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Abstract
Even though standard dermatological images are
relatively easy to take, the availability and pub-
lic release of such dataset for machine learning
is notoriously limited due to medical data legal
constraints, availability of field experts for an-
notation, numerous and sometimes rare diseases,
large variance of skin pigmentation or the pres-
ence of identifying factors such as fingerprints
or tattoos. With these generic issues in mind, we
explore the application of Generative Adversar-
ial Networks (GANs) to three different types of
images showing full hands, skin lesions, and vary-
ing degrees of eczema. A first model generates
realistic images of all three types with a focus on
the technical application of data augmentation. A
perceptual study conducted with laypeople con-
firms that generated skin images cannot be distin-
guished from real data. Next, we propose models
to add eczema lesions to healthy skin, respectively
to remove eczema from patient skin using seg-
mentation masks in a supervised learning setting.
Such models allow to leverage existing unrelated
skin pictures and enable non-technical applica-
tions, e.g. in aesthetic dermatology. Finally, we
combine both models for eczema addition and re-
moval in an entirely unsupervised process based
on CycleGAN. Although eczema can no longer
be placed in particular areas, we achieve convinc-
ing results for eczema removal without relying on
ground truth annotations anymore.

1. INTRODUCTION
Generative Adversarial Networks (GANs) initially proposed
(Goodfellow et al., 2014) have since then produced impres-
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sive results in a variety of synthetic data generation tasks.
In contrast to other deep learning methods, which are no-
toriously data-intensive, GANs achieve good results even
with relatively small data sets (Frid-Adar et al., 2018; Baur
et al., 2018). This makes GANs attractive for domains where
training data is difficult or expensive to obtain. A standard
example is the medical field, where specialized machinery
may be needed or occurrences of pathologies may be hard to
find. Using data sets augmented with GAN-generated syn-
thetic data to train machine learning models has improved
performance in a variety of medical domains (Bissoto et al.,
2019; Guibas et al., 2017; Hiasa et al., 2018).

Dermatology is one domain particularly suited for the ap-
plication of deep learning models (Haenssle et al., 2018),
but with far too few publicly-available data sets compared
to the diversity of the cases encountered in clinical prac-
tice. Therefore, the idea to leverage the GAN framework to
generate new samples is very promising. In this paper we
present our results for two different types of skin lesions:
eczema and moles. For eczema we use a private data set
(due to identifying patient information) but for moles we
use an established public data set for reproducibility and as
an example of the generality of our approach.

Besides technical applications such as data augmentation
or the creation of paired data, image transformation also
enables domain-specific use cases such as prediction of a
skin lesion evolution or the evaluation of aesthetic effects
of treatment. With this in mind, we train our GAN models
to add or remove eczema from skin pictures pursuing two
different strategies: a supervised approach where we use
ground truth lesion segmentation masks to target modifica-
tions to precisely defined areas as well as an unsupervised
process entirely freed from the availability of training data.

2. RELATED WORK
2.1. Generative Adversarial Network

GANs distinguish themselves from other generative frame-
works by combining a generator with a discriminative
model, a discriminator (Goodfellow et al., 2014). Both mod-
els learn by playing an adversarial game against each other:
the generator produces fake samples while the discriminator
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attempts to distinguish between real and generated samples.
In its original formulation, the generator processes some
input vector z to generate a sample G (z). This vector is
typically sampled randomly from a prior distribution, pz,
often a standard normal distribution. The generator attempts
to produce output that matches the empirical distribution of
the real data, pd.

On the other hand, the discriminator is a regular binary
classification model that classifies a given sample into two
classes, real and generated, referring to the source of the
sample. During training, the discriminator is shown both
real samples drawn from the real data set x ∼ pd and gen-
erated samples G (z) , z ∼ pz from the generator. For any
input sample, the discriminator estimates a likelihood that it
is a real and not generated. The discriminator’s objective is
to confidently determine the origin of a sample, while the
generator attempts to produce samples that are mistaken for
real data by the discriminator. Formally, the two models
attempt to maximize their contrasting objectives:

LG = Epz(z) log (D (G (z))) (1)
LD = Epd(x) log (D (x)) + Epz(z) log (1−D (G (z)))

The generator’s objective is stated for maximization, which
does not saturate during early training and yields better
gradients when the generator’s samples are confidently re-
jected (Goodfellow et al., 2014; Jolicoeur-Martineau, 2018).

