have SST = p?, where p? is a scalar. Then S is a spinor
transformation is given by (v is a vector)

S (v) = SvS' (2.94)
if S (v) is a vector and
T
§(v) = 2 ZS . (2.95)
p
Thus
T T
515 :SS;)4SS
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— . (2.96)

One more topic to consider is whether or not T]z should be called the matrix representation of
T? The reason that this is a question is that for a general metric g;; is that because of the
dependence of the dot product on the metric T; does not necessarily show the symmetries of the
underlying transformation 7". Consider the expression

aT(b) = aiei T(b]e])
= aie,- -T (6]') b]
= d'e; - ekabj
= a'gy T . (2.97)
It is
Ti; = gT) (2.98)
that has the proper symmetry for self adjoint transformations (a-7'(b) = b-T (a)) in the sense
that if 7' = T then T;; = T};. Of course if we are dealing with a manifold where the g;;’s are
functions of the coordinates then the matrix representation of a linear transformation will also
be a function of the coordinates. Assuming we use Tj; for the matrix representation of the linear

transformation, 7', then if we given the matrix representation, 7T;;, we can construct the linear
transformation given by T as follows

T = gz‘ka
9"Tyj = ¢" gu T}
4T, = 8,1t
§"Ty = T}. (2.99)
Any program/code that represents 7" should allow one to define T" in terms of T}; or T]l and
likewise given a linear transformation 7" obtain both T;; and T]l from it. Please note that these

considerations come into play for any non-Euclidean metric with respect to the trace and adjoint
of a linear transformation since calculating either requires a dot product.
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2.5 Multilinear Functions

A multivector multilinear function'® is a multivector function T' (A, ..., A,) that is linear in each
of it arguments!'? (it could be implicitly non-linearly dependent on a set of additional arguments
such as the position coordinates, but we only consider the linear arguments). 7" is a tensor of
degree r if each variable A; is restricted to the vector space V,,. More generally if each A; € G (V,,)
(the geometric algebra of V,,), we call T" an extensor of degree-r on G (V,).

If the values of T' (a4, ...,a,) (a; € V,, V1 < j <r) are s-vectors (pure grade s multivectors in
G (V) we say that T has grade s and rank r 4+ s. A tensor of grade zero is called a multilinear
form.

In the normal definition of tensors as multilinear functions the tensor is defined as a mapping
T
T >< Vi — §R,
i=1

so that the standard tensor definition is an example of a grade zero degree/rank r tensor in our
definition.

2.5.1 Algebraic Operations

The properties of tensors are (a € R, a;,b € V,, T and S are tensors of rank r, and o is any
multivector multiplicative operation)

T (ai,...,0a4,...,a.) =aT (a1,...,a4,...,4.), (2.100)
T(ar,...,a;+b,...,a,) =T (a,...,aj,...,a,) + T (a1,...,aj-1,b,a;41,...,a,), (2.101)
(T'£5)(ay,...,a) =T (ay,...,a,) £S5 (a,...,a,). (2.102)

Now let T be of rank r and S of rank s then the product of the two tensors is

(ToS)(ar,...,am4s) =T (ar,...,a.) 0 S (i1, 0rys), (2.103)

(1)

where “o” is any multivector multiplicative operation.

10We are following the treatment of Tensors in section 3-10 of [2].
1We assume that the arguments are elements of a vector space or more generally a geometric algebra so that
the concept of linearity is meaningful.
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2.5.2 Covariant, Contravariant, and Mixed Representations

The arguments (vectors) of the multilinear function can be represented in terms of the basis
vectors or the reciprocal basis vectors

a; =a“e;,, (2.104)
=a;,€e". (2.105)
Equation (2.104) gives a; in terms of the basis vectors and eq (2.105) in terms of the reciprocal

basis vectors. The index j refers to the argument slot and the indices i; the components of the
vector in terms of the basis. The covariant representation of the tensor is defined by

T, . =T (ei,...,e) (2.106)
T (ay,...,a,) =T (a“eil, . ,a“eir)
=T (ei,,...,€;)a"...a"
=T, , a...ad". (2.107)
Likewise for the contravariant representation
T =T (e",...,e") (2.108)
T (ai,...,a;) =T (a; €, ... a;€")
=T (e“, . ,e“) iy - -,
=T ... a,. (2.109)
One could also have a mixed representation
i R (€i,.... €, e . em) (2.110)
T (ay,...,a,) =T (a“eil, L adveai,,, €0 ,a,;Tei’")
=T (eil, Cey €, et L, ei’“) a .. .aisaisﬂ, .a
=T, L da,, .l (2.111)

In the representation of 7" one could have any combination of covariant (lower) and contravariant
(upper) indexes.

To convert a covariant index to a contravariant index simply consider
T(eil,...,ef,...,eir) =T (eil,...,gJ Jekj,...,eir)
_ijk;
=g" JT(eil,...,ekj,...,eir)
(2.112)

Similarly one could lower an upper index with g; .
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2.5.3 Contraction and Differentiation

The contraction of a tensor between the j* and k' variables (slots) is
T (ai, ey a1, Vak, Ajy1y .- ,a,,) = Vaj : (VakT (al, c. ,CLT)) . (2113)

This operation reduces the rank of the tensor by two. This definition gives the standard results
for metric contraction which is proved as follows for a rank r grade zero tensor (the circumflex
“”” indicates that a term is to be deleted from the product).

T (ay,...,a,) =a"...a"T; ,; (2.114)
VajT :eljail N (aalj aij) c. aiTTilmir
=€l a .. i Ty, (2.115)
Va,, - (VajT) —ehm . eljélijail LLav . (&lkm aim) .. .a“Tilmir
:gkmlj(SZ(SZ”nail cavat . ar Ty,
:gimija,il . dij . &im .. aiTﬂl...ij...im...iT
:gijimail .. dij . &im ... airﬂl...ij...im...i,«
= (97" Ty ipyniy) @ .. 059 L a™ L a" (2.116)
Equation (2.116) is the correct formula for the metric contraction of a tensor.
If we have a mixed representation of a tensor, T“”Zkz, and wish to contract between an

upper and lower index (i; and i) first lower the upper index and then use eq (2.116) to contract
the result. Remember lowering the index does not change the tensor, only the representation of
the tensor, while contraction results in a new tensor. First lower index

T, b b op b (2.117)

Tleee onn ol T
Now contract between 7; and i; and use the properties of the metric tensor.

Contract

kj 1k k;j
Gi;k; 1y, —9""%gi.1, T, .

, ks
— N J
=0k T,

G UL vyt

(2.118)

Equation (2.118) is the standard formula for contraction between upper and lower indexes of a
mixed tensor.

Finally if T (a4, ...,a,) is a tensor field (implicitly a function of position) the tensor derivative
is defined as

T(ala s 7a7";ar+1) = (ar-‘rl ' V)T(ala s 7a7’)7 (2119)
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assuming the a¥ coefficients are not a function of the coordinates.

This gives for a grade zero rank r tensor

(a’T‘H ' V) T (a’h ce 7ar> :aiTHaggir-v—l a ... airTi

=a"...a"a"" 0 T;

1oy

(2.120)

1.0t

2.5.4 From Vector to Tensor

A rank one tensor is a vector since it satisfies all the axioms for a vector space, but a vector
in not necessarily a tensor since not all vectors are multilinear (actually in the case of vectors
a linear function) functions. However, there is a simple isomorphism between vectors and rank
one tensors defined by the mapping v (a) : V — R such that if v,a € V

v(a)=v-a. (2.121)
So that if v = v'e; = v;€’ the covariant and contravariant representations of v are (using e’ - e; =

%) o
v(a) = va' =v'a;. (2.122)

2.5.5 Parallel Transport and Covariant Derivatives

The covariant derivative of a tensor field T (ay,...,a,;x) (x is the coordinate vector of which
T can be a non-linear function) in the direction a,;; is (remember a; = afek and the e, can
be functions of =) the directional derivative of T (a4, ..., a,;x) where all the arguments of T" are
parallel transported. The definition of parallel transport is if @ and b are tangent vectors in the
tangent spaced of the manifold then

(a-Vi)b=0 (2.123)

if b is parallel transported. Since b = b’e; and the derivatives of e; are functions of the z*’s then
the b"’s are also functions of the x'’s so that in order for eq (2.123) to be satisfied we have
(a Vi) b=ad"0, (Ve;)
=a' ((0,:0") €j + 1 0,.:€;)
=a' ((0.:V") e; + bjffjek)
:&i ((811197) €; + bkfgkej)
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=a' ((9:07) + b*T7,) e; = 0. (2.124)
Thus for b to be parallel transported we must have
Dpill = VT, (2.125)

The geometric meaning of parallel transport is that for an infinitesimal rotation and dilation of
the basis vectors (cause by infinitesimal changes in the z%’s) the direction and magnitude of the
vector b does not change.

If we apply eq (2.125) along a parametric curve defined by z7 (s) we have

i dl o
ds  ds Ox
doi
— di I, (2.126)

and if we define the initial conditions & (0) e;. Then eq (2.126) is a system of first order linear
differential equations with initial conditions and the solution, &’ (s) e;, is the parallel transport
of the vector & (0) e;.

An equivalent formulation for the parallel transport equation is to let v (s) be a parametric curve
in the manifold defined by the tuple v (s) = (z'(s),...,2"(s)). Then the tangent to v (s) is
given by .
dy _ da'
ds ~ ds o
and if v (z) is a vector field on the manifold then

d~y _dzt 0 ,
(E . Vx) YT s o (v'es)

_dl‘i % . j%

~ds \ Ozt €Ty oxt
dxt (O ,

= (ge+ o)

dxt v’ dx’ ,
~ G ow S Tt e

dv’  dat ;
:<i+ x”krfk) €

=0. (2.128)

(2.127)
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Thus eq (2.128) is equivalent to eq (2.126) and parallel transport of a vector field along a curve
is equivalent to the directional derivative of the vector field in the direction of the tangent to the
curve being zero.

