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A B S T R A C T

This study aims to project changes in soil carbon stocks under different frequencies of storm and climate change
scenarios. We calibrated and validated the dynamic process-based soil carbon model “Yasso07” for a wind-throw
prone forest area of 1.4M ha in the State of Baden Württemberg in central Europe, Germany. We fitted climate-
biomass models using retrospective climate data and biomass measurements from three consecutive national
forest inventories for six forest growth regions. Three IPCC scenarios (RCP2.6, RCP6.0 and RCP8.5), three storm
frequencies (10, 20, and 50 years interval), and three post-storm harvest strategies (business-as-usual, full re-
tention, and 50% retention), in combination with a total of 27 scenarios, were applied for projections into the
21st century. We could reduce the uncertainty of YassoBW parameter values significantly by up to 30%, by
applying Bayesian calibration, although the absolute value of most parameters did not deviate very much from
the original Yasso07 parameters. The projection results showed that forest soil organic carbon (SOC) may lose
approximately 30 and 10 t C/ha during the first and the second half of this century, respectively. Three storm
frequencies led to a larger range of annual SOC reduction (-0.34, -0.49) t C/ha than climate and harvest stra-
tegies (-0.41, -0.42) t C/ha. If no storms occur, the total carbon stock would increase to over 200 t/ha with 258 t/
ha under RCP8.5. Considering storm impacts, total forest carbon was reduced from -20 to -90 t C/ha, regarding
10 and 50 year storm frequencies respectively. The largest reduction of forest soil carbon stock originated from
the loss in non-solubles (N), followed by acid-solubles (A), humus (H), water-solubles (W) and ethanol-solubles
(E).

1. Introduction

Forests have recently drawn much attention from the international
community, since their potential function as a carbon sink was re-
cognized under the Kyoto Protocol framework by the UNFCCC
(UNFCCC, 1998). Forests in the northern hemisphere are a carbon sink,
since the increment was higher than carbon losses due to harvest and
mortality (Goodale et al., 2002). At global level, forests might become a
carbon source or sink in 2100, according to different model predictions
under changing climate (Bellassen and Luyssaert, 2014; Friedlingstein
et al., 2006). Such a large-scale finding has to be validated on a regional
level, though the quantification of forest carbon sinks is usually asso-
ciated with a high degree of uncertainty, due to differing methods or
incomplete assessment of carbon pools (Houghton et al., 2012). Many
researchers have explored the importance of forest ecosystems in the
global terrestrial carbon pool and reported that more than 80% of all
terrestrial above ground carbon and more than 70% of all soil organic
carbon (SOC) are stored in forest ecosystems (Jobbagy and Jackson,
2000). Moreover, according to the 4th IPCC report in 2007, carbon
dioxide emissions from the decomposition of soil organic carbon are

equal to about 60 Pg (1 Pg = 1015 g) of carbon per year, about seven
times as much as the annual emissions of fossil carbon (IPCC, 2007).
The SOC, consisting of labile compounds and more stable ones, e.g.
humus, is the largest terrestrial carbon stock. Globally, SOC is estimated
to be 2300 Pg in the top 3m of mineral soil, almost half (1100 Pg) of
which is stored in forest soils (Jobbagy and Jackson, 2000). In these
calculations, carbon from forest biomass is not even included, meaning
that forest soils alone hold one third more carbon than the atmospheric
carbon stock (˜800 Pg), as reported by Houghton et al. (2012).

Furthermore, extreme storm events like Vivian & Wiebke 1990,
Lothar 1999, Gudrun 2005, Kyrill 2007 and Klaus 2009 have recently
hit European landscapes with a severe impact on forest carbon se-
questration capacity (Gardiner et al., 2011). The direct effect was the
sharp and sudden reduction in above ground biomass carbon and at a
later stage on the assimilation capacity. The influence of storms on
forest carbon storage has drawn great attention recently at both na-
tional (McNulty, 2002; Thürig et al., 2005) and international level
(Schelhaas et al., 2007; Seidl et al., 2014; Reyer et al., 2017). At the EU
level including 30 countries (EU and Albania, Bosnia Hercegovina, The
FYR of Macedonia, Norway, Switzerland, Turkey, United Kingdom, and
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Yugoslavia), wind-throw was found to be responsible for more than
50% of the primary damage by volume from all biotic and abiotic
disturbance events (Schelhaas et al., 2003).

As storms can have a significant impact on forest management, re-
searchers are developing models to predict storm probability and
amount of damage to support decision making and mitigate storms'
catastrophic effects on forests, e.g. ForestGALES (Gardiner et al., 2011),
HWIND (Peltola et al., 1999), WINDA (Blennow and Sallnäs, 2004),
FORGEM-W (Schelhaas et al., 2003). Some models are used for mod-
elling damage at the single tree level (Schmidt et al., 2010), while
others are used for stand level projections (Hanewinkel et al., 2014) or
regional level assessment (Talkkaria et al., 2000). To analyze the im-
pact of storm damage on forest carbon, understanding the carbon
processes in forest including forest soil carbon is crucial. Storms not
only remove living biomass (in situ carbon sequestration) from forest
and affects forest production process (production machine tree is da-
maged) but also expose forest soil to direct sunshine and affect the
evapotranspiration process. Immediate increase in litter input to soil
after storms affect forest soil processes including organic and inorganic
carbon stock. These models, however, are calibrated for a specific re-
gion and are accordingly valid under certain conditions. These models
can be simply re-applied to other regions, as long as the empirical data
are available, making the comparison between observed damages and
model outputs possible by appropriate adjustment or calibration of that
model. Yasso, for example, is a complex process-based model, widely
used for forest soil carbon analysis (Liski et al., 2005, 2008). It covers
the most important aspects of soil organic matter decomposition and
mass flow among different carbon compartments, while requiring re-
latively simple information on litter input and basic climatic data to run
the model. The new Yasso07 model (Tuomi et al., 2008, 2009) uses four
labile compartments: acid-solubles, water-solubles, ethanol-solubles
and non-solubles (A-W-E-N) and one recalcitrant humus compartment
(A-W-E-N-H-N-).

Forest models are normally designed and developed based on ob-
servations or experiments under specific environmental conditions
within a specific geographical boundary. The application of models to
other domains outside their original area without any modification or
re-calibration can cause inaccuracy and uncertainty (Reyer et al.,
2010). In this regard, the use of advanced mathematical methods, e.g.
Bayesian approaches, has undergone a rapid development in recent
years, as Bayesian calibration (BC) can improve a model by updating
parameters and reducing uncertainties and thus enhancing model ap-
plicability and reliability (van Oijen et al., 2005, 2013). BC approaches
are recently applied to studies on soil organic matter decomposition
models, carbon turnovers in forest soils, water and heat fluxes in forest
stands, as well as forest soil acidification models (Xenakis et al., 2008).
A new trend of applying BC to forest process models, is the integration
of other types of data sources, such as remote sensing data sets. A UK
study to simulate the growth of UK Corsican pine has taken a lead in
this aspect (Patenaude et al., 2008). General conclusions from the
above mentioned studies show that BC provides a good method for
improving the applicability, effectiveness and functionality of forest
models by reducing model uncertainty, parameter uncertainty and in-
teraction, as well as model comparison. Therefore, we apply BC for
calibrating Yasso07 for the state of Baden Württemberg (BW) and
named it “YassoBW”. We chose this region because central Europe is
one of the hotspots in terms of storm damage to forests and the growing
stock in southwestern Germany has been severely damaged (in excess of
tens of millions m3) during the last three decades (Rottmann, 1986;
Kühnel, 1994; Kronauer, 2000; Hanewinkel et al., 2014). The most
remarkable winter storm in southwest Germany was Lothar 1999,
which caused about 50.3 million m3 of damaged timber over bark,
accounting for up to 10% of the total growing stock in the state of BW,
according to the second National Forest Inventory (NFI2) (Kändler
et al., 2005).

There are a few studies that provided a quantitative analysis on how

forest carbon budgets are affected by storm events at the national and
transnational level (McNulty, 2002; Thürig et al., 2005). However, such
a study is lacking for the highly productive forests of southwest Ger-
many damaged by several large storm events in the last 25 years (e.g.
Vivian/Wiebke in 1990 and Lothar in 1999). Similar storm events are
expected to occur in 21st century and their frequency and severity may
change substantially (Schelhaas et al., 2007; Seidl et al., 2014; Reyer
et al., 2017). Therefore, it is of great interest for forest managers and
decision makers to know, how the carbon stocks (including the forest
soils) will be affected under various combinations of storm and climate
scenarios. Accordingly, the overall objective of this study is to quantify
the influence of extreme storm events on the forest carbon storage ca-
pacity in BW (Southwest Germany) under different climate scenarios.