2.2. Image Translation with GANs

Beside unconditional generation, the generator’s output may
also be conditioned on some specific input, such as images.
In this case, its task can be regarded as image translation,
where images are translated from some input domain to
another output domain. Without further restrictions, the gen-
erator is not encouraged to produce output that matches its
input. The desired aspects of this match or pairing vary from
task to task. For instance, when the goal is to modify only a
part of the image, a relevancy loss may be employed (An-
dermatt et al., 2018). It penalizes changes to an input image
x outside certain areas, as defined by a segmentation map
y. The changes are quantified by the mean squared error
between the input and output images, both masked by the
negative of the segmentation map, denoted by �:

LREL = Exy MSE ((1− y)� x, (1− y)�G (xy)) (2)

However, the relevancy loss relies on the availability of
paired segmentations for the processed images. A more gen-
eral approach for achieving paired translations is described
as CycleGAN (Zhu et al., 2017). This extended GAN frame-
work combines the two translation directions between two
domains, X and Y , by employing two translation genera-
tors, GXY and GY X , and two discriminators for the two
domains,DX andDY . Paired translations are then achieved

by including a cycle consistency loss in the generator objec-
tives: when applying both generators in sequence – trans-
lating a sample to the other and then back to the original
domain – the reconstruction of the input should match the
original input. The difference between the two samples is
typically assessed with MSE. For GXY , this objective is
stated as follows:

LCY CXY
= Ex MSE (x, GY X(GXY (x))) (3)

2.3. GANs for Dermatology Images

Machine learning approaches have gained a lot of popular-
ity in the medical field, including the application of GANs.
Their most common task is regular image synthesis com-
monly applied to MR images (Yi et al., 2018). On the other
hand, applications in dermatology are less common. One
such example is MelanoGAN (Baur et al., 2018), which
generates images of skin lesions from ISIC 2017 (Codella
et al., 2018). The authors compare the results of different
GAN models by training a lesion classifier on synthetic data
data only. In another work, (Bissoto et al., 2019) generate
skin lesions from ISIC 2018 by translating lesion segmenta-
tion masks to images. The resulting images are thus directly
associated with ground truth segmentations, which can be
leveraged for further applications. However, the authors
were not able to improve their classification score.

3. METHOD
3.1. Data Sets

Sets of Hands. The first set of experiments is conducted
on photos of hands. Each of the 246 individual pairs of
hands was photographed from the front and the back side,
for a total of 492 photos. They were taken under uniform
condition with green background and downscaled to 640×
480 pixels. A sample is shown in Figure 1 (upper left).

Figure 1. A sample of the EUSZ2 data set (Koller et al., 2018)
showing 1) photo of a pair of hands; 2) hand segmentation mask;
3) eczema segmentation mask; overlay of photo and both masks

Patches of Skin. Most of the remaining experiments lever-
age high-resolution photos (3456× 2304 pixels) of the back
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side of hands from the EUSZ2 data set collected in the
SkinApp project (Koller et al., 2018). There are 79 photos
available for training and we use a test set of 52 photos
to analyze the overfitting of the discriminator. The photos
are annotated with segmentations marking the contour of
the hands and eczema lesions as shown in Figure 1. From
these photos, we extract patches of skin fulfilling the follow-
ing criteria: a patch consists of skin only (no background)
with a specified amount of skin being afflicted with eczema.
We create a data set with healthy skin patches and a data
set with skin with eczema patches, where 10-80% of the
skin pixels are annotated as eczema. For these experiments,
patches of 128× 128 pixels are used. This procedure yields
51023 patches of healthy skin and 2872 patches of skin with
eczema. Larger patch sizes yield smaller data sets, espe-
cially in the case of skin with eczema. Such smaller data
sets significantly increase overfitting.

