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Abstract 

Even though standard dermatological images are relatively easy to take, the availability and public release 

of such dataset for machine learning is notoriously limited due to medical data legal constraints, 

availability of field experts for annotation, numerous and sometimes rare diseases, large variance of skin 

pigmentation or the presence of identifying factors such as fingerprints or tattoos. With these generic 

issues in mind, we explore the application of Generative Adversarial Networks (GANs) to three different 

types of images showing full hands, skin lesions, and varying degrees of eczema. A first model generates 

realistic images of all three types with a focus on the technical application of data augmentation. A 

perceptual study conducted with laypeople con- firms that generated skin images cannot be distinguished 

from real data. Next, we propose models to add eczema lesions to healthy skin, respectively to remove 

eczema from patient skin using seg- mentation masks in a supervised learning setting. Such models allow 

to leverage existing unrelated skin pictures and enable non-technical applications, e.g. in aesthetic 

dermatology. Finally, we combine both models for eczema addition and removal in an entirely 

unsupervised process based on CycleGAN. Although eczema can no longer be placed in particular areas, 

we achieve convincing results for eczema removal without relying on ground truth annotations anymore.  
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Abstract
Even though standard dermatological images are
relatively easy to take, the availability and pub-
lic release of such dataset for machine learning
is notoriously limited due to medical data legal
constraints, availability of field experts for an-
notation, numerous and sometimes rare diseases,
large variance of skin pigmentation or the pres-
ence of identifying factors such as fingerprints
or tattoos. With these generic issues in mind, we
explore the application of Generative Adversar-
ial Networks (GANs) to three different types of
images showing full hands, skin lesions, and vary-
ing degrees of eczema. A first model generates
realistic images of all three types with a focus on
the technical application of data augmentation. A
perceptual study conducted with laypeople con-
firms that generated skin images cannot be distin-
guished from real data. Next, we propose models
to add eczema lesions to healthy skin, respectively
to remove eczema from patient skin using seg-
mentation masks in a supervised learning setting.
Such models allow to leverage existing unrelated
skin pictures and enable non-technical applica-
tions, e.g. in aesthetic dermatology. Finally, we
combine both models for eczema addition and re-
moval in an entirely unsupervised process based
on CycleGAN. Although eczema can no longer
be placed in particular areas, we achieve convinc-
ing results for eczema removal without relying on
ground truth annotations anymore.

1. INTRODUCTION
Generative Adversarial Networks (GANs) initially proposed
(Goodfellow et al., 2014) have since then produced impres-
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sive results in a variety of synthetic data generation tasks.
In contrast to other deep learning methods, which are no-
toriously data-intensive, GANs achieve good results even
with relatively small data sets (Frid-Adar et al., 2018; Baur
et al., 2018). This makes GANs attractive for domains where
training data is difficult or expensive to obtain. A standard
example is the medical field, where specialized machinery
may be needed or occurrences of pathologies may be hard to
find. Using data sets augmented with GAN-generated syn-
thetic data to train machine learning models has improved
performance in a variety of medical domains (Bissoto et al.,
2019; Guibas et al., 2017; Hiasa et al., 2018).

Dermatology is one domain particularly suited for the ap-
plication of deep learning models (Haenssle et al., 2018),
but with far too few publicly-available data sets compared
to the diversity of the cases encountered in clinical prac-
tice. Therefore, the idea to leverage the GAN framework to
generate new samples is very promising. In this paper we
present our results for two different types of skin lesions:
eczema and moles. For eczema we use a private data set
(due to identifying patient information) but for moles we
use an established public data set for reproducibility and as
an example of the generality of our approach.

Besides technical applications such as data augmentation
or the creation of paired data, image transformation also
enables domain-specific use cases such as prediction of a
skin lesion evolution or the evaluation of aesthetic effects
of treatment. With this in mind, we train our GAN models
to add or remove eczema from skin pictures pursuing two
different strategies: a supervised approach where we use
ground truth lesion segmentation masks to target modifica-
tions to precisely defined areas as well as an unsupervised
process entirely freed from the availability of training data.