The specific research questions of this study are i) How can a pro-
cess-based soil carbon model be calibrated to the local conditions using
an advanced Bayesian approach and detailed local information? ii) How
and to what extent will forest biomass and carbon budget be affected by
combined impacts of storm and climate scenarios? iii) How various
storm frequencies, different post-storm harvest strategies, and climate
change scenarios may affect forest soil carbon? In the following, we
draw attentions to advanced modelling approaches of this study and the
outcomes about forest soil carbon pools and its sensitivity to future
climate, storms, and management interventions. Accordingly we for-
mulate three main hypotheses as following:

1) Bayesian calibration can reduce original models parameters un-
certainty using extensive regional data

2) Extreme wind storms have significant impacts on forest soil carbon
budget

3) Post-storm management of damaged forest areas has implications
for future forest soil carbon development

2. Materials and methods

2.1. Study region and forest inventories

According to the third National Forest Inventory (NFI3) in 2012, the
study region in southwest Germany (the federal state of BW) has a total
stocked forest area of 1.32 million hectares and the forest area covers
38.4% of the total land area (Fig. 1). Based on the variation in bio-
climatic characteristics and site conditions, this region is divided into
seven growth regions (Fig. 1). For the sake of comparison and better
representativeness, the biomass projection and litter input as well as
carbon stock predictions are carried out for each region individually.
The dominating tree species in BW are Norway spruce (Picea abies) and
European beech (Fagus sylvatica), which cover 34% and 21.8% of the
total forest area, respectively. The standing volume per hectare reaches
378 m3/ha, which is almost three times the average growing stock of
European forests (137 m3/ha), making the forest area in BW one of the
less harvested regions in Europe. However, the annual increment
slowed down slightly from 1.5 million m3, between NFI1 - NFI2
(1987–2002), to 1.4 million m3, between NFI2 - NFI3 (2002–2012) as a
sign of carbon sink saturation in European forest biomass (Nabuurs
et al., 2013).

2.2. Forest inventory, soil, and weather data

We use the results of the National Forest Soil Inventory (NFSI) re-
presenting the average forest soil types and species distribution within
the entire forest area of BW. The sample plots in the study region are
distributed on 8× 8 km grids in forested areas and the mineral soil
samples were taken from the layers 0–5 cm, 5–10 cm, 10–20 cm,
20–30 cm, 30–60 cm, 60–90 cm, 90–140 cm and 140–200 cm, or to the
lowest depth until bedrock is reached (BMELV, 2007). The first Na-
tional Forest Soil Inventory (NFSI1) was started in 1989 and ended in
1992, while the second National Forest Soil Inventory (NFSI2) was
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completed between 2006 and 2008 at the same sampling sites with a
one or two meters shift from the digging point of the first survey de-
pending on the real physical condition of that specific site. In general,
the NFSI provides valuable data on various topics related to forest and
soil sciences including, among others, forest condition, soil property
changes between NFSI1 and NFSI2, soil carbon, biodiversity and in-
fluence of climate change on soil conditions (see more details in Sup-
plementary).

For the sake of consistency between two soil surveys, four selection
criteria were applied to choose the sampling sites from the 280 re-
measured plots. Firstly, whether soil type (Sand, Clay, Loam, Silt, and
Peaty) and horizons (from humus to mineral soils and including mea-
sured horizons L, Of, Oh, Ah, B, C, R) were the same. Secondly, if the
difference in stone content was not higher than two times the standard
deviation (approximately 25% difference). Thirdly, whether the forest
stand types agree (conifer-deciduous mixed stands). Fourthly, both
NFSI1 and NFSI2 had an apparent humus horizon. As long as one of the
above mentioned criteria was not met, that site was excluded from
further analysis. This resulted in 183 sampling plots (excluding 97 sites)
that satisfied all these criteria and meanwhile had humus measurement
at both soil surveys. The SOC in these 183 sampling sites, including
humus horizon and mineral soil down to 60 cm, showcased a similarly
declining trend in the 280 plots. SOC was reduced in the model using
validation samples from 100.3 t/ha in NFSI1 to 91.3 t/ha in BEZ2 in
mean value of the 183 sites (compare to 108.0 and 89.8 t/ha in NFSI1
and NFSI2, respectively).

The retrospective climate data were derived from the German
Meteorological Service (DWD) database. Since the climate data have
the downscaled resolution of 1 km and NFSI sites data resolution is
8 km, the value of the specific climatic data square (1 km * 1 km),
within which a NFSI site was located, was assigned to that specific NFSI
site (see more details in Supplementary). According to the temporal
resolution of our modelling framework, the temperature values were
derived from the daily mean air temperature at German Meteorological
Service (DWD) station and used to calculate the monthly and annual
mean temperatures. Annual precipitation was aggregated for each year
and each NFSI site. Fig. 2 shows the historical climate data averaged
geographically over all soil survey sites for the time period of
1989–2008. The twenty year climate data were used because they

covered the time period in which NFSI1 and NFSI2 were conducted.
Temperature amplitude was defined as the difference between the
maximum monthly mean temperature and minimum monthly mean
temperature in one year divided by two. During 1989–2008, it had a
range of almost 5 °C for BW. According to the results of the study by
Tuomi et al. (2009), these types of climate patterns and litter quality are
the major controlling factors of decomposition rates at the global scale
also valid for the model YassoBW.

2.3. IPCC climate scenarios

LUBW and lubw (2012) stated that the first decade of the 21 st
century was the warmest in Germany for at least the past 130 years. The
mean temperature increase of over 1 °C has been observed in BW
(LUBW and lubw, 2012), in comparison to the global rise of about
0.7 °C in the period of 1906–2005 (IPCC, 2007). Climate change pro-
jections were normally performed by simulations using Global Climate
Models (GCMs). Different GCMs can generate largely different climatic
projection data by using different emission scenarios and model runs.
Since there is still no downscaled database for the future climate in BW,
the WorldClim - Global Climate Data (Hijmans et al., 2014) was used
for above ground biomass projection and underground soil decom-
position in BW until the end of the 21st century. In order to minimize
the uncertainty of a single GCM on the climate data forecast, the model
outputs from three representative GCMs were averaged, e.g. CCSM4,
HadGEM2-AO and MIROC-ESM. These GCM outputs were downscaled
and calibrated (bias corrected) using WorldClim 1.4 as a baseline for
the 'current' climate (Hijmans et al., 2014). WorldClim has a repository
of 19 bio-climatic variables. We selected annual mean temperature and
annual precipitation for this study corresponding temporal resolution of
our modelling framework.

For the climate scenarios, we use the most current storylines, i.e.,
four Representative Concentration Pathways (RCPs) adopted by the
fifth IPCC Assessment Report. The four RCPs show four possible
greenhouse gas concentration trajectories in the atmosphere until 2100:
RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Each of these trajectories re-
presents a potential range of radiative forcing values for the end of the
21 st century (+2.6, +4.5, +6.0 and +8.5W/m2, respectively) re-
lative to pre-industrial values (IPCC, 2013). Three of the four scenarios

Fig. 1. Main forest growth regions in Baden Württemberg (BW) based on bio-climatic and site conditions. Dark green applies for forest areas. Source: adapted from
Waldzustandsbericht 2011 (FVA, 2011) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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were chosen for this study, RCP2.6, RCP6.0 and RCP8.5, representing
slight, intermediate and substantial changes (Hereafter, named RCP26,
RCP60 and RCP85). The outputs from each GCM, combined with each
RCP scenario, were clipped for BW in Arc GIS Version 10.0 (ESRI, En-
vironmental Systems Research Institute, Inc., Redlands, California,
USA).