Skin Lesions. The final data sets consist of dermoscopic
images of skin lesions from the ISIC archive 2018 (Tschandl
et al., 2018; Codella et al., 2018). In particular, we generate
new lesion images of Dermatofibroma (DF) and Melanoma
(MEL) with 115 and 1113 samples available for training,
respectively. These different data set sizes allow to analyze
the effects on GAN performance. Samples of the two types
of lesion are shown in Figure 2. The original images have
varying sizes and are resized to a common resolution of
256× 256 pixels.

3.2. Model Architecture

This section describes the architecture of the generator
and discriminator models for the experiments. Some as-
pects of these models are based on the architecture of DC-
GAN (Radford et al., 2015). All models are optimized using
Adam (Kingma & Ba, 2014) with learning rate 5e−5 and
default moment decays β1 = 0.9, β2 = 0.999.

3.2.1. UNCONDITIONAL GENERATOR

The generator for unconditional image synthesis receives a
100-dimensional input vector, which is first passed through
a dense layer to produce 64 initial feature maps. The layer’s
output is reshaped based on the desired aspect ratio of the
generated images with lower resolution. Then, a sequence of
fractionally-strided convolutions (deconvolutions) increases
the image size until the desired output resolution is achieved.

Following common practice, the number of feature maps

Figure 2. Sample ISIC skin lesions: DF (left) and MEL (right).

Experiment Dense layers Deconv Res.
Full hands (4.1.1) 20× 15× 64 5 640× 480
Skin patches (4.1.2) 8× 8× 64 4 128× 128
Skin lesions (4.1.3) 8× 8× 64 5 256× 256

Table 1. Unconditional generator: image resolution overview.

per convolution are halved at each resolution stage. Af-
ter each convolution, the output is passed through batch
normalization (Ioffe & Szegedy, 2015) and activated with
LeakyReLU (Maas et al., 2013). Finally, a regular convo-
lution with 3 output feature maps is activated with tanh to
produce the RGB-channels of the generated image.

The hand images generator benefits from unstrided convo-
lutions after each deconvolution to refine the intermediate
representations. This is attributed to the comparatively large
complexity of these images and does not help with the gen-
eration of patches of skin and skin lesions. The size of the
initial dense layer and the number of deconvolutions deter-
mine the image resolution. Table 1 summarizes the model
parametrizations.

3.2.2. IMAGE TRANSLATION GENERATOR

The image translation model is based on the U-Net archi-
tecture (Ronneberger et al., 2015): an encoder with increas-
ing number of features, which reduces the image resolu-
tion, and a decoder to reverse the process. Additionally,
the encoded representation is translated with a sequence
of residual blocks (He et al., 2015). We find that 2 strided
convolutions in the encoder and 2 deconvolutions in the
decoder yield the best results. Consequently, the residual
blocks translate features with a resolution of 32× 32 pixels.
We find that 4 residual blocks are ideal, which is surprisingly
low but can be attributed to the fact that the skin images are
small and relatively simple. Skip connections between the
encoder and the corresponding decoder stages are used as
suggested by (Isola et al., 2017). These connections forward
intermediate features from the encoder that are combined
with the decoder features by concatenation.

Finally, we task the image translation generator with image
modification. To that end, the input image is added to the
3 output channels of the generator, so that it is essentially
tasked with generating an image residual. The generated
residual contains the information to modify the input photo
in the desired way.

3.2.3. DISCRIMINATOR

All experiments leverage the same multi-scale discriminator
architecture (Wang et al., 2017): Two individual discrimi-
nators process an input image and a downscaled version of
the image. Afterwards, their outputs are averaged. Thus, the
discriminators are simultaneously sensitive to low-level de-
tails and high-level structures. We observed that more than



Applications of Generative Adversarial Networks to Dermatologic Imaging

two discriminators do not improve results, which can be
explained by our images’ lower resolution when compared
with (Wang et al., 2017).