If the tensor component representation is contra-variant (superscripts instead of subscripts) we
must use the covariant component representation of the vector arguments of the tensor, a = a,€e’.
Then the definition of parallel transport gives
(a-V,)b=a'0y (bjej)
=a' ((04ib;) € + b;0,:€7) (2.129)

and we need ' '

(@Ezb]) e’ + bjaxiej = 0. (2130)
To satisfy equation (2.130) consider the following

Opi (€7 - e;) =0
(0n:€”) - e, + € - (D,iex) =0
(0,:€7) - ex + € - el =0
(0,€7) - e+ 6iT%, =0
(0:€7) - e + T, =0

(0,:€7) - e, = — T, (2.131)

Now dot eq (2.130) into e giving

(0,ib;) € - ey + b; (D,i€7) - €, =0
(0yibr) = b;TY,. (2.132)

Thus if we have a mixed representation of a tensor

. _ Z'5+1~~-7;7* i1 7
T(ay,...,an2) =T, (x)a™ ... a"a;,, ...aq;, (2.133)
the covariant derivative of the tensor is
S l.in
(ars1-D)T (a a,;x) zaTiLai1 aa; al a'r+?
r+1 Ty ooy Qpy D+l g1 v Qg
s A
da'» I , . ,
s4+1.2r 17 vl ) . . Tr41
D it a”...a?...a%,,...0,a"

p=1
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r
da; o .
P Ts1eip 11 s . e Try1
+ E Dyt T i a’...at iy G0
q=s+1

b 1nin
_81—;115 a’il aisaf a air+1
— 8$T+1 o .. ZS+1 o .. "”

_ ip is+1~~i7‘ 11 lp is . . ’L'T+1
E lez,,Tz’l...ipA..z’s at...a’...a"a; ., ...0;a

Tst1eigeeir 4 i i
+ g FZHW e a...ata ., ..o, a0" (2.134)
q=s+1

From eq (2.134) we obtain the components of the covariant derivative to be

aT is+1...ir S
11...05 i Gs41.--0p zs+1...zq...zr
81;7’-1-1 - Z F1T+1lpf'z—;1...zp,,_zs + Z FZT+1Zq,'Z—;1 Zs (2135)

p=1 g=s+1

The component free form of the covariant derivative (the one used to calculate it in the code) is

D, . T (a1,...,a,;2) = VT — ZT ar,...,(arp1 - V)ag,...,a.;x). (2.136)

2.6 Representation of Multivectors in sympy

The sympy python module offers a simple way of representing multivectors using linear combi-
nations of commutative expressions (expressions consisting only of commuting sympy objects)
and non-commutative symbols. We start by defining n non-commutative sympy symbols as a
basis for the vector space

(e1,...,emn) = symbols(’e_1l,...,en’,commutative=False,real=True)

Several software packages for numerical geometric algebra calculations are available from Doran-
Lasenby group and the Dorst group. Symbolic packages for Clifford algebra using orthogonal
bases such as e;e; + eje; = 2n;;, where n;; is a numeric array are available in Maple and
Mathematica. The symbolic algebra module, ga, developed for python does not depend on an
orthogonal basis representation, but rather is generated from a set of n arbitrary symbolic vectors
e, ey, ..., e, and a symbolic metric tensor ¢g;; = e; - e; (the symbolic metric can be symbolic
constants or symbolic function in the case of a manifold).
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A+ B sum of multivectors

A-B difference of multivectors

Ax B geometric product of multivectors

ANB outer product of multivectors
A|B inner product of multivectors

A< B  left contraction of multivectors
A > B right contraction of multivectors
A/B division of multivectors!'?

Table 2.1: Multivector operations for GA

In order not to reinvent the wheel all scalar symbolic algebra is handled by the python module
sympy and the abstract basis vectors are encoded as non-commuting sympy symbols.

The basic geometric algebra operations will be implemented in python by defining a geometric
algebra class, Ga, that performs all required geometric algebra an calculus operations on sympy
expressions of the form (Einstein summation convention)

F+Y Frie, . . e, (2.137)
r=1

where the F’s are sympy symbolic constants or functions of the coordinates and a multivector
class, Mv, that wraps Ga and overloads the python operators to provide all the needed multivector
operations as shown in Table 2.1 where A and B are any two multivectors (In the case of +,
—, %, A, |, <, and > the operation is also defined if A or B is a sympy symbol or a sympy real
number).

Since < and > have no r-forms (in python for the < and > operators there are no __rlt__() and
__rgt__() member functions to overload) we can only have mixed modes (sympy scalars and
multivectors) if the first operand is a multivector.

Except for < and > all the multivector operators have r-forms so that as long as one of the
operands, left or right, is a multivector the other can be a multivector or a scalar (sympy symbol
or number).

12Division uses right multiplication by the inverse function, A/B = AB~!, for those cases where B~! can be
calculated (B, or B2, or BB is a scalar).
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2.6.1 Operator Precedence

Note that the operator order precedence is determined by python and is not neces-
sarily that used by geometric algebra. It is absolutely essential to use parenthesis
in multivector expressions containing ~, [, <, and/or >. As an example let 4 and
B be any two multivectors. Then A + A*B = A +(A*B), but A+A"B = (2*4) "B since
in python the ~ operator has a lower precedence than the + operator. In geomet-
ric algebra the outer and inner products and the left and right contractions have
a higher precedence than the geometric product and the geometric product has a
higher precedence than addition and subtraction. In python the ~, [, >, and < all
have a lower precedence than + and - while * has a higher precedence than + and

Additional care has to be used when using the operators != and == with the operators
< and >. All these operators have the same precedence and are evaluated chained
from left to right. To be completely safe for expressions such as A == B or A !=
B always user (A) == (B) and (A) != (B) if A or B contains a left, <, or right, >,
contraction.

For those users who wish to define a default operator precedence the functions def _prec() and
GAeval () are available in the module printer.

def_prec(gd,op_ord="<>|,",*’)

Define the precedence of the multivector operations. The function def prec() must
be called from the main program and the first argument gd must be set to globals().
The second argument op_ord determines the operator precedence for expressions
input to the function GAeval(). The default value of op_ord is ’<>|,~,*’. For the
default value the <, >, and | operations have equal precedence followed by ~, and ~
is followed by *.

GAeval (s,pstr=False)

The function GAeval() returns a multivector expression defined by the string s
where the operations in the string are parsed according to the precedences defined
by def prec(). pstr is a flag to print the input and output of GAeval() for debug-
ging purposes. GAeval () works by adding parenthesis to the input string s with the
precedence defined by op_ord=’<>|,5*’. Then the parsed string is converted to a
sympy expression using the python eval () function. For example consider where X,
Y, Z, and W are multivectors
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def_prec(globals())
V = GAeval (’X|Y"ZxW’)

The sympy variable V would evaluate to ((X|Y)~Z)*W.

2.7 Vector Basis and Metric

The two structures that define the metric class (inherited by the geometric algebra class) are the
symbolic basis vectors and the symbolic metric. The symbolic basis vectors are input as a string
with the symbol name separated by spaces. For example if we are calculating the geometric
algebra of a system with three vectors that we wish to denote as a0, al, and a2 we would define
the string variable:

basis = a0 al a2’

that would be input into the geometric algebra class instantiation function, Ga(). The next step
would be to define the symbolic metric for the geometric algebra of the basis we have defined.
The default metric is the most general and is the matrix of the following symbols

(a0.a0) (a0.al) (a0.a2)
g= | (a0.al) (al.al) (al.a2) (2.138)
(a0.a2) (al.a2) (a2.a2)

where each of the g;; is a symbol representing all of the dot products of the basis vectors. Note
that the symbols are named so that g;; = g;; since for the symbol function (a0.al) # (al.a0).

Note that the strings shown in eq. (2.138) are only used when the values of g;; are output
(printed). In the ga module (library) the g;; symbols are stored in a member of the geo-
metric algebra instance so that if 03d is a geometric algebra then 03d.g is the metric tensor
(gi; =03d.gli,j]) for that algebra.

The default definition of g can be overwritten by specifying a string that will define g. As an
example consider a symbolic representation for conformal geometry. Define for a basis

basis = a0 al a2 n nbar’

and for a metric
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g="’## # 00, # # # 0 0, # # # 0 0, 00 0 0 2, 000 2 0

then calling c£3d = Ga(basis,g=g) would initialize the metric tensor

(a0.a0) (a0.al) (a0.a2)
(a0.al) (al.al) (al.a2)

N OO OO
SN O OO

g=| (a0.a2) (al.a2) (a2.a2) (2.139)
0 0 0
0 0 0
for the c£3d (conformal 3-d) geometric algebra.
Here we have specified that n and nbar are orthogonal to all the a’s, (n.n) = (nbar.nbar) =

0, and (n.nbar) = 2. Using # in the metric definition string just tells the program to use the
default symbol for that value.

When Ga is called multivector representations of the basis local to the program are instantiated.
For the case of an orthogonal 3-d vector space that means the symbolic vectors named a0, al,
and a2 are created. We can instantiate the geometric algebra and obtain the basis vectors with

03d = Ga(’a_1 a_2 a_3’,g=[1,1,1])
(a_1,a_2,a_3) = 03d.mv()

or use the Ga.build() function -

(o3d,a_1,a_2,a_3) = Ga.build(’a_1 a_2 a_3’,g=[1,1,1])

Note that the python variable name for a basis vector does not have to correspond to the name
give in Ga() or Ga.build(), one may wish to use a shortened python variable name to reduce
programming (typing) errors, for example one could use -

(03d,al,a2,a3) = Ga.build(’a_1 a_2 a_3’,g=[1,1,1])

or

(st4d,g0,gl1,g2,g3) = Ga.build(’gamma_0 gamma_1 gamma_2 gamma_3’,\
g=[1,-1,-1,-1])

for Minkowski space time.
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If the latex printer is used el would print as e; and gl as ;.

Additionally Ga() and Ga.build() has simplified options for naming a set of basis
vectors and for inputing an orthogonal basis. If one wishes to name the basis vectors

e;, e, and e, then set basis=’ex*x|y|z’ or to name v;, v,, v,, and 7, then set
basis=’gammax*t|x|y|z’. For the case of an orthogonal basis if the signature of the
vector space is (1,1,1) (Euclidean 3-space) set g=[1,1,1] or if it is (1,—1,—1,—1)
(Minkowski 4-space) set g=[1,-1,-1,-1]. If g is a function of position then g can
be entered as a sympy matrix with sympy functions as the entries of the matrix or
as a list of functions for the case of a orthogonal metric. In the case of spherical
coordinates we have g=[1,r**2,r**x2*sin(th)**2].