2.4. Soil carbon model “Yasso”

The model Yasso, a process-based soil carbon model (Liski et al.,
2005), was originally developed for forest soil carbon dynamics ana-
lysis with little input requirements. Yasso consists of three labile de-
composition compartments (extractives, celluloses, lignin-like com-
pounds) and two relatively stable compartments (active humus and
recalcitrant humus). The model simulates forest soil carbon stocks and
their changes, as well as carbon release from the soil to the atmosphere
at a yearly step. The decomposition rates of the three labile compart-
ments were derived from litter bag experiments in central Sweden (Berg
et al., 1991). An updated version, Yasso07, was developed using much
larger data sets (Tuomi et al., 2009). For the leaf litter decomposition,
nearly 9000 measurements were collected from 72 sites and 32 litter
types, covering various ecosystem types in the Northern hemisphere,
e.g. tropical rainforest to arctic tundra (Tuomi et al., 2008). The
Yasso07 model is composed of five state variables and 24 parameters.
The five state variables represent carbon stocks in four labile carbon
compartments, e.g. acid-solubles (A), ethanol-solubles (E), water-so-
lubles (W) and non-solubles (N) and one additional compartments for
humus (H). The parameter set consists of decomposition rates for each
carbon compartment, mass flow proportion among these compart-
ments, climate-dependent variables and size-dependent parameters for
woody litter. Yasso07 simulates the carbon cycling in trees, litter and
soil organic matter based on a biological process-oriented view of the
litter decomposition process. The model assumes that the more stable
carbon pools reside in deeper soil layers and, accordingly, does not take
into account any carbon stock changes regarding different soil depth. As
Yasso07 provides an unbiased estimate of litter decomposition for a
wide variety of tree species and forest ecosystems across global climate
conditions (Tuomi et al., 2011), applying the Yasso07 model to the
forest soils of BW becomes plausible, with the appropriate calibration.
Finally and crucially, in Yasso07 each parameter value is given by a
probability density function generated by using the Markov Chain
Monte Carlo (MCMC) method instead of just the expectation value and
its associated variance of the parameter in the previous version of the
Yasso model (se details in Supplementary) MCMC is also used to
identify which carbon flux exists between different compartments (Liski
et al., 2008). The following assumptions are made in using the MCMC
method for the calibration of YassoBW (from Yasso07):

• Decomposition rates of the four labile carbon compartments (A-E-W-

N) are independent of the origin of litter, e.g. litter types and plant
species. They depend rather on favorable air temperature and soil
moisture or drought index.

• Decomposition of compounds groups results in the mass loss from
the system and mass flow between groups as well as the formation of
more recalcitrant humus.

• Mass transfer fractions among compartments are independent of
climate.

• Decomposition of woody litter depends additionally on the size of
the litter.

In this study, we use Yasso07 designed to minimize the input re-
quirements by using a yearly time step and utilizes the following groups
of determinants: 1) environmental and ecological drivers, e.g. air
temperature, precipitation, evapotranspiration, photosynthesis, 2) soil
condition, e.g. soil temperature, moisture, pH, depth, chemical com-
position, faunal activity, texture, C/N ratio, 3) vegetation information,
e.g. forest growth, litter input quality and quantity, turnover rates, and
4) anthropogenic influence, e.g. forest management, thinning regime,
harvest strategy. Many source of data are recruited to run the model
properly and generate the demanded outputs. Fig. 3 shows the natural
flow of applied dataset in different modelling and analysis steps.

2.4.1. Bayesian calibration of YassoBW
Bayesian Calibration (BC) infers new parameter values of a given

model, aiming to quantify and further reduce uncertainty in parameter
values. We used BC because, compared to traditional calibration model,
it takes into account the range of input instead of an average and allows
for learning from new data from observations towards improving model
fit. This is achieved by integrating two sources of information: prior
knowledge about parameter values and posterior knowledge about
measured output data. In our case, the prior information is the prior
distribution of Yasso07 parameter values. The measurements on output
variables are the soil carbon quantities in A-W-E-N-H compartments. BC

Fig. 2. The annual climate data in 1989–2008 in BW: (a) mean temperature, (b) mean temperature amplitude, (c) annual precipitation.

Fig. 3. Flowchart of data flow to analyze forest soil carbon.
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can theoretically be applied to models of any type or size (van Oijen
et al., 2005, 2013), including statistical models and process-based
models, as well as deterministic and stochastic models. The underlying
rationale is Bayes’ Theorem as in equation 1, where P(θ|D) is the pos-
terior distribution for parameters given the data D, P(θ) is the prior
distribution of parameters, P(D|θ) is the likelihood of data given the
model output using the parameter θ and P(D) is a normalisation con-
stant.

=P θ D P θ P D θ P D( | ) ( )* ( | )/ ( ) (1)

For the sake of commonality and simplicity, a standard Metropolis
algorithm is chosen to create a random walk through parameter space.
The visited points in the random walk chain constitute a representative
sample from a posterior PDF of parameters. Each new point in the chain
is found by randomly generating a candidate parameter vector, which
can be accepted or rejected (van Oijen, 2008). According to Metropolis
et al. (Metropolis et al., 1953), Metropolis algorithm is a tool to de-
termine whether a candidate parameter vector, e.g. a point in the
random walk chain, is accepted or not. It depends on the Metropolis
ratio (Eq. (2)), which is the ratio of posterior probability of the candi-
date point to that of the current point. If the Metropolis ratio β is bigger
than 1, it means the candidate parameter vector has a higher posterior
probability than the current parameter vector, so it is always accepted.
If the Metropolis ratio is less than 1, it does not necessarily mean the
candidate would be rejected. Conversely, it can also be accepted with
the probability equal to the Metropolis ratio (van Oijen, 2008). MCMC
is used to estimate all parameter values in Yasso07, e.g. decomposition
rate coefficients of AWENH (acid-solubles (A), water solubles (W), Ee-
thanol solubles (E), non-solubles (N), and one recalcitrant humus
compartment (H) in YassoBW), transfer fractions between AWENH,
climatic dependency parameters of decomposition rates, and transfer
fractio is bins to and decomposition of humus as well as woody litter
exposure (more details in Supplementary).
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2.4.2. Data processing for YassoBW
One of the crucial improvements of Yasso07 is that it is not as data

intensive as other process-based soil models, e.g. SOILN (Eckersten and
Beier, 1998), CENTURY (Parton et al., 1987, 1994) or Forest-DNDC (Li
et al., 2000; Stange et al., 2000). To run Yasso07, two sets of input data
are needed. The first set is litter input, which contains litter production
per year and litter quality, meaning the composition of chemical
compounds of A-W-E-N in each tree compartment of different tree
species. In the YassoBW model, there are two litter types, woody and
non-woody litter. The basis for calculating the litter input were the
biomass for the 9549 individual tree measurements obtained from the
quasi-NFI inventory (special forest inventory using NFI measurement
standards for all soil carbon sampling sites). In this study, the generic
biomass functions for European beech (Wutzler et al., 2008) were ap-
plied to compute the biomass for tree compartments of roots, stems,
branches and leaves for broad-leaved species in BW (Table 1). These
compartment proportions were assigned to other deciduous trees, since
more than 50% of the deciduous trees were European beech and most
deciduous trees compartments realise very similar properties e.g.
turnover rate (see below and Table 2).

Forest soil carbon was measured from the litter horizon downwards
to the mineral soil, either to a depth of 200 cm or to when bedrock was
reached. The soil profile for all measured horizons, e.g., L, Of, Oh, Ah,
B, C, R, was examined. The litter input into soil carbon are from living
trees, ground (or understory) vegetation, harvest residues and natural
mortality (Rantakari et al., 2012). All of these types of litter input were
calculated using local data sets from NFI and quasi-NFI inventories,
except for the litter input from understory vegetation. For calibration
purposes, the understory vegetation, including shrubs, bushes, herbs

and grasses was assumed to provide 0.506 t/ha annually into the soil
(Muukkonen and Mäkipää, 2006; Muukkonen et al., 2006), and it was
added to the non-woody litter input category. The tree biomass com-
partments were classified into branches, stems (including bark), foliage
and roots. The total above ground biomass of each of the 9549 in-
dividual trees was computed using a synthetic biomass function from
Kändler and Bösch (2013). The core function of this integrated biomass
function (Eq. (3)) is a modified Marklund model for trees greater than
10 cm DBH.

BAB=b0∗ eb1∗ (DBH/(DBH + k
1 )) ∗ eb2∗(D03/(D03 + k

2 )) ∗ Hb
3^ (3)

Here BAB is the above ground biomass (kg), DBH is the diameter at
breast height (cm), b0, 1, 2, 3, and k1, 2 are coefficients, D03 is the dia-
meter at 30% of tree height (cm), and H is the tree height (m). The
coefficients of the individual biomass functions are documented in the
supplementary (s-tables 1–2). The turnover rates, or litter fall, for each
tree compartment for different tree species vary significantly as listed in
Table 2. According to the NFI statistics, the difference between growing
stock under bark and over bark of harvested timber includes not only
the bark biomass, but also harvest residues. The ratio of growing stock
under bark to over bark was derived from the NFI1 and NFI2 data sets
(see details in Supplementary). Estimations on annual removal due to
natural mortality were also based on the measurements from the first
and second NFI. This parameter contains the volume of standing dead
trees and un-used lying dead trees, in terms of growing stock over bark.
The litter input from natural mortality was estimated based on the
following assumptions: firstly, tree compartment composition, chemical
quality (A-W-E-N) and turnover rates from the trees due to natural
mortality are the same as living trees. Secondly, beech and oak have
their individual mortality rates that are different from all other decid-
uous species, according to the quasi-NFI database.