Both discriminators have the same architecture: a se-
quence of strided convolutions with batch normalization
and LeakyReLU activation, followed by a dense layer with
one output neuron to produce the prediction. The features
are doubled after each convolution and the number of con-
volution layers matches the deconvolution layers of the cor-
responding generators, as summarized in Table 1. All the
image translation experiments operate on patches of skin
image with 4-convolution discriminators. As the generators
produce normalized images, the channels of the real images
are also normalized before discrimination.

3.2.4. MODEL BALANCE AND SELECTION

The balance between the generator and discriminator is dif-
ficult to maintain, as neither should overpower the other (Yi
et al., 2018). Model balance is adjusted by selecting the
number of initial features of the generator and discrimina-
tor. Table 2 summarizes the initial features of all models in
this work’s experiments. The ideal numbers of features are
determined empirically with the restriction of the available
GPU memory.

Beside visual inspection, we minimize the Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017) to select the best
model. The FID measures the dissimilarity between real
and generated images, it is commonly used to quantitatively
compare the results of GAN models. In our experiments,
this metric works well with unconditional generation, but
not with image translations. Furthermore, we observe that
FID scores computed on different data sets should not be
compared as the data set’s inherent statistics and variability
greatly influence the FID scores.

Model selection is additionally guided by the discrimina-
tor’s predictions confidence and consistency, which indicate
whether the discriminator requires additional capacity to
adequately distinguish real and generated samples, and thus,
to better guide generator learning.

4. EXPERIMENTS
4.1. Unconditional Dermatology Data Synthesis

The first experiments concern the unconditional generation
of dermatology data. The objective is to explore the quality
of generated images for different target data sets. The find-
ings indicate the expected performance when the GAN task
is not restricted and serves as a baseline for later compar-
isons with the results of restricted tasks.

For unconditional generation, the generator’s input is drawn
randomly from a prior distribution, which can be selected

freely. We use the common choice of 100-dimensional vec-
tors, where components are drawn independently from a
standard Gaussian.

Experiment Generator Discriminator
Full hands (4.1.1) 512 32
Healthy patches (4.1.2) 1024 128
Eczema patches (4.1.2) 1024 256
Skin lesions (4.1.3) 512 64
Targeted eczema (4.2) 1024 256
Untargeted eczema (4.3) 1024 256

Table 2. Initial features for the generator and discriminator models.

4.1.1. SETS OF HANDS

There are two central aspects to the quality of the generated
images: high-level structures like anatomy and low-level
details like textures. Here, the multi-scale discriminator ar-
chitecture proves useful, as the two discriminators each
focus on one of these aspects. However, many of the gen-
erated images still contain visible defects such as hands
with more than 5 fingers. These issues are linked to unlikely
generator input vectors and can be mitigated using the trun-
cation trick (Wang et al., 2017) to improve the quality of
the generated images.

The truncation technique includes the truncation of the input
below some a priori-defined threshold. Every component of
the input vector that exceeds this threshold is re-sampled.
Truncation trades sample variability for quality: aggressive
truncation significantly reduces variability, while sample
quality increases. We determine empirically that a threshold
of 0.1 is suitable for the generation of hands, based on
the generated samples and FID scores. These scores are
summarized in Table 3. Figure 3 shows the results obtained
with the selected truncation threshold of 0.1.

While the samples do not show great variability, their quality
is generally high. The hands’ textures look realistic, the side
(front or back) of most pairs of hands can be determined in
most samples and most hands consist of four fingers and a
thumb. However, convincing samples would still need to
be hand-picked, as individual images are not anatomically
correct or contain defects near the wrists. These come from
sleeves that are visible in a low fraction of the photos.

This application shows that high-resolution dermatology
images can be generated with a relatively small data set.
These images can be conceivably mistaken for real photos
at short glance. The model obtains a FID score of 74.2 with-
out truncation, a significantly lower value than in all other

Threshold 0.01 0.02 0.05 0.1 0.2 0.5 1 None
FID 111.4 94.5 75.0 69.5 69.5 70.3 74.1 74.2

Table 3. Truncation threshold selection with FID score.
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Figure 3. Samples of the unconditional generation of hands.

experiments. This indicates that FID scores on different data
sets should not be compared.