2.8 Representation and Reduction of Multivector Bases

In our symbolic geometric algebra all multivectors can be obtained from the symbolic basis
vectors we have input, via the different operations available to geometric algebra. The first
problem we have is representing the general multivector in terms terms of the basis vectors. To
do this we form the ordered geometric products of the basis vectors and develop an internal
representation of these products in terms of python classes. The ordered geometric products are
all multivectors of the form a;,a;, ...a; where iy < iy < .-+ < 4, and r < n. We call these
multivectors bases and represent them internally with non-commutative symbols so for example
aiasagz is represented by

Symbol(’a_1*%a_2%a_3’,commutative=False)

In the simplest case of two basis vectors a_1 and a_2 we have a list of bases

self .bases = [[Symbol(’a_1’,commutative=False,real=True),\
Symbol(’a_2’,commutative=False,real=True)],\
[Symbol(’a_1%*a_2’,commutative=False,real=True)]]

For the case of the basis blades we have

self .blades = [[Symbol(’a_1’,commutative=False,real=True),\
Symbol(’a_2’,commutative=False,real=True)],\
[Symbol(’a_1"a_2’,commutative=False,real=True)]]
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For all grades/pseudo-grades greater than one (vectors) the * in the name of the base
symbol is replaced with a ~ in the name of the blade symbol so that for all basis bases
and blades of grade/pseudo-grade greater than one there are different symbols for the
corresponding bases and blades.

The index tuples for the bases of each pseudo grade and each grade for the case of dimension 3
is

self.indexes = (((0,),(1,),(2,)),((0,1),(0,2),(1,2)),((0,1,2)))

Then the non-commutative symbol representing each base is constructed from each index tuple.
For example for self.indexes[1] [1] the symbol is Symbol (’a_1*a_3’,commutative=False).

In the case that the metric tensor is diagonal (orthogonal basis vectors) both base and
blade bases are identical and fewer arrays and dictionaries need to be constructed.

2.9 Base Representation of Multivectors

In terms of the bases defined as non-commutative sympy symbols the general multivector is a
linear combination (scalar sympy coefficients) of bases so that for the case of two bases the most
general multivector is given by -

A = A_O+A__1xself.bases[1][0]J+A__2%*self.bases[1][1]+\
A__12*xself .bases [2] [0]

If we have another multivector B to multiply with A we can calculate the product in terms of a
linear combination of bases if we have a multiplication table for the bases.

2.10 Blade Representation of Multivectors

Since we can now calculate the symbolic geometric product of any two multivectors we can also
calculate the blades corresponding to the product of the symbolic basis vectors using the formula

1
A Nb= 5 (Ab+ (—1)"bA,), (2.140)
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where A, is a multivector of grade r and b is a vector. For our example basis the result is shown
in Table 2.2.

1 =1

a0 = a0
al = ail
a2 = a2

a0~al = {-(a0.al1)}1+alal
a0~ a2 {-(a0.a2)}1+ala2
al~ a2 {-(al.a2)}1+at1a2
a0~al~a2 = {-(al1.a2)}Ya0+{(a0.a2)}ral+{-(a0.al1)}ra2+alala?2

Table 2.2: Bases blades in terms of bases.

The important thing to notice about Table 2.2 is that it is a triagonal (lower triangular) system
of equations so that using a simple back substitution algorithm we can solve for the pseudo bases
in terms of the blades giving Table 2.3.

Using Table 2.3 and simple substitution we can convert from a base multivector representation
to a blade representation. Likewise, using Table 2.2 we can convert from blades to bases.

Using the blade representation it becomes simple to program functions that will calculate the
grade projection, reverse, even, and odd multivector functions.

Note that in the multivector class Mv there is a class variable for each instantiation, self.is blade rep,
that is set to False for a base representation and True for a blade representation. One needs to

keep track of which representation is in use since various multivector operations require conver-

sion from one representation to the other.

1 =1

a0 = a0

al = a1l

a2 = a2

afal = {(a0.al1)}1+a0"al
af0a2 = {(a0.a2)}1+a0"a2

ala?2 = {(al1.a2)}1+al1" a2
afala2 = {(al.a2)}a0+{-(a0.a2)}tal+{(a0.a1)}a2+a0"~al1 a2

Table 2.3: Bases in terms of basis blades.
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When the geometric product of two multivectors is calculated the module looks to see
if either multivector is in blade representation. If either is the result of the geometric
product is converted to a blade representation. One result of this is that if either of
the multivectors is a simple vector (which is automatically a blade) the result will be
in a blade representation. If a and b are vectors then the result axb will be (a.b)+a"b
or simply a”b if (a.b) = 0.
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Chapter 3

Module Components

The geometric algebra module consists of the following files and classes

File Classes Usage
metric.py Metric Instantiates metric tensor and derivatives of basis vec-
tors. Normalized basis if required.
ga.py Ga Instantiates geometric algebra (inherits Metric), gener-
ates bases, blades, multiplication tables, reciprocal basis,
and left and right geometric derivative operators.
Sm Instantiates geometric algebra for submainfold (inherits
Ga).
mv . py Mv Instantiates multivector.
Dop Instantiates linear multivector differential operator.
1t.py Lt Instantiates multivector linear transformation.
printer.py Eprint Starts enhanced text printing on ANSI terminal (requires
ConEmu on Windows).
GaPrinter Text printer for all geometric algebra classes (inherits
from sympy StringPrinter).
GalatexPrinter ITEXprinter for all geometric algebra classes (inherits

from sympy LatexPrinter).

41



3.1 Instantiating a Geometric Algebra

The geometric algebra class is instantiated with
Ga(basis,g=None, coords=None,X=None,norm=False,sig=’e’,Isq="-’,wedge=True,debug=False)

The basis and g parameters were described in section 2.7. If the metric is a function
of position, if we have multivector fields, or we wish to calculate geometric derivatives
a coordinate set, coords, is required. coords is a list of sympy symbols. For the case
of instantiating a 3-d geometric algebra in spherical coordinates we have

(r, th, phi) = coords = symbols(’r,theta,phi’, real=True)

basis = ’e_r e_theta e_phi’
g = [1, r*x*2, r**x2xsin(th)**2]
sp3d = Ga(basis,g=g,coords=coords ,norm=True)

The input X allows the metric to be input as a vector manifold. X is a list of functions
of coords of dimension, m, equal to or greater than the number of coordinates. If
g=None it is assumed that X is a vector in an m-dimensional orthonormal Euclidean
vector space. If it is wished the embedding vector space to be non-Euclidean that
condition is specified with g. For example if we wish the embedding space to be a
5-dimensional Minkowski space then g=[-1,1,1,1,1]. Then the Ga class uses X to
calculate the manifold basis vectors as a function of the coordinates and from them
the metric tensor.!

If norm=True the basis vectors of the manifold are normalized so that the absolute
values of the squares of the basis vectors are one. Currently you should only use this
option for diagonal metric tensors, and even there due so with caution, due to the
possible problems with taking the square root of a general sympy expression (one that
has an unknown sign).

When a geometric algebra is created the unnormalized metric tensor is
always saved so that submanifolds created from the normalized manifold
can be calculated correctly.

sig indicates the signature of the vector space in the following ways.?

1Since X or the metric tensor can be functions of coordinates the vector space that the geometric algebra is
constructed from is not necessarily flat so that the geometric algebra is actually constructed on the tangent space
of the manifold which is a vector space.

2The signature of the vector space, (p,q), is required to determine whether the square of the normalized
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1. If the metric tensor is purely numerical (the components are not symbolic or
functions of the coordinates) and is diagonal (orthogonal basis vectors) the sig-
nature is computed from the metric tensor.

2. If the metric tensor is not purely numerical and orthogonal the following hints
are used (dimension of vector space is n)

(a) sig=’e’ the default hint assumes the signature is for a Euclidean space with
signature (n,0).

(b) sig=’m+’ assumes the signature if for the Minkowski space (n — 1, 1).
(c) sig="m-’ assumes the signature if for the Minkowski space (1,n — 1).
(d) sig=p where p is an integer p < n and the signature it (p,n — p).

If the metric tensor contains no symbolic constants, but is a function of the coordi-
nates, it is possible to determine the signature of the metric numerically by specifying
a allowed numerical coordinate tuple due to the invariance of the signature. This will
be implemented in the future.

Currently one need not be concerned about inputting sig unless one in using the
Ga member function Ga.I() or the functions Mv.dual () or cross() which also use
Ga.IQ).

If I? is numeric it is calculated if it is not numeric then Isq=’-" is the sign of the
square of the pseudo-scalar. This is needed for some operations. The default is chosen
for the case of a general 3D Euclidean metric.

U~

If wedge=True the basis blades of a multivector are printed using the symbol
between basis vectors. If wedge=False the subscripts of each individual basis vector
(assuming that the basis vector symbols are of the form root symbol with a sub-
script?). For example in three dimensions if the basis vectors are e, e,, and e, the
grade 3 basis blade would be printed as eg..

If debug=True the data structures required to initialize the Ga class are printed out.

To get the basis vectors for sp3d we would have to use the member function Ga.mv ()

pseudoscalar, I, is +1 or —1. In the future the metric tensor would be required to create a generalized spinor |2,
p. 106].
3Using BTEX output if a basis vector is denoted by e, then e is the root symbol and z is the subscript

43



in the form

(er,eth,ephi) = sp3d.mv()

To access the reciprocal basis vectors of the geometric algebra use the member function mvr ()
Ga.mvr (norm="True’)

Ga.mvr (norm) returns the reciprocal basis vectors as a tuple. This allows the pro-
grammer to attach any python variable names to the reciprocal basis vectors that is
convenient. For example (demonstrating the use of both mv() and mvr())

1 (e_x,e_y,e_z) = 03d.mv ()
2 (e__x,e__y,e__z) = o03d.mvr ()

If norm="True’ or the basis vectors are orthogonal the dot product of the basis vector
and the corresponding reciprocal basis vector is one (ei el =47 ) If norm="False’
and the basis is non-orthogonal The dot product of the basis vector and the corre-
sponding reciprocal basis vector is the square of the pseudo scalar, I 2 of the geometric
algebra (e; - e/ = E257).

In addition to the basis vectors, if coordinates are defined for the geometric algebra, the left and
right geometric derivative operators are calculated and accessed with the Ga member function
grads ().