Based on the three rates of turnover in Table 2, harvest residue and
natural mortality, the litter input estimates (in t/ha) were produced
from measurements from the quasi-NFI inventory at the single tree
level. Fig. 4a shows that A-W-E-N composition of litter input varies
from site to site, but the general trend made it clear that acid-solubles
are the most important component, followed by the non-solubles, then
water-solubles and finally, ethanol-solubles. As indicated in Fig. 4b, the
NWL provided more litter input into soil than the WL at all calibration
sites, although the total litter input differed from one site to another. On
average, they were estimated at 3.1 t/ha and 0.8 t/ha for NWL and WL,

Table 1
Best HD-model for each compartment of European beech (Wutzler et al., 2008).

Compartment Form Equation

Tree dh3 m=0.0523*d2.12*h0.655

Branch dh3 m=0.123*d3.09*h−1.17

Leaves dh3 m=0.0377*d2.43*h−0.913

Stem dh2 m=0.0293*(d2*h)0.974

Root d2 m=0.0282*d2.39

d is diameter at breast height (1.3 m) in cm and h is tree height in m.
Form of allometric functions applied: m = c0dc1 (d2), m = c0(d2h)c1 (dh2), m
= c0dc1 hc2 (dh3), where m is the regarded compartment and c0-2 are the
coefficients.

Table 2
The turnover rates of tree compartments for the dominant species in Baden
Würrtemberg.

Species Foliage Branch Stem Bark Coarse Root Fine Root

Spruce 0.14 0.0125 0.0027 0.0125 0.811
Pine 0.33 0.015 0.0052 0.0125 0.868
Fir 0.1 0.04 0.0027 0.0125 0.74
Beech 1 0.0135 0.0029 0.0135 0.868
Oak 1 0.0135 0.0029 0.0135 0.74
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respectively, including all three carbon sources of living trees, natural
mortality and harvest residue. For the model to operate, the initial state
of carbon compartments must be set down. For this, the calibrated
YassoBW with new parameter set was initialized from the status of zero
carbon stock for the NFSI sites (sample plots). The NWL and WL inputs
were taken from the measured data of the quasi-NFI survey and were
differentiated for each site. The annual climate data that is required by
YassoBW was also site-specific. The average over 20 years at each site
was used. Then YassoBW was run for 10,000 years to obtain the new
equilibrium state of soil carbon stock in the different AWENH com-
partments for NWL and WL, separately (details in Supplementary).

2.4.3. Model simulation
The projection was implemented for all possible combinations of

storm frequencies, management strategies and three IPCC climate sce-
narios from the fifth assessment report. The combination of simulation
runs is listed in Table 3. Firstly, storms were assumed to return at 10, 20
or 50 year intervals. After a storm event, three different post-storm
harvest strategies were distinguished: business as usual (BAU), full re-
tention (RM) and half retention-half harvest (HH). For each combina-
tion, the simulation run was repeated 40 times, to account for the sto-
chastic model effects and the results were averaged from the 40 runs, to
analyze the general soil carbon change trends and the uncertainty of
model runs, as well as the variability between NFSI sample sites. The
simulation was carried out for each of the NFSI sites (183 sample plots)
and run for 100 years under each of 30 combinations of scenarios for

each of the 43 parameter sets. In total, more than 23 million individual
runs were executed, alone for the projection of YassoBW.

2.4.4. Determinants of soil carbon stock changes
Soil carbon stock projections were performed at the NFSI site level,

using site-specific litter input and annual climatic data. An annual
carbon stock projection for the time period 2001–2100 was obtained for
each NFSI site, under all of the 30 scenarios (Table 3). Climate change
affects the YassoBW projection in two ways by determining the litter
input, because forest biomass increment were projected by the six cli-
mate-biomass models using temperature, precipitation and CO2 as the
independent predictors and climate data being determinant for the
decomposition rates of the carbon compartments in YassoBW.

A practical indicator was used to categorize storm severity, here the
percentage of storm damaged timber to total growing stock within a
certain region. This percentage can be directly calculated from mea-
sured data. More importantly, this percentage can be easily transformed
to litter input to soil carbon, assuming that the wood density was
constant. The storm damage in our simulations destroys 10% of the
total growing stock over bark as Lothar storm damage did in the region
(Kändler et al., 2005). Correspondingly, the biomass damage and an-
nual litter input will increase by the same proportion in the first year
after a storm, if no post-storm harvest occurred. The effects of this event
on regeneration is regarded as soon as a new stand reaches the first
diameter class (10 cm). After a storm event, three post-storm harvest
strategies were combined with the above mentioned three storm fre-
quency scenarios: BAU, HH, and RM. The BAU scenario was derived
from the “Lothar” damage measurements. As resulted from NFI2 about
Lothar storm damage effects (Kändler et al., 2005), 95% of the total
damaged biomass was removed from the affected forests, 32% of which
was left as harvest residue. Half of the harvest residue is assumed to be
collected as fuel wood according to the local practice, whereas the other
half of the residue was considered to be the real litter input into the
forest soil (as in Yasso07 in Tuomi et al., 2008, 2009). Similarly, the HH
and RM scenarios assumed that 50% and 100% of the total damaged
biomass were left in forests as litter input into the soil, respectively. A
storm of the severity of “Lothar”was assumed to return in chronological
order according to the three storm frequencies. The increased litter
input from storm events declined linearly from the first year after the
storm to the last year before the next storm came. Therefore, the first
year had the largest litter input rise, which corresponds logically to the
storm severity of 10%.

2.4.5. Forest carbon budget
To assess the influence of storm events on forest carbon budget, the

above ground biomass carbon pool (derived from Eq. (3)) must be
combined with the soil carbon pool. Here, the biomass carbon stands
for the carbon stored in the above ground biomass and roots. The
biomass in the roots was calculated by multiplying the above ground
biomass with the root-shoot ratio, which was empirically derived from
the quasi-NFI database. In this study, the forest carbon budget with
storm and without storm scenarios was analysed. The projection was
implemented at a yearly step, but the accumulated changes were illu-
strated for the time periods of 20, 50 and 100 years in order to capture
the tendencies of change starting from the year 2000 (see details on
Forest carbon modelling in Supplementary 1, section 2.4).

2.5. Validation of YassoBW

YassoBW was validated by comparing the NFSI re-measured sites
information for 280 sample plots with YassoBW predicted carbon stock,
either in carbon stock status or in annual carbon stock changes.
YassoBW prediction started from inventory year of NFSI1 and ended at
the year of NFSI2. This simulation length was emphasized because the
two consecutive NFSIs were not finished within one year and the
starting year of NFSI1 at each site was not the same year either. It

Fig. 4. Litter input at calibration sites, broken down by carbon compartments:
A(dark)-W(red)-H(green)-N(blue) in Fig. 4a and non-woody litter (NWL, grey
bars) and woody litter (WL, dark bars) in Fig. 4b (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).
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resulted in the fact that the starting year and ending year, as well as
their time difference between NFSIs were also site-specific. With the
aim to make the validation more reasonable and justifiable, these site-
specific features were taken into consideration. Thus, the YassoBW
projection was carried out at site level to predict the carbon stock
change from the year of NFSI1 to NFSI2, also using site-specific an-
nually varying climate data. Therefore, it is meaningful and verifiable
to compare the YassoBW output at the year of NFSI2 and the measured
data of NFSI2. The similar comparison was also implemented for the
annual carbon stock changes between YassoBW estimates and NFSI
measurements.