4.1.2. PATCHES OF SKIN

We further experiment with the unconditional generation
of images of healthy skin and of skin that contains eczema.
These experiments are a prerequisite for later eczema modi-
fication experiments.

Healthy skin. With the large data set of 51023 patches of
skin that do not contain any eczema, our GAN is able to
generate high-quality images. Samples are shown in Fig-
ure 4. The generated samples look very realistic and are
also very diverse. Different types of skin, as well as creases
and wrinkles are generated. The selected model achieves a
FID score of 538.7.

Figure 4. Samples of the unconditional generation of healthy skin.

Skin with Eczema. We observe that the discriminator’s
task becomes more difficult when classifying patches of skin
with eczema, so that the best results are achieved when the
discriminator contains more feature maps. Sample results
are shown in Figure 5. The quality of the generated images
is comparable with the synthetic healthy skin shown in
Figure 4. The skin is detailed and contains different kinds
of wrinkles and eczema. Overall, there are more creases

than in the patches of healthy skin, which is attributed to the
increased prevalence of eczema in such areas of the hand.
The model achieves a FID score of 599.6 for this task.

Figure 5. Samples of the unconditional gen. of skin with eczema.

Perceptual study. We further evaluate the generated im-
ages quantitatively in a perceptual study. The results are
presented in Section 4.1.3 along with the analysis of syn-
thetic skin lesion images.

Overfitting. Finally, we analyze the models’ overfitting,
quantitatively for the discriminator and qualitatively for the
generator. For patches of skin with eczema, the discrimi-
nator increasingly overfits over the course of the training.
Samples from the training set are predicted as real with high
likelihood, while testing samples are increasingly being
rejected as generated. This is not the case for the discrim-
inator of healthy skin. Figure 6 compares the two models’
overfitting.

As the discriminator for skin with eczema has greater capac-
ity, it is more prone to overfitting. However, we find that
overfitting is mainly linked to the data set size. Low-capacity
discriminators also overfit to the set of 2872 images, while
high-capacity discriminator do not overfit on larger data sets.

Figure 6. Skin patches discriminators overfitting during training.
The lines indicate the difference of the mean predictions on training
and test data. Training progress is marked as a percentage of total
training epochs: 20 for healthy skin and 200 for skin with eczema.

We further investigate how the overfitting of the discrimina-
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Figure 7. Generated samples (col. 1 and 3) and their nearest train-
ing sample (col. 2 and 4).

tor for patches of skin with eczema impacts the generator.
We perform a qualitative assessment of the generator over-
fitting with the common method of comparing generated
samples with their nearest training samples (Denton et al.,
2015; Karras et al., 2017; Brock et al., 2018). In our exper-
iments, the structural similarity index (Wang et al., 2004)
yields more similar samples than the mean squared error.
Sample results are shown in Figure 7. We find that the gener-
ated samples do not contain memorized parts of the training
set, so we can conclude that the discriminator’s overfitting
is not leading the generator to overfit as well.

4.1.3. SKIN LESIONS

Finally, we use our GAN model to generate images of skin
lesions. Samples of generated DF lesions are shown in Fig-
ure 8 and samples of MEL in Figure 9.

Figure 8. Samples of the unconditional generation of DF lesions.

Dermatofibroma. While they resemble the samples of the
training set, they lack variability. Furthermore, they show
clear tiling artifacts; patterns that are repeated within a
generated image. In this case, the discriminator is trained
with only 115 real samples and overfits severely. This visibly
impacts the generator: we observe structures, such as lesion
shapes or the hairs in the bottom left corners across different
samples. With these negative aspects, the generator achieves
a FID score of 822.9.

Melanoma. The generated images of MEL lesions con-
tain far greater variability but also suffer from significant

tiling. In this case, the generator’s FID is 607.8. There is
significantly less overfitting, as this data set contains 1113
samples. However, some of the hairs are still repeated. We
hypothesize that such specific and distinctive hairs are prone
to be copied, as they are rare among the real samples.