Ga.grads()

Ga.grads() returns a tuple with the left and right geometric derivative operators. A
typical usage would be

(grad,rgrad) = sp3d.grads()

for the spherical 3-d geometric algebra. The left derivative (grad = V) and the right
derivative (rgrad = 6) have been explained in section 2.3.3. Again the names grad
and rgrad used in a program are whatever the user chooses them to be. In the
previous example grad and rgrad are used.

an alternative instantiation method is
Ga.build(basis, g=None, coords=None, X=None, norm=False, debug=False)

The input parameters for Ga.build() are the same as for Ga(). The difference is that
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in addition to returning the geometric algebra Ga.build() returns the basis vectors
at the same time. Using Ga.build() in the previous example gives

1 (r, th, phi) = coords = symbols(’r,theta,phi’, real=True)

2 basis = ’e_r e_theta e_phi’

s g = [1, r**%x2, r**2*xsin(th)**2]

1+ (sp3d,er,eth,ephi) = Ga.build(basis,g=g,coord=coords ,norm=True)

To access the pseudo scalar of the geometric algebra us the member function I().
Ga.I0)
Ga.I() returns the normalized pseudo scalar (|I%| = 1) for the geometric algebra.

For example I = 03d.I() for the 03d geometric algebra. This function requires the
signature of the vector space (see instantiating a geometric algebra).

Ga.E()

Ga.E(Q) returns the unnormalized pseudo scalar E,, = e; A ... A e, for the geometric
algebra.

In general we have defined member functions of the Ga class that will instantiate objects of other

classes since the objects of the other classes are all associated with a particular geometric algebra
object. Thus we have

Object Class Ga method
multivector Mv mv
submanifold Sm sm

linear transformation Lt 1t
differential operator =~ Dop dop

for the instantiation of various objects from the Ga class. This means that in order to instantiate
any of these objects we need only to import Ga into our program.
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3.2 Instantiating a Multivector

Since we need to associate each multivector with the geometric algebra that contains it we use
a member function of Ga to instantiate every multivector* The multivector is instantiated with:

Ga.mv(name, mode, f=False)

As an example of both instantiating a geometric algebra and multivectors consider
the following code fragment for a 3-d Euclidean geometric algebra.

1 from sympy import symbols
2 from ga import Ga

s (x, y, z) = coords = symbols(’x,y,z’,real=True)
103d = Ga(’e_x e_y e_z’, g=[1,1,1], coords=coords)
5 (ex, ey, ez) = 03d.mv()

6V = 03d.mv(’V’,’vector’ ,f=True)

7f = 03d.mv(x*xy*z)
s B = 03d.mv(’B’,2)

First consider the multivector instantiation in line 6,
V = 03d.mv(’V’, ’vector’,f=True)
Here a 3-dimensional multivector field that is a function of x, y, and z (£=True) is
being instantiated. If latex output were used (to be discussed later) the multivector
V would be displayed as
Vie, + VY, +VZe, (3.1)

Where the coefficients of the basis vectors are generalized sympy functions of the
coordinates. If f=(x,y) then the coefficients would be functions of x and y. In
general is £ is a tuple of symbols then the coefficients of the basis would be functions
of those symbols. The superscripts® are formed from the coordinate symbols or if
there are no coordinates from the subscripts of the basis vectors. The types of name
and modes available for multivector instantiation are

4There is a multivector class, Mv, but in order the insure that every multivector is associated with the correct
geometric algebra we always use the member function Ga.mv to instantiate the multivector.
5Denoted in text output by A__x, etc. so that for text output A would be printed as A__x*e_x+A__y*e_y+A__zxe_z.
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name mode result

string s ‘scalar’ symbolic scalar of value Symbol(s)
string s ‘vector’ symbolic vector

string s ‘grade2’ or ‘bivector’ symbolic bivector

string s r (integer) symbolic r-grade multivector

string s ‘pseudo’ symbolic pseudoscalar

string s ‘spinor’ symbolic even multivector

string s ‘mv’ symbolic general multivector

scalar ¢ None zero grade multivector with coefficient value ¢

Line 5 of the previous listing illustrates the case of using the mv member function
with no arguments. The code does not return a multivector, but rather a tuple or
the basis vectors of the geometric algebra 03d. The elements of the tuple then can
be used to construct multivectors, or multivector fields through the operations of
addition, subtraction, multiplication (geometric, inner, and outer products and left
and right contraction). As an example we could construct the vector function

F = x*xx2%ex + z*ey + x*xy*ez
or the bivector function
B = zx(ex"ey) + y*x(ey~ez) + y*x(ex"ez).

Line 7 is an example of instantiating a multivector scalar function (a multivector
with only a scalar part). If we print f the result is x*y*z. Line 8 is an example of
instantiating a grade r (in the example a grade 2) multivector where

B =B"e, Ne,+ Be, Ne, + B"e, Ne,. (3.2)

If one wished to calculate the left and right geometric derivatives of F and B the required code
would be

(grad,rgrad) = o03d.grads()
dF = gradxF

3 dB = gradx*B

dFr = Fx*xrgrad

dBr = Bx*rgrad.

dF, dB, dFr, and dBr are all multivector functions. For the code where the order of the operations
are reversed

(grad,rgrad) = o03d.grads()
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dFop Fxgrad
3 dBop Bxgrad
dFrop = rgradxF
dBrop = rgrad*B.

dFop, dBop, dFrop, and dBrop are all multivector differential operators (again see section 2.3.3).

3.3 Backward Compatibility Class MV

In order to be backward compatible with older versions of galgebra we introduce the class MV
which is inherits it’s functions from then class Mv. To instantiate a geometric algebra using MV
use the static function

1 MV.setup (basis, metric=None, coords=None, rframe=False,\

> debug=False,curv=(None, None))}

This function allows a single geometric algebra to be created. If the function is
called more than once the old geometric algebra is overwritten by the new geometric
algebra. The named input metric is the same as the named input g in the current
version of galgebra. Likewise, basis, coords, and debug are the same in the old and
current versions of galgebra®. Due to improvements in sympy the inputs rframe and
curv[1] are no longer required. curv[0] is the vector function (list or tuple of scalar
functions) of the coordinates required to define a vector manifold. For compatibility
with the old version of galgebra if curv is used metric should be a orthonormal
Euclidean metric of the same dimension as curv[0]. It is strongly suggested that
one use the new methods of defining a geometric algebra on a manifold.

MV(base, mvtype, fct=False, blade_rep=True)

For the instantiation of multivector using MV the base and mvtype arguments are the
same as for new methods of multivector instantiation. The fct input is the same and
the g input in the new methods. blade_rep is not used in the new methods so setting
blade _rep=False will do nothing. Effectively blade rep=False was not used in the
old examples.

Fmt (self, fmt=1, title=None)

6If the metric is input as a list or list or lists the object is no longer quoted (input as a string). For example
the old metric=’[1,1,1]’ becomes metric=[1,1,1].
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Fmt in MV has inputs identical to Fmt in Mv except that if A is a multivector then
A.Fmt(2,’A’) executes a print statement from MV and returns None, while from Mv,
A.Fmt (2,’A’) returns a string so that the function is compatible with use in ipython
notebook.

3.4 Basic Multivector Class Functions

If we can instantiate multivectors we can use all the multivector class functions as described as
follows.

blade_coefs(self,basis_1st)

Find coefficients (sympy expressions) of multivector basis blade expansion corre-
sponding to basis blades in basis_1st. For example if V = V?e, + VVe, + V?e,
Then V.blade_coefs(le,,e,]) = [V*,V?] or if B = B"e, A e, + V¥?e, A e, then
B.blade_coefs(le, N ey]) = [B™].

convert_to_blades(self)

Convert multivector from the base representation to the blade representation. If
multivector is already in blade representation nothing is done.

convert_from_ blades(self)

Convert multivector from the blade representation to the base representation. If
multivector is already in base representation nothing is done.

diff (self,var)

Calculate derivative of each multivector coefficient with respect to variable var and
form new multivector from coefficients.

dual (self)

The mode of the dual() function is set by the Ga class static member function,
GA.dual mode(mode="I+’) of the GA geometric galgebra which sets the following
return values (I is the pseudo-scalar for the geometric algebra GA)
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mode Return Value

Y410 IA
YT+ Al
1-1° —ITA
»I-0 —Al
'+Iinv’ I'A
'Tinv+’ Al!
’-Tinv’ —I7tA
’Tinv-’ —AI!

For example if the geometric algebra is 03d, A is a multivector in 03d, and we wish
to use mode="I-’. We set the mode with the function 03d.dual (’I-’) and get the
dual of A with the function A.dual() which returns —AI.

If 03d.dual (mode) is not called the default for the dual mode is mode=>I+’ and A*I
is returned.

Note that Ga.dual (mode) used the function Ga.I() to calculate the normalized pseu-
doscalar. Thus if the metric tensor is not numerical and orthogonal the correct hint
for thensig input of the Ga constructor is required.

even(self)

Return the even grade components of the multivector.

exp(self,hint="-")

If Ais a multivector then e is defined for any A via the series expansion for e.
However as a practical matter we only have a simple closed form formula for e4 if

A? is a scalar.” If A? is a scalar and we know the sign of A% we have the following

formulas for e?.

In the future it should be possible to generate closed form expressions for e if A™ is a scalar for some interger
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A= \/ﬁi e = cosh (\/ﬁ) + sinh (\/ﬁ)

VA VA
A? < 0:
A A
A=+y-A2—— ¢4 =cos (\/ —A2) + sin (\/ —AQ)
o/ — A2 —A2
A? = 0:

=14+ A

The hint is required for symbolic multivectors A since in general sympy cannot de-
termine if A% is positive or negative. If A is purely numeric the hint is ignored since
the sign can be calculated.

expand (self)

Return multivector in which each coefficient has been expanded using sympy expand ()
function.

factor(self)

Apply the sympy factor function to each coefficient of the multivector.
Fmt (self, fmt=1,title=None)

Fuction to print multivectors in different formats where

fmt Formatting
1 Print entire multivector on one line.
2 Print each grade of multivector on one line.
3 Print each base of multivector on one line.

title appends a title string to the beginning of the output. An equal sign in the
title string is not required, but is added as a default. Note that Fmt only overrides
the the global multivector printing format for the particular instance being printed.
To reset the global multivector printing format use the function Fmt () in the printer
module.

func(self,fct)
Apply the sympy scalar function fct to each coefficient of the multivector.

grade (self,igrade=0)
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Return a multivector that consists of the part of the multivector of grade equal to
igrade. If the multivector has no igrade part return a zero multivector.

inv(self)

Return the inverse of the multivector M (M.inv()). If M is a non-zero scalar return
1/M. If M? is a non-zero scalar return M/ (M?), If M MT is a non-zero scalar return
Mt/ (M M T). Otherwise exit the program with an error message.