2.6. Sensitivity and uncertainty analysis

The sensitivity of YassoBW was analyzed in relation to the two
important sets of model input, e.g. climate and litter input. The sensi-
tivity of YassoBW to climate data was examined by simulating YassoBW
using either standard temperature with annually changing precipita-
tion, or standard precipitation with annually changing temperature for
the historical period of 1989 - 2008. Here, standard temperature and
precipitation stand for the 20 year average at the state level. The tem-
perature amplitude and annual litter input calculated as the mean over
all NFSI sites and were held constant over 20 years (1989–2008). On the
other hand, in order to detect the sensitivity of YassoBW output to litter
input, the model was run with annually varying litter input and con-
stant climate data. The annually varying litter input was derived from
the biomass increase under the climate scenario RCP60. The constant
climate data were calculated as the 20 year average for the 183 NFSI
sites, according to the German Meteorological Service (DWD) ob-
servations. For comparison to climate sensitivity, the model was also
run with constant litter input (quasi-NFI data at the state level) and
annually varying climate data from the RCP60 scenario. Here, sensi-
tivity was investigated by checking the ratio of YassoBW output

changes in percentage to input changes (e.g. litter, temperature, pre-
cipitation) in percentage. This study focused mainly on the uncertainty
in YassoBW parameter values and their impact on soil carbon projec-
tions. This impact was evaluated by randomly selecting 40 parameter
vectors from the posterior parameter space. These different parameter
vectors were used for each of the 30 simulation scenarios in this study.
The uncertainty of YassoBW projections was then assessed by calcu-
lating the ranges and standard errors of 40 simulation runs for each
scenario.

3. Results

3.1. Calibrated parameter values of YassoBW

The parameter values of YassoBW were actualized by selecting
statistically representative samples from the posterior parameter space.
The mean values and the corresponding 95% confidence intervals of all
candidate points in the parameter space are shown in Table 4. These
values were applied to further predictions under different scenarios in
BW. Compared to the original Yasso07 parameter set, most parameters
do not deviate significantly from the original parameters, in terms of
numeric magnitude, but some mass flow rates among the A-W-E-N-H
compartments increased or changed from zero to non-zero values. More
importantly, the confidence intervals of all parameters were sig-
nificantly reduced after they were calibrated using the locally measured
data. To evaluate the uncertainty of the newly calibrated YassoBW
parameter values, this study adopts the coefficient of variation (COV) as
a criterion for uncertainty assessment. The overall average COV for all
parameters was reduced by roughly 33%, whereas the reduction for
each parameter varies. More specifically, the COV of the decomposition
rate coefficients for A-W-E-N-H–N-H were reduced by 30% - 39%. The
COV of mass flow rates among A-W-E-N-H 44%. Finally, the parameters
for the climate dependence of the decomposition rates and woody litter

Table 3
Simulation scenarios to estimate soil carbon stocks in BW under different storm frequencies, management strategy and IPCC climate scenario. We apply three post
storm management strategies namely business as usual (BAU), full retention (RM), and half retention (HH), respectively.

Storm Frequency Management Strategy IPCC Scenario
Scenario No Storm 10 Years 20 Years 50 Years BAU RM HH RCP26 RCP60 RCP85

1 x x
2 x x
3 x x
4 x x x
5 x x x
6 x x x
7 x x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x x
13 x x x
14 x x x
15 x x x
16 x x x
17 x x x
18 x x x
19 x x x
20 x x x
21 x x x
22 x x x
23 x x x
24 x x x
25 x x x
26 x x x
27 x x x
28 x x x
29 x x x
30 x x x
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size dependence decreased as well, by 33%–37% in relation to the COV
value.

The trace plots for all 24 parameters converged after the MCMC was
run with a chain length of 105. An example is indicated in Fig. 5
showing the fact that none of these trace plots tends to explore a new
parameter space. The posterior marginal probability distributions of the
YassoBW parameters were plotted as a histogram along with the MCMC
trace at the right side of the histogram (Fig. 5). Similar patterns are
identified for all 24 parameters (see supplementary material, section 6).
These histograms show sharply peaked distributions, which in return
prove again the reduction in posterior uncertainties of the parameter
values. Although the NFSI measurements might have measurement
errors, they still contain sufficient information to restrain the un-
certainty of predictive power, which is exactly the purpose of Bayesian
calibration. Most of these marginal distributions could be fitted with
normal distributions. The joint posterior distribution was therefore re-
garded as a multivariate normal distribution. In the next section, the 40
parameter sets were randomly generated from this multivariate normal
distribution. These 40 parameter sets were used for the YassoBW pro-
jection to account for the effect of parameter uncertainties on the
YassoBW outcomes.

3.2. Validation of YassoBW

The initial state of carbon stock at the beginning of model run was
the real measurements from NFSI1, broken down into AWENH com-
ponents for non-woody litter and woody litter. In this regard, the
AWENH proportion was assumed to be the same as it is in the equili-
brium state from YassoBW initialization results. The litter input varied
at each sampling site, but was kept constant over the simulation years
for validation. YassoBW was run at each site for the length of time
difference between NFSI1 and NFSI2. This means YassoBW was not run
for the same number of years for all sites. Rather, each site had its own
individual simulation length, ranging from 5 to 18 years, and ran with
both the annually changing climatic data and mean climate data.

YassoBW was run at each site for the duration of the time difference
between NFSI1 and NFSI2 and was applied to project the soil carbon

stocks at 183 NFSI sites within the six growth regions (Fig. 1). Ac-
cording to the measurements of NFSI up to the topmost 60 cm mineral
soil in the 280 re-sampled sites, the total SOC has been reduced by
16.9% on average from NFSI1 to NFSI2. The mean of total SOC was
108.0 t/ha in NFSI1 and 89.8 t/ha in NFSI2, with a standard deviation
of 160.1 t/ha and 64.0 t/ha, respectively. When the extreme values with
higher than 100% standard deviation in NFSI1 were ignored, its mean
value and standard deviation became 99.2 t/ha and 36.8 t/ha. Both
humus horizon and mineral soil experienced carbon stock losses. The
humus horizon was reduced by 4.7 t/ha and the mineral by 13.5 t/ha on
average between the two soil surveys. This indicates that mineral soil
played a more important role in the carbon stock reduction in absolute
quantity. As shown in Table 5, the soil organic carbon stock was re-
duced from 16.0 t/ha to 11.3 t/ha when only Humus horizon was taken
into account. Among the 280 re-measured sites, 65 of which experi-
enced carbon stock increases in humus horizon while the rest 215 sites
suffered from decline. This contributed to the 29.4% overall loss of
carbon stock in the humus horizon. When the top 10 cm mineral soil
was included, 83 sites showed increases in carbon stock. However, the
total SOC also decreased by 7.5 t/ha on average. It is very noticeable
that almost 17% of SOC was lost between the two NFSIs. To conclude, it
was obvious that the forest soil carbon pool in BW was a carbon source
within the time frame of the two soil surveys.

The YassoBW run with annual climate data predicted a carbon stock
at the end of NFSI2 95.0 t/ha, which was averaged over 183 sites. When
the time difference between the two NFSIs was taken into account, the
mean carbon stock of the selected 183 sites was 97.0 t/ha (Fig. 6). On
the other hand, when the overall mean climate was applied in YassoBW,
the soil carbon stock was predicted to be 94.3 t/ha and 96.5 t/ha at the
end of NFSI2 and within the time difference between two NFSIs, re-
spectively. Although the temporal mean YassoBW output between the
two NFSIs is slightly higher than the YassoBW output at the last year of
model run, both of them fall into the range of the mean of measured
data by NFSI1 and NFSI2. Moreover, the YassoBW model output shows
the same tendency of carbon loss as measured carbon stock regardless
of which climate data was used. The reduction magnitude predicted by
YassoBW (from 100.3 t/ha to 95.0 or 94.3 t/ha) was not so large as
measured in NFSIs (from 100.3 t/ha to 91.3 t/ha). This might be at-
tributed to some extreme natural disturbance in forests in BW between
the two NFSIs, like “Vivian & Wiebke” storm in 1990 and “Lothar”
storm in 1999. However, the YassoBW predictions at the year of NFSI2
were within the 95% confidence interval (86.6–96.0 t/ha) of the mea-
sured carbon stock in NFSI2, no matter which climatic data was used.
Overall, YassoBW is well calibrated to predict the average soil carbon
evolution over time using the soil carbon stock measurements. The
results from YassoBW simulation showed an annual carbon loss rate of
-0.4 ± 0.2 t/ha per year, which is a lower carbon source than it was as
measured, however, both measurements and simulations showcased the
trend of carbon reduction over time (NSFI1 to NSFI2) in forest soils in
BW (Fig. 6). The measured annual carbon stocks varied among all these
sites, with the highest annual accumulation of 7.5 t/ha and the largest
annual loss of 8.0 t/ha except one extreme decline site. The annual
carbon stock change simulated by YassoBW was also within the lower
and upper limits of the measured changes. Apart from the comparison
of the average of all NFSI sites, the YassoBW prediction at the year of
NFSI2 at each site was also in line with the measurements of NFSI2
(Fig. 7), where even the extreme observations in NFSI2 were very well
represented by the YassoBW estimate.