Figure 9. Samples of the unconditional generation of MEL lesions.

Figure 10. Perceptual study: the box plots show the three quartiles
of the obtained F1-scores for each data set.

Perceptual study. We assess the realism of the generated
patches of skin lesions with a perceptual study, where we ask
104 participants (laymen without prior training) to determine
whether a given image is real or generated. The participants
are asked to discriminate 20 images from one of four sets:
patches of healthy skin, patches of skin with eczema, DF le-
sions, and MEL lesions. They have 2-3 seconds observation
time per image and do not receive intermediate feedback.
Such experiments are often conducted to assess if the gen-
erated images are easily identified (Salimans et al., 2016;
Isola et al., 2017; Wang et al., 2017). The classifications
are evaluated with the F1-score and the distribution of the
results are visualized per data set in Figure 10. The majority
of participants are unable to distinguish real and generated
patches of skin, regardless of the presence of eczema: the
mean F1-scores are just above random guessing, with 0.58
and 0.53. The third quartiles are also very low, with 0.63
and 0.59. This result confirms that the models are able to
generate realistic skin patches. On the other hand, skin le-
sions are simpler to distinguish, with a mean F1-scores of
0.65 and 0.71. This reflects the observations of the quali-
tative analysis, where generated lesions look less realistic
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than synthetic patches of skin. Interestingly, DF lesions are
perceived as slightly more realistic than MEL lesions.

4.2. Targeted Eczema Modification

We formulate eczema addition and removal as an image
translation task: the generator receives a skin photo and
an eczema segmentation mask as input and should either
remove or add eczema within the indicated areas. This
is performed by generating a residual, which is added to
the input image. To encourage pairing between the gener-
ator’s input and output, its adversarial objective LADV is
combined with the relevancy loss LREL (Andermatt et al.,
2018), as stated in Equation 2. The importance of the rel-
evancy loss is weighted with λREL, so that the generator
maximizes:

LG = LADV − λREL · LREL (4)

In our experiments we use a weight of λREL = 10 for the
relevancy loss. We find that this weight places sufficient
emphasis on the relevancy objective, while it also maintains
the adversarial aspect.

The translations are performed between the data sets of skin
with and without eczema, two data sets with very different
sample sizes. Thus, the set of patches of healthy skin is
truncated to 2872 samples, to match the smaller data set. We
use additional healthy skin images to train the discriminator
for eczema removal, which effectively prevents overfitting.
Furthermore, we use the same segmentation with multiple
photos of healthy skin. This also helps with generalization,
though the effects of this technique are less pronounced.

4.2.1. ECZEMA REMOVAL

In figure 11 we show the translation results of removing
eczema from afflicted skin. Columns 3 and 6 still show
the same parts of hands as the input photos in columns 1
and 4, but they no longer contain the structures and skin
disruptions associated with eczema. However, the generated
patches generally lose some fine details such as creases,
which are often less visible, compared to the inputs. We
observe that the FID score applies poorly to the results of
image translation. For these experiments, the FID is often
oscillating, in this case between 600 and 1100. Thus, we
rely on the visual qualitative evaluation of the generated
samples.

4.2.2. ECZEMA ADDITION

We modify photos of healthy skin by adding eczema to
specified areas. Figure 12 shows sample results of this
translation. The generator again produces realistic images,
as we show in columns 3 and 6. Generally, the structures of
the skin are retained and fewer details are lost, compared
to eczema removal. Further, realistic-looking eczema is

Figure 11. Eczema removal from afflicted skin: col. 1 and 4 show
the input photos, col. 2 and 5 the input segmentations and col. 3
and 6 the generation results.

placed in the desired parts of the images. These results
show that convincing eczema can be in-painted accurately
in the indicated locations, which enables applications such
as simulating the progression of untreated eczema.