All division operators (/, /=) use right multiplication by the inverse.
norm(self ,hint=+"’)

Return the norm of the multivector M (M.norm()) defined by /|MMT|. If MMT is a
scalar (a sympy scalar is returned). If M M7 is not a scalar the program exits with an
error message. If M MT is a number sympy can determine if it is positive or negative
and calculate the absolute value. If MMT is a sympy expression (function) sympy
cannot determine the sign of the expression so that hint=’+’ or hint=’"-" is needed
to determine if the program should calculate vV MMt or v/—MM?. For example if
we are in a Euclidean space and M is a vector then hint="+’, if M is a bivector then
let hint="-". If hint="0’ and M M is a symbolic scalar sqrt (Abs (M*M.rev())) is
returned where Abs () is the sympy symbolic absolute value function.

norm2(self)

Return the the scalar defined by MM if MMT is a scalar. If MM is not a scalar
the program exits with an error message.

proj(self,lst)

Return the projection of the mutivector A onto the list, [st, of basis blades. For
example if A = A%e, + AYe, + A%e, then A.proj (le,, e,]) = A%e, + AYe,. Similarly
if A= A"e, N e, + A¥e, A e, then A.proj (je, N e,]) = A™e, N e,.

project_in blade(self,blade)

Return the projection of the mutivector A in subspace defined by the blade, B, using
the formula (A]B) B~! in [3], page 121.

pure_grade(self)

If the multivector A is pure (only contains one grade) return, A.pure_grade(), the
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index (’0’ for a scalar, "1’ for vector, 2’ for a bi-vector, etc.) of the non-zero grade.
If A is not pure return the negative of the highest non-zero grade index.

odd (self)
Return odd part of multivector.
reflect_in_blade(self,blade)

Return the reflection of the mutivector A in the subspace defined by the r-grade
blade, B,, using the formula (extended to multivectors) ). (=1)"D B, (A) ;B tin
3], page 129.

rev(self)
Return the reverse of the multivector. See eq. (77).

rotatemultivector(self,itheta,hint="-7)

Rotate the multivector A via the operation e %/2A4e%/? where itheta = 6i, 0 is a
scalar, and i is a unit, 2 = £1, 2-blade. If ((92')2 is not a number hint is required to
determine the sign of the square of itheta. The default chosen, hint="-" is correct
for any Euclidean space.

scalar (self)
Return the coefficient (sympy scalar) of the scalar part of a multivector.
simplify(self,mode=simplify)

mode is a sympy simplification function of a list/tuple of sympy simplification func-
tions that are applied in sequence (if more than one function) each coefficient of
the multivector. For example if we wished to applied trigsimp and ratsimp sympy
functions to the multivector F the code would be

Fsimp = F.simplify(mode=[trigsimp,ratsimp]).

Actually simplify could be used to apply any scalar sympy function to the coeffi-
cients of the multivector.

set_coef (self,grade,base,value)

Set the multivector coefficient of index (grade,base) to value.
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subs (self,x)

Return multivector where sympy subs function has been applied to each coefficient
of multivector for argument dictionary/list x.

trigsimp(self,**xkwargs)

Apply the sympy trigonometric simplification function trigsimp to each coefficient of
the multivector. **kwargs are the arguments of trigsimp. See sympy documentation
on trigsimp for more information.

3.5 Basic Multivector Functions

com(A,B)
Calculate commutator of multivectors A and B. Returns (AB — BA)/2.

Additionally, commutator and anti-commutator operators are defined by

AB — BA
A >> BET
A << BE%.

cross(vl,v2)

If v1 and v2 are 3-dimensional Euclidean vectors the vector cross product is returned,
V1 X Vg = —1 (Ul /\UQ).

def_prec(gd,op_ord="<>|,~,*’)?

This is used with the GAeval () function to evaluate a string representing a multivec-
tor expression with a revised operator precedence. def_prec() redefines the operator
precedence for multivectors. def_prec() must be called in the main program an the
argument gd must be globals(). The argument op_ord defines the order of operator
precedence from high to low with groups of equal precedence separated by commas.
the default precedence op_ord=’<>|,~,\*’ is that used by Hestenes ([2],p7,[1],p38).

dual (A,mode="1I+")

8See footnote 9.
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Return the dual of the multivector A. The default operation is AI. For other modes
see member functionMv.dual (mode)

even(A)
Return even part of A.
exp(A,hint="-")

If A is a multivector then A.exp(hint) is returned. If A is a sympy expression the
sympy expression e is returned (see sympy.exp(A) member function).

GAeval (s,pstr=False)’

Returns multivector expression for string s with operator precedence for string s
defined by inputs to function def _prec(). if pstr=True s and s with parenthesis
added to enforce operator precedence are printed.

grade (A,r=0)
If A is a multivector (A), is returned.
inv(A)

If A is a multivector and AAT is a non-zero scalar then A=! = AT/(AAT) is returned
otherwise an exception is returned.

Nga(x,prec=5)

If x is a multivector with coefficients that contain floating point numbers, Nga()
rounds all these numbers to a precision of prec and returns the rounded multivector.

norm(A,hint="-")

If A is a multivector and AAT is a number (not a scalar function) then /|AAT] is
returned. If AAT is a scalar sympy expression, but not a number, and hint=>-’ then
return v/ —AA" otherwise return v AAT.

norm2 (A)

If A is a multivector and AAT is a scalar return |AAT‘.

9GAeval is in the printer module.
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odd (A)

Return odd part of A.
proj(B,A)

Project blade A on blade B returning (A|B) B~ 1.
ReciprocalFrame(basis,mode=’norm’)

If basis is a list/tuple of vectors, ReciprocalFrame() returns a tuple of reciprocal
vectors. If mode=norm the vectors are normalized. If mode is anything other than
norm the vectors are unnormalized and the normalization coefficient is added to the
end of the tuple. One must divide by this coefficient to normalize the vectors.

refl(B,A)

Reflect multivector A in blade B. If s is grade of B returns > (—1)*"*V B (A) B~1.
rev(A)

If Ais a multivector return Af.
rot (itheta,A,hint="-")

If A is a multivector return A.rotate_multivector(itheta,hint) where itheta is
the bi-vector blade defining the rotation. For the use of hint see the member function
Mv.rotatemultivector(self,itheta,hint).

3.6 Multivector Derivatives

The various derivatives of a multivector function is accomplished by multiplying the gradient
operator vector with the function. The gradient operation vector is returned by the Ga.grads ()
function if coordinates are defined. For example if we have for a 3-D vector space

X = (x,y,2z) = symbols(’x y z’)

03d = Ga(’exx|ylz’,metric="[1,1,1]’,coords=X)
(ex,ey,ez) = 03d.mv()

(grad,rgrad) = o03d.grads()
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Then the gradient operator vector is grad (actually the user can give it any name he wants
to). The derivatives of the multivector function F = 03d.mv(’F’,’mv’,f=True) are given by
multiplying by the left geometric derivative operator and the right geometric derivative operator
(grad =V and rgrad = ?). Another option is to use the radiant operator members of the
geometric algebra directly where we have V = 03d.grad and V = 03d.rgrad.

VF = grad*F

FV = Fxrgrad
VAF =grad”F
FAV =F-rgrad

V. F =gradlF
F -V =Fl|rgrad
V|F = grad<F
F|V = F<rgrad
V| F = grad>F

F|V = F>rgrad

The preceding list gives examples of all possible multivector derivatives of the multivector func-
tion F where the operation returns a multivector function. The complementary operations

FV = Fx*grad

VF = rgrad*F
FANV =F~grad
V A F = rgrad"F

F .V =Flgrad
V. F =rgradlF
F|V = F<grad
V|F = rgrad<F
F|V =F>grad
V|F = rgrad>F

all return multivector linear differential operators.
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3.7 Submanifolds

In general the geometric algebra that the user defines exists on the tangent space of a manifold
(see section 2.2). The submanifold class, Sm, is derived from the Ga class and allows one to
define a submanifold of a manifold by defining a coordinate mapping between the submanifold
coordinates and the manifold coordinates. What is returned as the submanifold is the geometric
algebra of the tangent space of the submanifold. The submanifold for a geometric algebra is
instantiated with

Ga.sm(map,coords,root="e’ ,norm=False)

To define the submanifold we must def a coordinate map from the coordinates of the
submanifold to each of the coordinates of the base manifold. Thus the arguments
map and coords are respectively lists of functions and symbols. The list of symbols,
coords, are the coordinates of the submanifold and are of length equal to the di-
mension of the submanifold. The list of functions, map, define the mapping from the
coordinate space of the submanifold to the coordinate space of the base manifold.
The length of map is equal to the dimension of the base manifold and each function
in map is a function of the coordinates of the submanifold. root is the root of the
string that is used to name the basis vectors of the submanifold. The default value
of root is e. The result of this is that if the sympy symbols for the coordinates are u
and v (two dimensional manifold) the text symbols for the basis vectors are e_u and
e_v or in {TEX e, and e,. As a concrete example consider the following code.