2. RELATED WORK
2.1. Generative Adversarial Network

GANs distinguish themselves from other generative frame-
works by combining a generator with a discriminative
model, a discriminator (Goodfellow et al., 2014). Both mod-
els learn by playing an adversarial game against each other:
the generator produces fake samples while the discriminator
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attempts to distinguish between real and generated samples.
In its original formulation, the generator processes some
input vector z to generate a sample G (z). This vector is
typically sampled randomly from a prior distribution, pz,
often a standard normal distribution. The generator attempts
to produce output that matches the empirical distribution of
the real data, pd.

On the other hand, the discriminator is a regular binary
classification model that classifies a given sample into two
classes, real and generated, referring to the source of the
sample. During training, the discriminator is shown both
real samples drawn from the real data set x ∼ pd and gen-
erated samples G (z) , z ∼ pz from the generator. For any
input sample, the discriminator estimates a likelihood that it
is a real and not generated. The discriminator’s objective is
to confidently determine the origin of a sample, while the
generator attempts to produce samples that are mistaken for
real data by the discriminator. Formally, the two models
attempt to maximize their contrasting objectives:

LG = Epz(z) log (D (G (z))) (1)
LD = Epd(x) log (D (x)) + Epz(z) log (1−D (G (z)))

The generator’s objective is stated for maximization, which
does not saturate during early training and yields better
gradients when the generator’s samples are confidently re-
jected (Goodfellow et al., 2014; Jolicoeur-Martineau, 2018).

2.2. Image Translation with GANs

Beside unconditional generation, the generator’s output may
also be conditioned on some specific input, such as images.
In this case, its task can be regarded as image translation,
where images are translated from some input domain to
another output domain. Without further restrictions, the gen-
erator is not encouraged to produce output that matches its
input. The desired aspects of this match or pairing vary from
task to task. For instance, when the goal is to modify only a
part of the image, a relevancy loss may be employed (An-
dermatt et al., 2018). It penalizes changes to an input image
x outside certain areas, as defined by a segmentation map
y. The changes are quantified by the mean squared error
between the input and output images, both masked by the
negative of the segmentation map, denoted by �:

LREL = Exy MSE ((1− y)� x, (1− y)�G (xy)) (2)

However, the relevancy loss relies on the availability of
paired segmentations for the processed images. A more gen-
eral approach for achieving paired translations is described
as CycleGAN (Zhu et al., 2017). This extended GAN frame-
work combines the two translation directions between two
domains, X and Y , by employing two translation genera-
tors, GXY and GY X , and two discriminators for the two
domains,DX andDY . Paired translations are then achieved

by including a cycle consistency loss in the generator objec-
tives: when applying both generators in sequence – trans-
lating a sample to the other and then back to the original
domain – the reconstruction of the input should match the
original input. The difference between the two samples is
typically assessed with MSE. For GXY , this objective is
stated as follows:

LCY CXY
= Ex MSE (x, GY X(GXY (x))) (3)

2.3. GANs for Dermatology Images

Machine learning approaches have gained a lot of popular-
ity in the medical field, including the application of GANs.
Their most common task is regular image synthesis com-
monly applied to MR images (Yi et al., 2018). On the other
hand, applications in dermatology are less common. One
such example is MelanoGAN (Baur et al., 2018), which
generates images of skin lesions from ISIC 2017 (Codella
et al., 2018). The authors compare the results of different
GAN models by training a lesion classifier on synthetic data
data only. In another work, (Bissoto et al., 2019) generate
skin lesions from ISIC 2018 by translating lesion segmenta-
tion masks to images. The resulting images are thus directly
associated with ground truth segmentations, which can be
leveraged for further applications. However, the authors
were not able to improve their classification score.

3. METHOD
3.1. Data Sets

Sets of Hands. The first set of experiments is conducted
on photos of hands. Each of the 246 individual pairs of
hands was photographed from the front and the back side,
for a total of 492 photos. They were taken under uniform
condition with green background and downscaled to 640×
480 pixels. A sample is shown in Figure 1 (upper left).