4.3. Untargeted Eczema Modification

We experiment the cyclic translation between patches of
skin with and without eczema. No segmentation masks are
used and the translations are learned with the completely
unsupervised CycleGAN framework (Zhu et al., 2017). As
before, the pairing between generator input and output is
achieved with an additional generator loss term. In this case,
the cycle consistency lossLCY C (Zhu et al., 2017) penalizes
differences between a generator’s input and its reconstruc-
tion, as stated in Equation 3. The generators’ combined
objective is defined as follows:

LG = LADV − λCY C · LCY C (5)

While placing a greater emphasis on cycle consistency does
increase the pairing, this benefit comes at the cost of reduced
sample quality. We find that the commonly-used value of
λCY C = 10 strikes a reasonable balance, like λREL in the
previous experiments.

The same considerations regarding data set size from the
previous image translation experiments also apply in this
case: The set of patches of healthy skin is reduced to match
the set of patches of skin with eczema. Again, extra im-

Figure 12. Eczema addition on healthy skin: col. 1 and 4 show the
input photos, col. 2 and 5 the input segmentations, and col. 3 and
6 the generation results.
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ages of healthy skin are used to train the corresponding
discriminator in order to avoid overfitting. Sample results of
unsupervised eczema modification are shown in Figure 13.

Figure 13. Cyclic eczema modification without segmentation.
Each row shows the translation of corresponding samples: col.
1 and 4 show the sick and healthy input photos, col. 2 and 5 the
generated translations without and with eczema and col. 3 and 6
the input reconstructions.

Overall, both generators obtain good results: the generated
samples in columns 2 and 5 look realistic and the original
inputs of columns 1 and 4 are reconstructed reasonably accu-
rately in columns 3 and 6. We observe that the details of the
reconstructed eczema in column 3 do not match the original
eczema in column 1. This is to be expected, as the generated
patches of healthy skin in column 2 should not contain any
hints on where or how to in-paint specific eczema. On the
other hand, the second generator properly learns to apply
realistic-looking eczema lesions, as demonstrated in column
5. However, the addition of eczema is no longer targeted
and can not always be clearly determined.

The loss of details observed in previous translation experi-
ments is barely noticeable here. Indeed, the structures of the
original images are mostly retained during both translations.
This is likely a positive effect of the cycle consistency ob-
jective. The metrics of these cyclic translation experiments
are more stable than those of the individual translations.
For completeness, we mention that the synthetic patches of
healthy skin have a FID of 654.7 to the real data, while the
synthetic patches of skin with eczema have a FID of 690.2.
These scores are reasonably similar to the scores of uncon-
ditional generation, with 538.7 and 599.6, respectively.

5. CONCLUSION
We present different applications of GANs on dermatologic
images. First, the common task of unconditional image
generation is performed successfully with photos of hands
and patches of skin in particular. This is also shown for skin
patches in the perceptual study. The validity of our approach
is therefore confirmed and our initial objective to create
realistic synthetic data achieved.

In the case of generated skin lesions, the results do not look
as realistic. This could be corrected by further filtering of

the images with rare features (such as hair in our particular
case), when compared to the other images in the data set.
Our analysis shows that the discriminator already overfits
with data sets of several thousand images. On the other
hand, we only notice overfitting in the generator when us-
ing smaller data sets of merely hundreds of samples. Thus,
we conclude that the discriminator complexity should be
especially controlled when working with small datasets

In the second part of this work, we explore the task of im-
age modification, with eczema addition or removal within
a specified area. The obtained results are again visually ap-
pealing but we observe that the FID score may be unsuitable
to assess the quality of image translation experiments. In
particular, we demonstrate the precise addition of eczema to
the areas indicated by the segmentation mask. These results
open the door for new applications in dermatology with
great value for both doctors and patients, such as anomaly
detection in a disease appearance or the visualization of the
long term aesthetic effects of a disease.

Finally, we also perform domain translation between healthy
skin and skin with eczema lesions in an entirely unsuper-
vised experiment. In particular, the eczema removal re-
sults may be interesting for future applications, such as
weakly-supervised eczema segmentation similar to (Ander-
matt et al., 2018). This is certainly the most probable case
that researchers will encounter as labeling is a costly step.
In practice, before labeling is even considered, it is often
necessary to first get prototyping results which could be
achieved following this approach.
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