Listing 3.1: python/submanifold.py
1 from sympy import symbols, sin, pi, latex
2 from ga import Ga
s from printer import Format, xpdf

s Format ()

6 coords = (r, th, phi) = symbols(’r,theta,phi’, real=True)
7 sp3d = Ga(’e_r e_th e_ph’, g=[1, r**2, r**x2*xsin(th)*x2],\
8 coords=coords, norm=True)

10 sph_uv = (u, v) = symbols(’u,v’, real=True)

u sph_map = [1, u, vl # Coordinate map for sphere of r = 1
12 sph2d = sp3d.sm(sph_map,sph_uv)

13

u print r’(u,v)\rightarrow (r,\theta,\phi) = ’,latex(sph_map)
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34

print ’g =’,latex(sph2d.g)

F = sph2d.mv(’F’,’vector’ ,f=True) #scalar function
f = sph2d.mv(’f’,’scalar’,f=True) #wector function

print r’\nabla f
print ’F =’,F
print r’\nabla F

0

cir_s =
cir_map

[pi/8,

=’ ,sph2d.grad * f

= ’,sph2d.grad * F

s]

= symbols(’s’,real=True)

cirld = sph2d.sm(cir_map,(cir_s,))

print ’g =’,latex(cirld.g)
h = cirld.mv(’h’,’scalar’,f=True)
H = cirld.mv(’H’,’vector’,f=True)

print r’(s)\rightarrow (u,v)

print ’H =", H
print latex (H)
print r’\nabla h
print r’\nabla H

xpdf (filename=’submanifold.tex’,paper=(6,5),crop=True)

The output of this program (using KTEX) is

The base manifold, sp3d, is a 3-d Euclidean space using standard spherical coordi-

’,latex(cir_map)

=’, cirld.grad * h
=’, cirld.grad * H

(u,0) = (r,0,0) = 1,

-1

Vf=0ufeuw+0yfe,

F=F'e, + F'e,
VF = (0,F" 4+ 0,F") 4+ (=0,F“ 4+ 0, F") e, N e,

g=1[1]

() = (wv) = [

H = H?e,
Hle,

Vh = 0shes
VH = 9,H?

™
) )

s]

U,
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nates. The submanifold sph2d of sp3d is a spherical surface of radius 1. To take the
sumanifold operation one step further the submanifold cirld of sph2d is a circle in
sph2d where the latitude of the circle is 7/8.

In each case, for demonstration purposes, a scalar and vector function on each man-
ifold is defined (f and F for the 2-d manifold and h and H for the 1-d manifold) and
the geometric derivative of each function is taken. The manifold mapping and the
metric tensor for cirld of sph2d are also shown. Note that if the submanifold basis
vectors are not normalized!® the program output is.

(u,v) = (r,60,0) = [1, u, v}

1 0
9710 sin? (u)
Vf=0ufeu+ 6§f €y
sin® (u)
F = F'e, + Fe,

I 2F" I
VF = ( + O, F" + avF“> + ( + 0, FY — ?”2 ) eu N €y
tan (u) tan (u) sin” (u)

Hfeg
Vh = (2\/5 + 4) dshes
VH = 0,H*

3.8 Linear Transformations

The mathematical background for linear transformations is in section 2.4. Linear transformations
on the tangent space of the manifold are instantiated with the Ga member function 1t (the actual
class being instantiated is Lt) as shown in lines 12, 20, 26, and 44 of the code listing Ltrans. py.
In all of the examples in Ltrans. py the default instantiation is used which produces a general (all
the coefficients of the linear transformation are symbolic constants) linear transformation. Note

0Remember that normalization is currently supported only for orthogonal systems (diagonal metric tensors).
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that to instantiate linear transformations coordinates, {e;}, must be defined when the geometric
algebra associated with the linear transformation is instantiated. This is due to the naming con-
ventions of the general linear transformation (coordinate names are used) and for the calculation
of the trace of the linear transformation which requires taking a divergence. To instantiate a
specific linear transformation the usage of 1t () is Ga.1lt (M,f=False,mode="g’)
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M is an expression that can define the coefficients of the linear transformation in
various ways defined as follows.

M Result

string M Coeflicients are symbolic constants with names M¥*s
where z; and x; are the names of the i"* and j™ co-
ordinates (see output of Ltrans.py).

char mode If M is a string then mode determines whether the lin-
ear transformation is general, mode=’g’, symmetric,
mode=’s’, or antisymmetric, mode=’a’. The default is
mode=’g’.

list M If M is a list of vectors equal in length to the dimen-

sion of the vector space then the linear transformation is
L (e;) =M[i]. If Mis a list of lists of scalars where all lists
are equal in length to the dimension of the vector space
then the linear transformation is L (e;) = M[i] [j] e;.

dict M If M is a dictionary the linear transformation is defined
by L(e;) = M[e;]. If e; is not in the dictionary then
rotor M If M is a rotor, MM' = 1, the linear transformation is de-

fined by L (e;) = MeM!.

multivector function M If M is a general multivector function, the function is
tested for linearity, and if linear the coefficients of the
linear transformation are calculated from L (e;) = M(e;).

f is True or False. If True the symbolic coefficients of the general linear transfor-
mation are instantiated as functions of the coordinates.

The different methods of instantiation are demonstrated in the code LtransInst.py

Listing 3.2: python/Ltranslnst.py

from sympy import symbols, sin, cos, latex, Matrix
from ga import Ga
from printer import Format, xpdf

Format ()

(x, y, z) = xyz = symbols(’x,y,z’,real=True)

(03d, ex, ey, ez) = Ga.build(’e_x e_y e_z’, g=[1, 1, 1], coords=xyz)
A = 03d.1t(’A)
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print r’\mbox{General Instantiation: }A

th = symbols(’theta’,real=True)
R = cos(th/2)+(ex"ey)*sin(th/2)
B = 03d.1t(R)

print r’\mbox{Rotor: }R =’, R

print r’\mbox{Rotor Instantiation: }B =’,
dictl = {ex:ey+ez,ez:ey+ez,ey:ex+ez}

C = 03d.1lt(dictl)

print r’\mbox{Dictionary} =’, latex(dictl)
print r’\mbox{Dictionary Instantiation: }C
1st1 = [[1,0,1],[0,1,0],[1,0,1]]

D = 03d.1t(1lst1)

print r’\mbox{List} =’, latex(lstl)

print r’\mbox{List Instantiation: }D =’, D
1st2 = [ey+ez,extez,extey]

E = 03d.1t(1st2)

print r’\mbox{List} =’, latex(lst2)

print r’\mbox{List Instantiation: }E =’, E

xpdf (paper=(10,12) ,crop=True)

with output
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L
General Instantiation: A= | L(ey) = Azyes+ Ayyey + Aye,
L

(ez) = A.e.+ Ayzey +A,.e.

Rotor: R—cos( )4—5111( )em/\ey

0

2

L(es) cos (0)eq — sin (0)ey
L(ey) = sin(f)ey + cos(f)e,
L(e,)= e,

(em) = Amxem + Aymey + Azmez ]

Rotor Instantiation: B =

Dictionary = {em ieytey, ey:epte,, e;iey+ ez}

List Instantiation: E = | L(ey) = ez +e,
L

The member function of the Lt class are
Lt (A)

Returns the image of the multivector A under the linear transformation L where
L (A) is defined by the linearity of L, the vector values L (e;), and the definition
L(el-l /\/\6“) :L(e“)/\/\L(ezr)

Lt.det ()

Returns the determinant (a scalar) of the linear transformation, L, defined by det (L) I =
L(I).

Lt.adjO

Returns the adjoint (a linear transformation) of the linear transformation, L, defined
by a- L (b) =b- L (a) where a and b are any two vectors in the tangent space and L
is the adjoint of L.
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Lt.tr()

Returns the trace (a scalar) of the linear transformation, L, defined by tr (L) =
V.- L (a) where a is a vector in the tangent space.

Lt.matrix()

Returns the matrix representation (sympy Matrix) of the linear transformation, L,
defined by L (e;) = L;;e; where L;; is the matrix representation.

The Ltrans.py demonstrate the use of the various Lt member functions and operators. The
operators that can be used with linear transformations are +, -, and *. If A and B are linear
transformations, V' a multivector, and « a scalar then (A + B) (V) =A (V)£ B(V), (AB) (V) =
A(B(V)), and (aA) (V) =aA (V).

The matrix () member function returns a sympy Matrix object which can be printed in IPython
notebook. To directly print an linear transformation in ipython notebook one must implement
(yet to be done) a printing method similar to mv.Fmt ().

Note that in Ltrans.py lines 30 and 49 are commented out since the latex output of those
statements would run off the page. The use can uncomment those statements and run the code
in the “LaTeX docs” directory to see the output.

Listing 3.3: python/Ltrans.py

from sympy import symbols, sin, cos, latex
from ga import Ga
from printer import Format, xpdf

Format ()

(x, y, z) = xyz = symbols(’x,y,z’,real=True)
(03d, ex, ey, ez) = Ga.build(’e_x e_y e_z’, g=[1, 1, 1], coords=xyz)
grad = o03d.grad

(u, v) = uv = symbols(’u,v’,real=True)

(g2d, eu, ev) = Ga.build(’e_u e_v’, coords=uv)

grad_uv = g2d.grad

A = 03d.1t(’A’)

print ’#3d orthogonal ($A,\\;B$ are linear transformations)’

print ’A =’, A
print r’\f{\operatorname{mat}}{A} =’, latex(A.matrix())
print ’\\f{\\det}{A} =", A.det()
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print ’\\overline{A} =’, A.adj()

print \\f{\\Tr}{A} =", A.tr ()

print ’\\f{A}e_x"e_y} =’, A(ex"ey)

print \\f{A}{e_x} "\\f{A}{e_y} =", A(ex) A(ey)
B = 03d.1t(’B’)

print A + B =2, A + B

print ’AB =, A *x B

print A - B =, A - B

print ’#2d general ($A,\\;B$ are linear transformations)’
A2d = g2d.1t(’A’)

print A =’, A2d

print ’\\f{\\det}{A} =’, A2d.det ()

#A2d.adj ().Fmt (4, ’\\overline{A}’)

print \\f{\\Tr}{A} =2, A2d.tr ()

print ’\\f{A}e_u"e_v} =’, A2d(eu”ev)

print \\f{A}e_ul} "\\f{A} e_v} =’, A2d(eu) ~A2d(ev)
B2d = g2d.1t(’B’)

print ’B =’, B2d

print ’A + B =’, A2d + B2d

print ’AB =’, A2d * B2d

print A - B =’, A24d - B2d

a = g2d.mv(’a’,’vector’)

b = g2d.mv(’b’,’vector’)

print r’al\f{\overline{A}}{b}-b|\f{\underline{A}}{a} =’,\

((alA2d.adj () (b))-(blA2d(a))).simplify ()

print ’#4d Minkowski spaqce (Space Time)’

m4d = Ga(’e_t e_x e_y e_z’, g=[1, -1, -1, -1],\
coords=symbols(’t,x,y,z’,real=True))

T = m4d.1t(’T?’)

print ’g =’, mdd.g

print r’\underline{T} =’,T

print r’\overline{T} =’,T.adj()

#m4d.mv(T.det ()).Fmt (4,r’\f{\det}{\underline{T}}’)

print r’\f{\mbox{tr}}{\underline{T}} =’,T.tr()

a = m4d.mv(’a’,’vector’)

b = m4d.mv(’b’,’vector’)
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55 print r’al\f{\overline{T}}{b}-b|\f{\underline{T}}{a} =’,\
56 ((alT.adj O (b))-(blT(a))).simplify ()
s7 xpdf (paper=(10,12) ,debug=True)
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The output of this code is.