Figure 1. A sample of the EUSZ2 data set (Koller et al., 2018)
showing 1) photo of a pair of hands; 2) hand segmentation mask;
3) eczema segmentation mask; overlay of photo and both masks

Patches of Skin. Most of the remaining experiments lever-
age high-resolution photos (3456× 2304 pixels) of the back
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side of hands from the EUSZ2 data set collected in the
SkinApp project (Koller et al., 2018). There are 79 photos
available for training and we use a test set of 52 photos
to analyze the overfitting of the discriminator. The photos
are annotated with segmentations marking the contour of
the hands and eczema lesions as shown in Figure 1. From
these photos, we extract patches of skin fulfilling the follow-
ing criteria: a patch consists of skin only (no background)
with a specified amount of skin being afflicted with eczema.
We create a data set with healthy skin patches and a data
set with skin with eczema patches, where 10-80% of the
skin pixels are annotated as eczema. For these experiments,
patches of 128× 128 pixels are used. This procedure yields
51023 patches of healthy skin and 2872 patches of skin with
eczema. Larger patch sizes yield smaller data sets, espe-
cially in the case of skin with eczema. Such smaller data
sets significantly increase overfitting.

Skin Lesions. The final data sets consist of dermoscopic
images of skin lesions from the ISIC archive 2018 (Tschandl
et al., 2018; Codella et al., 2018). In particular, we generate
new lesion images of Dermatofibroma (DF) and Melanoma
(MEL) with 115 and 1113 samples available for training,
respectively. These different data set sizes allow to analyze
the effects on GAN performance. Samples of the two types
of lesion are shown in Figure 2. The original images have
varying sizes and are resized to a common resolution of
256× 256 pixels.

3.2. Model Architecture

This section describes the architecture of the generator
and discriminator models for the experiments. Some as-
pects of these models are based on the architecture of DC-
GAN (Radford et al., 2015). All models are optimized using
Adam (Kingma & Ba, 2014) with learning rate 5e−5 and
default moment decays β1 = 0.9, β2 = 0.999.

3.2.1. UNCONDITIONAL GENERATOR

The generator for unconditional image synthesis receives a
100-dimensional input vector, which is first passed through
a dense layer to produce 64 initial feature maps. The layer’s
output is reshaped based on the desired aspect ratio of the
generated images with lower resolution. Then, a sequence of
fractionally-strided convolutions (deconvolutions) increases
the image size until the desired output resolution is achieved.

Following common practice, the number of feature maps

Figure 2. Sample ISIC skin lesions: DF (left) and MEL (right).

Experiment Dense layers Deconv Res.
Full hands (4.1.1) 20× 15× 64 5 640× 480
Skin patches (4.1.2) 8× 8× 64 4 128× 128
Skin lesions (4.1.3) 8× 8× 64 5 256× 256

Table 1. Unconditional generator: image resolution overview.

per convolution are halved at each resolution stage. Af-
ter each convolution, the output is passed through batch
normalization (Ioffe & Szegedy, 2015) and activated with
LeakyReLU (Maas et al., 2013). Finally, a regular convo-
lution with 3 output feature maps is activated with tanh to
produce the RGB-channels of the generated image.

The hand images generator benefits from unstrided convo-
lutions after each deconvolution to refine the intermediate
representations. This is attributed to the comparatively large
complexity of these images and does not help with the gen-
eration of patches of skin and skin lesions. The size of the
initial dense layer and the number of deconvolutions deter-
mine the image resolution. Table 1 summarizes the model
parametrizations.

3.2.2. IMAGE TRANSLATION GENERATOR

The image translation model is based on the U-Net archi-
tecture (Ronneberger et al., 2015): an encoder with increas-
ing number of features, which reduces the image resolu-
tion, and a decoder to reverse the process. Additionally,
the encoded representation is translated with a sequence
of residual blocks (He et al., 2015). We find that 2 strided
convolutions in the encoder and 2 deconvolutions in the
decoder yield the best results. Consequently, the residual
blocks translate features with a resolution of 32× 32 pixels.
We find that 4 residual blocks are ideal, which is surprisingly
low but can be attributed to the fact that the skin images are
small and relatively simple. Skip connections between the
encoder and the corresponding decoder stages are used as
suggested by (Isola et al., 2017). These connections forward
intermediate features from the encoder that are combined
with the decoder features by concatenation.

Finally, we task the image translation generator with image
modification. To that end, the input image is added to the
3 output channels of the generator, so that it is essentially
tasked with generating an image residual. The generated
residual contains the information to modify the input photo
in the desired way.

3.2.3. DISCRIMINATOR

All experiments leverage the same multi-scale discriminator
architecture (Wang et al., 2017): Two individual discrimi-
nators process an input image and a downscaled version of
the image. Afterwards, their outputs are averaged. Thus, the
discriminators are simultaneously sensitive to low-level de-
tails and high-level structures. We observed that more than
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