3.3. Modelling results

3.3.1. Litter input
The basis of litter input is assumed to be the litter input in the year

2000 at different sites (183 sites), which is the starting year of the
YassoBW projection before any storm happens. As indicated in Fig. 8,
non-woody litter input is obviously higher than woody litter, regardless

Table 4
Mean of posterior parameter values of YassoBW and their 95% confidence in-
tervals.

Parameter Value Confidence
Interval

Unit Interpretation

a_1 −0.7283 1.79E-04 a−1 Decomposition of A
a_2 −5.8961 1.48E-03 a−1 Decomposition of W
a_3 −0.2861 7.99 E-05 a−1 Decomposition of E
a_4 −0.0317 1.11 E-05 a−1 Decomposition of N
p_1 0.4840 9.01 E-05 – Mass flow rate, W to A
p_2 0.0299 1.10 E-04 – Mass flow rate, E to A
p_3 0.8398 3.01 E-04 – Mass flow rate, N to A
p_4 0.9857 3.91 E-05 – Mass flow rate, A to W
p_5 0.0167 6.47 E-05 – Mass flow rate, E to W
p_6 0.0541 1.86 E-04 – Mass flow rate, N to W
p_7 0.0008 2.98 E-06 – Mass flow rate, A to E
p_8 0.0008 2.82 E-06 – Mass flow rate, W to E
p_9 0.0680 2.30 E-04 – Mass flow rate, N to E
p_10 0.0021 8.55 E-06 – Mass flow rate, A to N
p_11 0.0150 2.03 E-05 – Mass flow rate, W to N
p_12 0.9357 1.42 E-04 – Mass flow rate, E to N
b_1 0.0949 3.02 E-05 °C−1 Temperature dependence
b_2 −0.0015 1.05 E-06 °C−1 Temperature dependence
y_1 −1.2075 2.35 E-04 m−1 Precipitation dependence
k_h −0.0017 4.55 E-07 a−1 Humus decomposition rate
p_h 0.0045 1.37 E-06 – Mass flow to humus
q_1 −1.7085 2.57 E-04 cm−1 First order size dependence
q_2 0.8580 1.52 E-04 cm−1 Second order size

dependence
r −0.3063 2.17 E-05 – Size dependence power
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of the involved chemical components. Due to the differing condition at
the forest sites, litter input greatly varies, except for the ethanol-so-
lubles and water-solubles from the woody litter parts. When averaged
over all the 183 NFSI sites under investigation, the quantity of A-W-E-N
solubles entering the soil were 1.3 t/ha, 0.4 t/ha, 0.2 t/ha and 0.7 t/ha
respectively for the non- woody litter parts and 0.5 t/ha, 001 t/ha,
0.01 t/ha and 0.3 t/ha respectively for the woody litter parts.

Without the influence of storm events, the annual litter input was
only driven by the above ground biomass increase, e.g. living biomass,
harvest residue and natural mortality as a fixed proportion of the above
ground biomass. These percentages differed among different IPCC cli-
mate scenarios for every growth region. Storm events have an impact
on litter input into the soil in different ways. The above ground biomass
is reduced and the magnitude of this reduction depended on the storm
severity and storm frequency. The highest increase of litter input in the
first year after a storm triggered approximately 2%, 5% and 10% in-
crease for the harvest strategies BAU, HH and RM, respectively (see
supplementary 5.4 for details about litter input with and without storm

effects).

3.3.2. Projection of soil carbon stock
Soil carbon stock was predicted at each NFSI site at the beginning,

middle and end of this century (for 2001, 2015, and 2100) as show-
cased in the Fig. 9a. This figure delivers the general tendency of soil
carbon stock changes for the whole forest in BW in the future at site
level. When the results are further averaged over the six growth re-
gions, the trend of SOC decline at regional level and thus state level is
more clearly demonstrated in the Fig. 9b and the Table 6. The forest in
the Rhine Valley region will become the least carbon stocked area in the
year 2100, even though it had more SOC than Odenwald and Neckar-
land at the beginning of the simulation. This is mainly due to the
warmer and drier climate than in other regions, which drives the
speedup of decomposition rates of A-W-E-N-H component in the soil
organic matters. The Black Forest and Black Forest Baar regions will
still hold relativly high SOC (54.7 t/ha) in 2100, which is just less than
that in the Alpine foothills region. However, this region would suffer

Fig. 5. Markov Chain Monte Carlo (MCMC) trace and posterior marginal probability distribution of two YassoBW parameters (a_1 and a_4). The green line indicates
the mean value for each parameter (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 5
Carbon stock changes between NSFI1 and NSFI2 in 280 re-measured sites.

Horizon NFSI1 (t/ha) NFSI2 (t/ha) Change in t/ha Change in %

Humus 16.0 11.3 −4.7 −29.4
Humus+ 10 cm mineral soil 47.6 40.1 −7.5 −15.8
Humus+ 60 cm mineral soil 108.0 89.8 −18.2 −16.9
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the sharpest reduction of carbon stock quantity, leading to the release
of 48 t/ha in total for the 100 year period driven by the moist soil
condition. In addition, the region of Alpine foothills always has the
highest soil carbon stock throughout the whole time period, although it
is also losing the carbon quantity year by year. This can be attributed to
milder weather conditions and the increased above ground biomass that
produces more litter input into the soil in this region.

At the state level, the forest soil carbon was reduced from 92 t/ha in
2001, to 63 t/ha in 2050 and to 52 t/ha in 2100, the reduction rate
having slowed down. This general reduction trend of SOC at the state
level is not only displayed by the total carbon quantity but also sup-
ported by the annual carbon changes (Fig. 10). The annual SOC also
decreased, but the decline range is shrinking from [-0.9, -2.3] in 2001
to [-0.1, -0.2] in 2100 based on the difference between the minimum
and maximum output from the 40 simulation runs. Fig. 10 conveys two
important pieces of information. Firstly, the SOC in forest area in BW
decreases constantly until the end of 2100 with slowing down reduction
rates. Secondly, the SOC quantity is gradually reaching an equilibrium
state. The annual soil carbon change is not varying very much after
2050 and is converging towards zero regarding all complex, non-linear
and interactive processes simulated by YasooBW. The range of annual
SOC changes is also converging according to the simulation runs done
for the proposed scenarios. This can be attributed to the trade-off effect
of climate change on biomass increase and on decomposition accel-
eration. However, the overall average values are concealing important
information, e.g., the different impact of storm frequency scenarios,
post-storm management strategy scenarios and climate change sce-
narios as well as spatial discrepancies. The detailed influence of these
different factors is analysed in the next sections.

3.3.3. Carbon stock and its annual changes under groups of scenarios
Under the “No‐Storm” scenario, the soil carbon stock changes were

mainly affected by annually varying litter input and the decomposition
of the A‐W‐E‐N‐H. However, the soil carbon projections under three
different IPCC scenarios did not differ significantly from each other,
when no impact from storm events was assumed. When the mean values
of the YassoBW parameters used, the projected SOC stocks at the end of
the simulation were reduced to 63.0 t/ha, 62.3 t/ha and 63.0 t/ha under
RCP26, RCP60 and RCP85, respectively. There was no significant dif-
ference between RCP26 and RCP85. This can be attributed to the tra-
de‐off effect between the increased above ground biomass and the ac-
celerated decomposition rates of the chemical components A‐W‐E‐N in
the litter input. Under the RCP26 scenario, the annual litter input in-
crement was lower than for RCP85, due to slower forest growth in the
latter. Consequently, carbon loss from decomposition was also lower

Fig. 6. The average of measured and simulated soil carbon stock of 280 re-
measured sampling sites at the end of NFSI2 and average carbon stock between
NFSI1 and NFSI2 using annually varying climate data for each soil survey site or
long-term mean (1989–2008) climate data for all soil survey site.

Fig. 7. Measured and simulated soil carbon stock at NFSI2 (national forest soil
inventory at 2008) sites, using annual climate and long-term mean climate data.

Fig. 8. Basis of non-woody litter (left) and woody litter (right) input affecting A-W-E-N solubles (labile compartments: Acid-solubles, Water-solubles, Ethanol-
solubles and Non-solubles).
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than for RCP85, due to lower decomposition rates. In general, the de-
composition‐caused carbon loss exceeds the biomass increase‐triggered
carbon gain and thus, the overall carbon flux is negative.

