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 The gold colloid is a solution of colloidal nanoparticles in gold in its liquid state. These 

particles are usually red in color. Due to their versatile properties in the field of optics, 

electronics, and molecular recognition, they are subjected to immense research. They are a 

preferred choice in technologies like electron microscopy, electronics, nanotechnology, 

material sciences, and health care. In many different types of colloidal gold synthesis, the 

combination of gold nanoparticles with certain ligands can increase its potent and usage in 

different fields. They are capable of delivering useful drugs in difficult areas like the brain, 

retina, tumors, and intracellular organelles. However, their efficiency highly depends on their 

size and shape. They are also under study as carriers for serious drugs like Paclitaxel. Gold 

nanoparticles are also used in drugs used for the treatment of cancer. However, if consumed 

in unprescribed amounts have proved to be toxic to the body. Different sizes of gold particles 

have shown buildup in parts of the brain, stomach, pancreas, kidneys, liver and blood. Gold 

nanorods have shown properties for being used as photothermal agent’s in vivo applications. 

Gold nanoparticles are modified into nanorods, nanoshells, nanocages, etc. Gold 

nanoparticles are also used in on-site detection of harmful gases like H2S. 

Please cite this article in press as Gaurav M. Prajapati et al. Gold Nanopraticles in Science, Technology and Health Care: A 

Review. Indo American Journal of Pharmaceutical Research.2020:10(05). 
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INTRODUCTION 

Nanotechnology impacts substances in the range of 10
-9

 meters, including biotechnology, material sciences, computer 

sciences, medicines, pharmacy, and engineering
 [1]

. Nanoparticles are available in two forms, namely crystalline and amorphous forms 

which have received demand all over the world for their beneficiary effects in fields of commercial applications, and thus have 

attracted many types of researches for studying its development and utility in various technologies
 [2-4]

. Korea has devoted around 

trillions of their currency in the research of nanotechnology and has received high demands for creating research centers, with 

international facilities
 [5]

. Many nanoparticles applications were developed which had created anticipation in different fields, which 

were related to the medical field in general, with fields of health care for their unique properties
 [1]

. Nanotechnology came into 

existence in the 9th century, by the Mesopotamian people used for giving shine to their metal pots. In 1857, Michael Faraday 

discovered ruby gold nanoparticles (Au-NPs) which laid the foundation for new age nanotechnology
 [6-8]

. 40 years later, Zsigmondy 

included his technology with that of Faradays and created ‘seed-mediated method’, which is still used today for the synthesis of 

various NPs. He also made an invention of ultra-microscope for differentiating the structure, size, shape of NPs
 [9, 10]

. Svedberg, also 

invented ultracentrifuge, and showcased the motion of macromolecules was related to their shape and size
 [11-13]

. At the same time in 

the past, G.Mie tried to experiment on the colors exhibited by gold (Au) colloids
 [14]

. Also, the usage of Au-NPs increased into 

different biomedical fields, such as biosensors, clinical chemistry, immunoassays, genomics, photothermolysis of cancer cells, 

microorganism’s prediction and control, drug delivery, optical imaging, and monitoring biological cells by the means of exploiting 

resonance scattering
 [15-24]

. Biomedical has also adapted NPs in various processes. In the past few years, the main focus was on 

exploring their unknown properties and application in health care. Engineered NPs were used as a stage for the production of targeted 

drug delivery. Various researches on their physical, chemical, and optical properties were undertaken. Conjugates of these with 

several different drugs created curiosity towards their vast organic range of biological molecules, low toxic levels, and strong 

absorption
 [25-31]

. Au-NPs played a major role in carrying drugs and vaccines to the required cells and tissues. The involvement of 

drugs with biomolecules was achieved by modifying Au-NPs. High concentrations of drugs with NPs were required to increase the 

effectiveness of the drug
 [32]

. With the help of its physical and chemical properties, the release of drugs could be regulated
 [33-34]

. 