3d orthogonal (A, B are linear transformations)

L(ex) = Aives+ Apey+ Ae
A=< L(ey)= Apjec+Aye,+ A e
L(es) = Ap.ez+ Ayey+A.e,

Apy Ay Aus
mat (A) = |Aye Ay, Ay
Asw Asy Ase

det (4) = Aps AyyAus — App Ay Auy — AuyAye v+ Ang Ay Ay + A Ay Auy — Ao Ay Asy

B L(ex) = Avvea + Asyey+ Aszez
A=( Liey) = Apex+Aye,+ A e
L(ez)= A..ex+ A ey+A..e.

Tr(A) = Aps + Ay + Ao
Aler Ney) = (ApaAyy — ApyAys) €z A ey + (AppAzy — ApyAy) ex Nez + (Aye Ay — AyyAca) ey Nes
Ales) NA(ey) = (AzaAyy — AvyAys) €x A ey + (ApeAzy — AvyAzs) €x Nez+ (AyeAzy — AyyAsa) ey Nes

L(ea) = (Ass+ Bua) €x + (Aye + Bya) €y + (Aza + Bzr) €2
A+B= )= (Auy+ Buy)ex+ (Ayy + Byy) ey + (Azy + Bzy) ez

)= (At Biz)ew + (Ay. + By.)ey + (A + Be)es

L(ex) = (AvaBas + AsyBys + As:Bia) €z + (Aye Bro + Ay Byo + Ay Beo) €y + (Aza Bro + A2y Bya + A2 Bua) ez
AB = ) (AzeBry + AgyByy + Ag2Bsy) € + (Aye Buy + AyyByy + Ay Bsy) €y + (AzoBuy + A2y Byy + Az.By) ez
)= (AwaBa: + AzyBy: + AszB:.) €a + (AyaBaz + AyyBy: + Ay=Be2) ey + (AzeBox + A2y By: + A2 Bex) ex
L(ea) = (Ase — Buz) €x + (Aye = Bya) €y + (Aze — Bar) €z
A-B= )= (Asy = Bay) € + (Ayy — Byy) ey + (Azy — Bzy) ez
L(ez) = (Ay:— By:)ew +(Ay: — By:)ey + (A — Bz e
2d general (A, B are linear transformations)
A= Llew) = AwewtAve,
T L(en) = Aueu+ Apey
det (A) = AuuAvs — AuvAvu
(eu - eu) (ev - ev) Auu (eu - eu) (e
(u-ea)(ev-er) = (eu-en)”  (eu-eu) (en
Aleu New) = (AuAvy — AupAvu) €u A €y
Alew) NA(er) = (Auudvw — AuwwAvu) €u A €y

p_ | L(ew) = Buweu+ Buuey
L(ey) = Buveu+ Busey

euw) = (Auu + Buu) €u + (Avu + Buu) €y
)= (Auw + Bu) €u + (Apw + Buy) €

ap = { Llew) = (AuwBuu+ AuBuu) €u + (ApuBuu + Avy Buu) €0
T Lew) = (AuwuBuy + AuwwBuo) € + (AvuBuo + AvoBoy) €0

A_p={ L) = (Aw = Bui)eu+ (Avu = Buu) €v
| L(ew) = (Aw — Buy) €w + (Apw — Buo) €y

a-A(b)—b-A(a)=0
4d Minkowski spaqce (Space Time)

ev) Ayy (eu €0)’ Auu (eu-e0)’ Ay

Tr(A) =
@ )= (ewe) (eured)(ene) = (e e)’  (ewreu) (o en) = (eu-en)’

1 0 0 0
o -1 0
9510 0 -1 o0
0 0 -1
L(et) = Tuer+ Toeqs+ Typey +Ture.
po] Llea)= Tuei+ Toeq+Tyey + Torex
- L(ey) = Tyei+ Toyes +Tyyey + Trye.
L(ey)= Tees+ Trea+Tyey+T.ces
L (Et) = Tuet —Tizeq — Ttyey —Ti.ez
7] L(ea)= —Tuer+Topeq + Toyey + Trze:
L(ey) = —Tyer+ Tyrex +Tyyey +Ty.e.
L(ez)= —T.et+Toweq+T.yey+T..e,

(L) = Tyt + Tow + Tyy + Tz
a-T®)~b-T(a) =
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3.9 Differential Operators

For the mathematical treatment of linear multivector differential operators see section 2.3.3. The
is a differential operator class Dop. However, one never needs to use it directly. The operators
are constructed from linear combinations of multivector products of the operators Ga.grad and
Ga.rgrad as shown in the following code for both orthogonal rectangular and spherical 3-d
coordinate systems.

Listing 3.4: python/Dop.py
from sympy import symbols, sin
from printer import Format, xpdf
from ga import Ga

Format ()

coords = (x,y,z) = symbols(’x y z’,real=True)

(03d,ex,ey,ez) = Ga.build(’exxl|ylz’,g=[1,1,1],coords=coords)
X = x*ex+ty*ey+zxez

I = 03d.1

v = 03d.mv(’v’,’vector’)

f = 03d.mv(’f’,’scalar’,f=True)

A = 03d.mv(’A’,’vector’ ,f=True)

dd = vl|o3d.grad

lap = 03d.grad*o3d.grad

print r’\bm{X} =’,X

print r’\bm{v} =’,v

print r’\bm{A} =’, A

print r’%\bm{v}\cdot\nabla =’, dd
print r’%\nabla~{2} =’,lap
print r’%\bm{v}\cdot\nabla f
print r’%\nabla~{2} f =’,lapx*f

print r’%\nabla~{2} \bm{A} =’,lapx*A

print r’Y%\bar{\nablal}\cdot v =’, o03d.rgradlv

Xgrad = X|o3d.grad

rgradX = o03d.rgradlX

print r’%\bm{X}\cdot \nabla =’, Xgrad

print r’Y%\bar{\nabla}\cdot \bm{X} =’, rgradX

com = Xgrad - rgradX

print r’%\bm{X}\cdot \nabla - \bar{\nablal}\cdot \bm{X} =’, com

> ,ddx*f
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30

31

32

33

34

35

36

37

38

sph_coords = (r,th,phi) = symbols(’r theta phi’,real=True)
(sp3d,er,eth,ephi) = Ga.build(’e’,g=[1,r**2 ,r**2*xsin (th)**2] ,\
coords=sph_coords ,norm=True)

f = sp3d.mv(’f’,’scalar’,f=True)
lap = sp3d.grad*sp3d.grad

print r’%\nabla“{2} = \nablalcdot\nabla =’, lap
print r’%\lp\nabla”{2}\rp f =’, lapx*f
print r’%\nablalcdot\lp\nabla f\rp =’,sp3d.grad|(sp3d.gradx*f)

xpdf (paper=’landscape’,crop=True)

The output of this code is.
X =zey +yey + ze,

v=10v"€ez + 0%y + V%€,
A =A%, + AVey + A%e,
0 0] 0
U'V:vx%Jrvya—ervza
02 0? 0?
bR R
v-Vf=0v"0,f +vY0,f +v70, f

Vf=0:f+0,f+0.f

VZ

V2A = (0247 + O2A” + 2A%) e + (02AY + D2AY + 2AY) ey + (0247 + 247 + 02 A%) e,

?-v:vz%—kvyaﬁy—k Z%

X3Y7:x£;+y§%+ 3

6~X:3+x%+ya%+z%

X V-V-X=-3
V2=V-V:i§r+;;+7w;+r2§;+m;;
(V) f = r% <r233f+2rarf+c’)3f+ taie{e) + Sif;%{e))

2
V-(Vf)::Q<r28ff+2r&f+8§f+t89f + 8¢f>

an ()  sin?(0)
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Note that for print an operator in the IPython notebook one must implement (yet to be done)
a printing method similar to mv.Fmt ().

3.10 Instantiating a Multi-linear Functions (Tensors)

The mathematical background for multi-linear functions is in section ?7. To instantiate a multi-
linear function use

Mlt(self, f, Ga, nargs=None, fct=False)
Where the arguments are

f Either a string for a general tensor (this option is included mainly for de-
bugging of the M1t class) or a multi-linear function of manifold tangent
vectors (multi-vectors of grade one) to scalar. For example one could

generate a custom python function such as shown in TensorDef . py.
Ga Geometric algebra that tensor is associated with.

nargs If f is a string then nargs is the number of vector arguments of the
tensor. If f is anything other than a string nargs is not required since

M1t determines the number of vector arguments from f£.
fct if f is a string then fct=True forces the tensor to be a tensor field

(function of the coordinates. If f anything other than a string fct is
not required since M1t determines whether the tensor is a tensor field
from f.

Listing 3.5: python/TensorDef.py

2 import sys

s from sympy import symbols,sin,cos

4+ from printer import Format ,xpdf,Get_Program,Print_Function
s from ga import Ga

¢ from 1t import M1t

s coords = symbols(’t x y z’,real=True)
o (st4d,g0,gl,g2,g3) = Ga.build(’gammaxt|x|ylz’,g=[1,-1,-1,-1],\
10 coords=coords)

11

12 A = st4d .mv(’T’,’bivector’)
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13

14

15

16

17

18

def

3.11

If we can instantiate multilinear functions we can use all the multilinear function class functions

TA(al,a2):
global A
return A | (al =~ a2)

M1t (TA,st4d) # Define multi-linear function

Basic Multilinear Function Class Functions

as described as follows. See section ?? for the mathematical description of each operation.

self (kargs)

self.

self.

self.