Moreover, and when the spatial variation effect is not taken into
account, the soil carbon stock keeps losing quantity at the state level.
Among the three groups of scenarios, storm frequency is the most in-
fluential factor that drives the soil carbon changes (see figures in sec-
tion 7 of Supplementary). Meanwhile, the climate and harvest strategy
caused soil carbon fluctuation along with each storm frequency sce-
nario. Under each storm frequency scenario, there are nine different

combinations of climate and harvest strategy scenarios, however the
harvesting scenarios caused only little soil carbon fluctuation within a
storm frequency scenario. At the end of the simulation, the average of
the all nine combinations were 45, 53, and 60 t/ha for the storm fre-
quencies of 10, 20 and 50 years, respectively. A storm of the severity of
“Lothar” causes more carbon loss, if it revisits the forest more fre-
quently. More specifically, a 2.5‐time increase in storm frequency
caused an additional loss of C of around 8% and a frequency five times
higher led to an additional loss of around 16% compared to the lowest
frequency. On the other hand, the annual SOC changes also displayed
an apparent drop in every 10, 20 and 50 years, due to storm‐damaged
above ground biomass, which is consistent with the storm frequency
scenarios. Similarly, when the output from nine scenario combinations
under each storm frequency scenario was averaged, the annual mean
SOC changes for the entire simulation period were ‐0.3, ‐0.4, and ‐0.5 t/
ha under the Lothar50, Lothar20 and Lothar10 scenarios, respectively
(see details on the sensitovoty of the SOC changes to underlying cli-
mate, storm, and harvest scenarios in supplementary material section
2.5). Moreover, there were substantial differences among study regions
and their annual SOC changes (See details in Supplementary 2.6 and 7).

3.3.4. Annual changes in regional soil organic carbon (SOC)
Changes in annual SOC accumulates in the 21st century and finally

reduces the total SOC at the end of century compared to the reference
year 2001. Fig. 11 shows SOC reduction quantities under three storm
and one no storm scenarios. To highlight the influence of different
storm frequencies alone on the soil organic carbon changes, the pre-
dicted changes include one fixed harvest strategy (full retention of the
destroyed timber) and one IPCC climate scenario (RCP60).The average
of the total SOC of the soil survey sites within each varied from 46.5 t/
ha in the region “Rhine Valley” to 58.5 t/ha in the region “Alpine
Foothills”, while the total SOC at each site level showed a larger range.
The more frequent storm scenario “Lothar10” decreases the total SOC to
a highest amount 39–57 ton/ha in all regions. The decline triggered by
a 10‐year or 20‐year storm frequency was 48% or 22% higher than that
of a 50‐year storm frequency, respectively. In the extreme case of the
region “Odenwald”, the reduction of a Lothar10 scenario was over 75%
higher than that of a Lothar50 scenario. Furthermore, the SOC reduc-
tion in the “Black Forest and Black Forest Baar” region was the highest,
with at least 40 t/ha within 100 years, while “Odenwald” and

Fig. 9. Soil carbon stock status at the beginning (2001, blue bar), middle (2050, brown bar) and end of the 21 st century (2100, red bar): at NFSI site level (Fig. 9a)
and at six growth regions level (Fig. 9b) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 6
Carbon stock in average for all six regions.

Region 2001 2050 2100

Rhine valley 89.1 (0.07) 56.2 (0.57) 46.5 (0.53)
Odenwald 81.7 (0.06) 61.1 (0.61) 51.6 (0.60)
BF & BF_ Baara 102.8 (0.08) 65.4 (0.59) 54.7 (0.56)
Neckarland 80.9 (0.06) 58.3 (0.58) 47.6 (0.55)
Swabian Alps 96.0 (0.06) 64.3 (3.58) 51.8 (0.52)
Alpine Foothills 103.0 (0.07) 72.1 (0.67) 58.5 (0.62)

a Stands for Black Forest. Standard errors are in the parentheses.

Fig. 10. Annual SOC changes throughout the 21 st century, averaged over all
NFSI sites and all scenarios, distinguished by the mean, minimum and max-
imum changes of 40 YassoBW simulation runs.
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“Neckarland” lost soil carbon stock at a relatively slower rate than
“Black Forest and Black Forest Baar” with below 40 t/ha. Figures are
very close for the no storm and Lothar50 scenario, however, lothar50
realizes a slightly higher total SOC reduction.

4. Discussion

4.1. Bayesian calibration of YassoBW

According to Häkkinen et al. (2011), the comparison on a plot-scale
with litter inputs produced from the measurements on these plots can
be highly uncertain. Bayesian calibration has strongly contributed to
reducing the uncertainty of YassoBW parameter values (e.g., average
coefficient of variation (COV) reduced by around 30%. van Oijen et al
(2013) assessed the six forest models using the data of Scots pine across
four European countries: Austria, Belgium, Estonia and Finland and
concluded that the parameter uncertainty in five of the six models were
reduced and the averaged reduction ranged from 1%–13% in terms of
standard deviation of marginal parameter distribution.

4.2. Storm and carbon stock change

According to the result of the present study, storm frequency is the
most influential factor determining soil carbon sequestration capacity.
It was found that with the increase in frequency of storms with the
severity of “Lothar” from 50, 20 to 10 years, the annual SOC loss was
accordingly increased by 21% and 46%. However, there are few studies
comparing the different impacts of various storm frequencies. A similar
study in Switzerland using the old version of the Yasso model concluded
that the increased storm frequency (from 15 to 10 years) only had a
small impact on carbon sequestration in forests on the national scale
(Thörig et al., 2005). This is probably attributed to two major reasons:
firstly, the intensity of frequency increase in the present study was
much higher than that assumed in the Swiss study; secondly, an ex-
treme devastating storm “Lothar” was taken as the reference storm

event, which caused more damages to BW than the storm damages to
the Switzerland at national level.

4.3. Effects of management on carbon stock change

Different post-storm harvest strategies affect the soil carbon pro-
jection by extra litter input induced by storms. Based on the forest
practice in BW, the business-as-usual (BAU) scenario brings least extra
litter input into the soil, followed by the “half retention” (HH) scenario,
and the “full retention” (RM) scenario introduces the most extra litter
input. Accordingly, the projected soil carbon stock under the three
scenarios followed the same order, but the absolute differences between
the three harvest strategies were not significant. The largest difference
in annual SOC losses between the BAU and RM scenario was only
0.005 t/ha per year (for details see section 3.2.3.3). This is in agreement
with the finding of the study by Thürig et al. (2005), which stated that
the post-storm harvest strategy was distinguished as “clearing” (com-
parable to BAU scenario in my study) and “no-clearing” (comparable to
RM scenario in my study), and concluded that the “no-clearing” sce-
nario produced only a slightly more positive carbon budget than the
“clearing” scenario at national level. Furthermore, the overall impact of
harvesting (e.g. the biggest difference between “total retention” and
“total remove” scenario) on soil carbon change was limited to a re-
duction of -2%. This impact is much less than the finding of the study by
Nave et al. (2010). They found that a significant reduction (-8%) for
both forest floor and mineral soil resulted from forest harvesting, based
on their extensive review on 432 studies dealing with soil carbon re-
sponse to harvest in temperate forests around the world.The forest floor
was more vulnerable to harvest-induced loss (-30%) than mineral soil
with no significant change (Nave et al., 2010). In addition, if the storm-
damaged trees are not removed from the forest, the projected SOC
would be very comparable to output from “No-Storm” scenario under
the same climate scenario, as storms not only trigger extra litter input
but also destroy above ground biomass, which is the major source of
litter input at the same time. More specifically, storm-induced extra
litter input can be almost totally offset by the reduced litter input from
above ground biomass that is damaged by that storm. Interaction be-
tween the impact of disturbance on forest carbon stock and forest
management strategies (e.g., rotation period, thinning regime, and
forest structure and species composition) have widely been addressed
(Seidl et al., 2014; Le Page et al., 2013; Metsaranta et al., 2011).

4.4. Effects of climate on carbon stock change

YassoBW is more sensitive to variations in precipitation than to
variations in temperature. This result is in line with the finding by
Rantakari et al. (2012). It is more obviously illustrated by the relative
changes of SOC to climate changes. However, the decomposition rates
are affected by temperature and precipitation simultaneously. Taking
the fixed temperature and precipitation during the simulation into ac-
count, the joint turning points for temperature and precipitation shall
lie in the range of 6 °C–8 °C and 600mm – 800mm. Most regions in BW
have higher temperature and more precipitation than this range when
climate change scenarios are adopted and the YassoBW projection at
the state level indicates carbon loss in forest soil. This inference is only
based on the carbon stock projection using only climate driver alone.
Actually, YassoBW output relies not only on climate-induced decom-
position, but also annual litter inputs that are changing with climate
condition.

We fitted six climate-biomass models using retrospective tempera-
ture, precipitation and CO2 concentration data. These models have
obvious drawbacks because they do not include any dendrometric and
site condition variables as predictors. According to Tuomi et al. (2009),
the decomposition rate factor is mainly controlled by the annual mean
temperature and annual precipitation in a non-linear way. In BW, the
annual precipitation under various IPCC climate scenarios does not

Fig. 11. Total SOC reduction between 2001–2100 in t/ha applying IPCC cli-
mate scenario RCP60.
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differ strongly in the six growth regions, so that the decomposition rates
do not show large regional differences. In addition, the magnitude of
annual precipitation in BW is around 1000mm, which is much higher
than the threshold value of 550mm (Rantakari et al., 2012) that turns
forest soil from a sink to a source. This partly explains why the soil
carbon stock projections of YassoBW keep a similar decline tendency in
all growth regions in BW. Härkönen et al. (2011) pointed out that when
a process-based model is applied to estimation of carbon fluxes for a
large region, Yasso07 likely relies too much on climate data, in parti-
cular precipitation. So, it is necessary to be aware of the uncertainty of
YassoBW outputs, especially due to climate-driven changes.

Zell et al. (2009) used a mixed nonlinear decay model following a
complex exponential formula and applied not only climatic data but
also tree species and diameter as predictors to predict decay rates of
coarse woody debris. They concluded that temperature had a positive
effect on decay rate and the optimal annual precipitation for maximum
decay rate was between 1100–1300mm.

Obviously, different model structures and equations result in var-
ious degrees of climate dependence of decomposition rates. It is also
important to point out that some studies did not even include climatic
data as independent variables in their decomposition analysis, regard-
less of which type of equation was adopted, e.g. logarithmic form in
Naesset (1999), double exponential equation in Berg et al. (1991) and
sigmoidal function in Laiho and Prescott (1999). Therefore, in order to
better reflect the impact of climate on soil carbon stock changes, it is
necessary to develop a local climate dependence model for the analysis
of decomposition rates or to modify the above formula structure and
compare it with other decomposition formulas, which is beyond the
research scope of this study, but could be an interesting topic in future
studies.

Based on this simulation, the general trend of the CO2 effect on
biomass development is clearly visible, but it is not straightforward how
this is going to affect the carbon sequestration capacity, as the real
forest soil carbon stock changes rely heavily on storm events, decom-
position rates and harvest strategies. On the other hand, it is widely
studied that the CO2 fertilization effect might not be true for all regions
and all tree species (Reyer et al., 2010). The positive response will
probably be outweighed by negative effects caused by extreme climate
and disturbances, e.g. storm, drought, fire and insect risks (Hanewinkel
et al., 2014; Reyer et al., 2017), especially in southern and Eastern
Europe (Lindner et al., 2010). Therefore, this study adopted a relatively
conservative estimation (through logarithm represented in sections
2.4.2 and 2.4.4) of biomass increase due to increasing CO2 concentra-
tion.

4.5. Soil carbon

To date, very few studies have addressed the issue of forest soil
carbon stock change in each individual compartment A-W-E-N-H re-
ferring to acid-solubles (A), water solubles (W), Eethanol solubles (E),
non-solubles (N), and one recalcitrant humus compartment (H) in
YassoBW. We found that the largest reduction from the loss in non-
solubles A-W-E-N-H were produced under the selected RCP60 climate
scenario in BW. Under a similar scenario in Slovenia, Kobal et al. (2015)
also found that non-solubles contributed most to the total soil carbon
reduction in their case study region, but at a much lower magnitude
than our result. This can be partly attributed to the inclusion of storm
damage in our simulation. On the other hand, the relative decrease was
found to be similar among the compartments A-W-E-N with around
60% decline for the 100 years of simulation in our study, while in the
Kobal et al. (2015) study, the relative decrease of the four compart-
ments varied under different climate scenarios with an average of
around 30%. Moreover, both studies concluded that humus (H) com-
partment was the most recalcitrant component in the long-term simu-
lation.

The reduction in soil organic carbon (SOC) is the result of many

complex and interactive factors. Historically, it can be attributed to
both anthropogenic reasons, e.g. forest practice, and natural influences,
e.g. climatic situation in BW. Increase in temperature and precipitation
are the most influential drivers of carbon loss. Along with temperature
and precipitation increases, decomposition rates of all carbon com-
partments rose as well, which lead to a release of carbon from the soil to
the atmosphere. Apart from that, changes in forest management also
contributed to soil carbon loss. First of all, the change of the silvi-
cultural strategy, with the transformation from coniferous to broad-
leaved forests, which grow slower and have lower turnover rates, led to
reduced litter inputs. Second, forest stands are less dense than in the
past, due to different thinning regimes (mostly thinning from below in
the recent years). Both of the forest practices contributed to decreased
litter inputs. In addition, according to the crown condition survey in BW
(Meining et al., 2007), a reduction of the foliage was observed, that
may have also lead to reduced litter input. YassoBW projected a de-
clining tendency until 2100. However, YassoBW might systematically
underestimate the SOC in BW, because understory vegetation and its
contribution to litter input was not included in the study and soil
carbon pools were restricted to the humus horizon and the top most
60 cm of the mineral soil. Moreover, YassoBW does not simulate carbon
movement in soil layers e.g. natural movement of carbon to down
profile or due to different ploughing depths.

5. Conclusion

In general, we were able to successfully calibrate and validate the
model YassoBW to the forest conditions in Southwest Germany and use
it to predict soil carbon stocks and stock changes on the regional level.
We recognized Bayesian calibration as a reliable and practical approach
to calibrate a complex process-based dynamic model, like YassoBW. It
can significantly reduce the uncertainty in parameter values, especially
when the locally measured data that are used for the calibration have
small measurement errors. Although the uncertainty in YassoBW
parameter values have been further reduced by applying Bayesian ca-
libration approach, this is still one of major factors contributing to the
uncertainty in YassoBW projections. Apart from that, YassoBW projec-
tions are also associated with uncertainties in two additional aspects:
decomposition rates and litter input. In order to compare the accuracy
of YassoBW projections, it is recommended to simulate the soil carbon
dynamic in BW using other soil carbon models through the method of
Bayesian Model Comparison in future studies.

According to the YassoBW simulation, soil carbon will continue to
decline until the end of this century, no matter which combination of
scenarios will be used. This general decline tendency is mainly driven
by fast decomposition rates of chemical components A-W-E-N-H in the
soil. Based on the decomposition formula applied in this study, the
carbon loss due to decomposition cannot be compensated by litter input
from biomass growth and thus leads to a reduction in soil organic
carbon. Based on the analysis of climate dependency of YassoBW, it can
be concluded that forest soil in BW will be a carbon source for quite a
long term under current climate conditions using the present decom-
position equation, although at the NFSI sampling site level, some sites
also accumulate soil carbon due to large litter input and lower tem-
perature and less precipitation.

Assessing the impact of three scenario groups of IPCC climate, storm
frequency and harvest strategy on soil carbon stocks, storm frequency
was found to be the most influential factor determining soil carbon
sequestration capacity. Second of all, post-storm harvest strategy is the
least important determinant. The overall impact of harvesting (e.g. the
biggest difference between “total retention” and “total remove” sce-
nario) on soil carbon change was limited to a reduction of -2%. This
implies that future policies shall focus on the integrated impact of forest
management strategies on soil carbon changes, in order to mitigate the
overall impact of storm events on forest carbon budget. Third, IPCC
climate scenarios are more influential than harvest strategies and less
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influential than storm frequencies. Most carbon loss is observed in
RCP85 scenario, whereas the least in the RCP26 scenario.

The largest reduction of forest soil carbon stock in BW originated
from the loss in non-solubles (N), followed by acid-solubles (A), humus
(H), water-solubles (W) and ethanol-solubles (E). Moreover, the re-
duction of carbon stock in each compartment is influenced by several
factors, e.g., initial carbon status, decomposition rate, mass flows be-
tween compartments and annual supply from litter input. Moreover,
YassoBW is more sensitive to climate variables than to litter input.
Furthermore, annually changing precipitation is a more sensitive vari-
able than annual temperature. The total forest carbon budget is affected
by integrated impacts of both biomass carbon and soil carbon, and the
soil carbon stock change is more influential in determining the total
forest carbon budget than the biomass carbon change in BW. The storm
event has a larger impact on biomass carbon than the soil carbon pool,
since different post-storm harvest scenarios do not significantly change
the soil carbon stocks. Moreover, the occurrence of storm events will
not change the situation of forest as a negative carbon budget, but will
further enlarge the reduction in forest carbon stocks to different de-
grees, according to different storm frequency and climate scenarios.
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