Calling function to evaluates multilinear function for kargs list of vector arguments
and returns a value. Note that a sympy scalar is returned, not a multilinear function.

contract(slotl,slot2)

Returns contraction of tensor between slotl and slot2 where slot1 is the index of
the first vector argument and slot2 is the index of the second vector argument of the
tensor. For example if we have a rank two tensor, T(a1,a2), then T.contract(1,2)
is the contraction of T. For this case since there are only two slots there can only be
one contraction.

pdiff(slot)

Returns gradient of tensor, T, with respect to slot vector. For example if the tensor
is T (a1, az) then T.pdiff(2) is V,,T. Since T is a scalar function, T.pdiff(2) is a
vector function.

cderiv()

Returns covariant derivative of tensor field. If T is a tensor of rank k then T.cderiv()
is a tensor of rank k + 1. The operation performed is defined in section ?7?.
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3.12 Standard Printing

Printing of multivectors is handled by the module printer which contains a string printer class
derived from the sympy string printer class and a latex printer class derived from the sympy latex
printer class. Additionally, there is an Eprint class that enhances the console output of sympy to
make the printed output multivectors, functions, and derivatives more readable. Eprint requires
an ansi console such as is supplied in linux or the program ConFEmu replaces cmd.exe.

For a windows user the simplest way to implement ConEmu is to use the geany editor and in
the Edit— Preferences—Tools menu replace cmd.exe with!!

"C:\Program Files\ConEmu\ConEmu64.exe" /WndW 180 /cmd Yc

and then run an example galgeba program that used Eprint. The default background and fore-
ground colors make the output unreadable. To change these parameters to reasonable values:'?

1. Right click on title bar of console.
2. Open setting window.
3. Open colors window.
4. Set the following parameters to the indicated values:
Text: #0
Back: #7
Popup: #0
Back: #7
1 Extend foreground colors with background #13

If Eprint is called in a program (linux) when multivectors are printed the basis blades or bases
are printed in bold text, functions are printed in red, and derivative operators in green.

For formatting the multivector output there is the member function Fmt (self,fmt=1,title=None)

"' The 180 in the ConEmu command line is the width of the console you wish to display in characters. Change
the number to suit you.

12T am not exactly sure what the different parameter setting do. I achieved the result I wished for by trial and
error. I encourage the users to experiment and share their results.

73



which is documented in the multivector member functions. This member function works in the
same way for IXTEX printing.

There are two functions for returning string representations of multivectors. If A is a multivector
then str(A) returns a string in which the scalar coefficients of the multivector bases have been
simplified (grouped, factored, etc.). The member function A.raw_str() returns a string in which
the scalar coefficients of the multivector bases have not been simplified.

3.13 Latex Printing

For latex printing one uses one functions from the ga module and one function from the printer
module. The functions are

Format (Fmode=True,Dmode=True)

This function from the ga module turns on latex printing with the following options

Argument Value Result
Fmode True Print functions without argument list, f
False Print functions with standard sympy latex formatting, f (z,vy, 2)
Dmode True Print partial derivatives with condensed notation, 0, f

False Print partial derivatives with standard sympy latex formatting %

Format () is also required for printing from ipython notebook (note that xpdf () is
not needed to print from ipython notebook).

Fmt (obj,fmt=1)

Fmt () can be used to set the global multivector printing format or to print a tuple,
list, of dictionary.'® The modes and operation of Fmt () are as follows:

13In Ipython notebook tuples, or lists, or dictionarys of multivectors do print correctly. One mode of Fmt ()
corrects this deficiency.
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obj Effect
Global multivector format is set to 1, 2, or 3 depending
obj=1,2,3 on obj. See multivector member function Fmt () for effect
of obj value.

The printing format of an object that is a tuple, list, or

__tl'lple dict is controlled by the fmt argument in Fmt:
obj=list fmt=1 Print complete obj on one line.
dict

fmt=2 Print one element of obj on each line.
xpdf (filename=None,debug=False,paper=(14,11),crop=False)

This function from the printer module post-processes the output captured from
print statements, writes the resulting latex strings to the file filename, processes the
file with pdflatex, and displays the resulting pdf file. All latex files except the pdf
file are deleted. If debug = True the file filename is printed to standard output for
debugging purposes and filename (the tex file) is saved. If filename is not entered
the default filename is the root name of the python program being executed with
.tex appended. The paper option defines the size of the paper sheet for latex. The
format for the paper is

paper=(w,h) w is paper width in inches and
h is paper height in inches
paper=’letter’ paper is standard letter size 8.5 in x 11 in

paper=’landscape’ paper is standard letter size but 11 in x 8.5 in

The default of paper=(14,11) was chosen so that long multivector expressions would
not be truncated on the display.

If the crop input is True the linux pdfcrop program is used to crop the pdf output
(if output is one page). This only works for linux installations (where pdfcrop is
installed).

The xpdf function requires that latex and a pdf viewer be installed on the computer.
xpdf s not required when printing latex in IPython notebook.

As an example of using the latex printing options when the following code is executed

from printer import Format, xpdf
from ga import Ga
Format ()
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1 g3d = Ga(’exxl|ylz’)

5 A = g3d.mv(’A’,’mv’)

6 print r’\bm{A} =’,A

7 print A.Fmt(2,r’\bm{A}’)
s print A.Fmt (3,r’\bm{A}’)
9 Xpdf()

The following is displayed

A=A+ A%, + AVey + A%e, + Aey Ney + A%ey Ne, + A%ey Ne, + A" ey Ney Ne,
A=A
+ A%e, + AVey + A’e,
+A%ey Ney + A%ey, Ne, + Aey N e,
+ A" ey Ney Ne,
A=A
+ A%e,
+ Ave,
+ A%e,
+ A%ez N ey
+ A%e, N e,
+ A%ey N e,
+ A" e, Ney Ne,

For the cases of derivatives the code is

1 from printer import Format, xpdf

2 from ga import Ga

3

4 Format ()

5 X = (x,y,2z) = symbols(’x y z’)

6 03d = Ga(’e_x e_y e_z’,g=[1,1,1],coords=X)
7

8 f = 03d.mv(’f’,’scalar’,f=True)

9 A = 03d.mv(’A’,’vector’ ,f=True)

10 B = 03d.mv(’B’,’grade2’ ,f=True)

11
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13

14

15

16

17

18

19

20

21

22

23

print r’\bm{A} =’,A

print r’\bm{B} =’,B
print ’gradxf =’,o03d.gradx*f
print r’grad|\bm{A} =’,03d.gradlA

(03d.grad=*A) .Fmt (2,r’grad*\bm{A}’)

print r’-I*(grad”\bm{A}) =’,-03g.mv_I*(03d.grad”A)
print (o03d.grad*B).Fmt(2,r’grad*\bm{B}’)

print r’grad”\bm{B} =’,03d.grad"B

print r’grad|\bm{B} =’,03d.gradl|B

xpdf ()
and the latex displayed output is (f is a scalar function)
A =A%, + A%, + A%e,
B = B"e, N ey, + B"e, Ne, + B%e, Ne,

Vf=0,fex+0,fe, +0.fe.
V- -A=0,A"+0,AY + 0, A7

VA =0,A" + 0,AY + 0, A"
+ (—0,A" + 0,AY) ex N ey + (=0, A" + 0, A%) ex N e, + (—0.AY + 0,A%) ey N e,
—I(VANA)=(-0,AY 4+ 0,A%) e + (0,A" — 0, A7) ey + (—0,A" + 0, A") e,
VB = (—0,B% — 8.B%) ey + (0,8 — 8.B%) e, + (0, B + 9,B") e,

+ (0,B™ — 0,B" 4+ 0,BY) e, N ey N e,

VAB= (aZBxy o (9sz:: + a’IJByz) e: \eyN\e,
VB =(-0,B" — 0.B") ey + (0,B" — 0.B") e, + (0, B"* + 0,B"") e.

This example also demonstrates several other features of the latex printer. In the case that strings
are input into the latex printer such as r’grad*\bm{A}’, r’grad”\bm{A}’, or r’grad*\bm{A}’.
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The text symbols grad, =, |, and * are mapped by the xpdf () post-processor as follows if the
string contains an =.

original replacement displayed latex
grad*A \bm{\nabla}A VA
A°B A\wedge B ANB
AlB A\cdot B A-B
AxB AB AB
A<B A\rfloor B A|B
A>B A\1floor B A|B
A>>B A\times B AXx B
A<<B  A\bar{\times} B AxB

If the first character in the string to be printed is a % none of the above substitutions are made
before the latex processor is applied. In general for the latex printer strings are assumed to be
in a math environment (equation or align) unless the first character in the string is a #.'

Except where noted the conventions for latex printing follow those of the latex printing
module of sympy. This includes translating sympy variables with Greek name (such
as alpha) to the equivalent Greek symbol («) for the purpose of latex printing. Also
a single underscore in the variable name (such as “X_j“) indicates a subscript (Xj),
and a double underscore (such as “X__k*) a superscript (X*). The only other change
with regard to the sympy latex printer is that matrices are printed full size (equation
displaystyle).

There are two member functions for returning IXTEX string representations of multivectors. If A
is a multivector then A.Mv_latex _str() returns a KTEX string in which the scalar coefficients of
the multivector bases have been simplified (grouped, factored, etc.). This function is used when
using print in the {TEX mode. The member function A.raw_latex_str() returns a KTEX string
in which the scalar coefficients of the multivector bases have not been simplified.

3.13.1 Printing Lists/Tuples of Multivectors/Differential Operators

Since the expressions for multivectors or differential operators can be very long printing lists
or tuples of such items can easily exceed the page with when printing in IXTEX or in “ipython
notebook.” I order to alleviate this problem the function Fmt can be used.

MPreprocessing do not occur for the Ipython notebook and the string post processing commands % and # are
not used in this case.
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Fmt (obj,fmt=0)

This function from the printer module allows the formatted printing of lists/tuples
or multivectors/differential operators.

obj obj is a list or tuple of multivectors and/or differential operators.
fmt=0 fmt=0 prints each element of the list/tuple on an individual lines'®.
fmt=1 prints all elements of the list/tuple on a single line®”.

If 1 is a list or tuple to print in the KTEX environment use the command

1 print Fmt(l) # One element of 1l per line

or

1 print Fmt(l,1) # All elements of 1 on one line

If you are printing in “ipython notebook” then enter

1 Fmt (1) # One element of 1 per line

or

1 Fmt(l,1) # All elements of 1l on one line
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