Presently, the attention is placed on the structure of the divergent synthesis of Au-NPs, exemplary in nanospheres, nanorods, silica-

coated Au nanoshells, nanocubes, nanorice, nanostars 
[35-38]

. Beginning with the ancient Chinese medicines to the recent medicines, Au 

has been used primitively in health care. Au treats rheumatoid arthritis with a not yet know mechanism. Serious researches on Au-NPs 

are undertaken by scientists for studying its unique properties, low levels of toxicity and effects on the human system. 

 

 
 

Figure 1: Structure of Gold Nano particles
 [92]

. 

 

HISTORY 

Michael Faraday was surprised to see the ruby color shown by the Au colloids. He was primarily focused on its interaction 

with light metal particles, but later developed interest in different factors like formation, properties, and nature of Au. The modern 

colloidal chemistry started from these studies, which led to further developments in nanoscience and nanotechnology. Faraday studied 

ruby glass from its use in the production of glass windows as a pigment. Since, the seventeenth century, Purple of Cassius was made 

by a combination of tin into Au which was then utilized in coloring glass and as paints
 [39]

. He proved that Au-chloride undergoes 

reduction upon heating, with side reactions with several reagents, like organic compounds and phosphorus. Faraday highlighted the 

fact that metallic Au was dispersed evenly in ruby glass and fluids. When the particles are smaller than the wavelength of the incident 

light, the particles of different sizes show different colors rather than their real color
 [8]

. Approximately 100 years later, the Ruby 

colored colloids were stabilized and their sizes were recorded to be in ranges between 2-6 nm as from an electron microscope. 
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Zsigmondy also developed an interest in colloids and began researching for the color and opacity of the ruby glass. As 

Faraday first produced Au colloids and other derivatives of ruby glass through reducing them, Zsigmondy found different sources to 

produce Au colloids. Later, an Au sol was considered as his major works. This important invention was the foundation for ultra-

microscopy. Also, he determined the exact size of the particles and thus found several different and unique properties of these particles 

based on their sizes, motion with NPs. The light passage through hydrosol of Au could give an understanding of the motion of the 

particles. Therefore, Zsigmondy studied the changes in coloration of Au by adding citations, to obtain the effects from them. By the 

use of ultra-microscope, he proved that the reason for changes in colors can be attributed to the coagulated particles in various sizes 

and the action of protective agents that stop the coagulation. He developed useful machinery to perform ultrafiltration, for research on 

colloidal systems. Another scientist Theodor Svedberg also developed a curiosity in properties of colloidal sols, and hence he built an 

ultracentrifuge which could generate forces over 100,000 times of gravity. He developed his first low-speed ultracentrifuge and later a 

high-speed ultracentrifuge to find the shape and size of the protein particles. He also developed another way to find the molecular 

weight of proteins, with hemoglobin of about 67,000. Ostwald also played a key role in the synthesis of Au sols by experimental and 

theoretical ways. According to him, dipping your finger into the solution causes a reduction of organic substances present in the 

solution and in the skin, and the finger is thus stained bluish violet due to the formation of Au colloids 
[40-47]

. 

 

NANOSPHERES 

The alternative name for Au colloids is Au nanoparticles. The radius varies from 2 nm to 100 nm, which could be 

synthesized by reduction of aqueous HAuCl4 solution by adding various reducing agents in different quantities and conditions. The 

most commonly used reducing agent citrate is produced by monodisperse Au nanospheres
 [48, 49]

. The amount of citrate was inversely 

proportional to the yield of nanospheres. The size could also be varied by modulating citrate and Au. The only disadvantage of this 

method was the low yield of Au nanospheres and the prohibited use of water as a solvent. Faraday in 1857, produced thermal stable 

Au nanospheres with a reduction in their dispersity by using the two-phase method of synthesis of nanospheres
 [50, 51]

. The 

monodispersed nanospheres were produced by adding reactants at a faster rate in the cooling solution. 

Therefore, there were many different methods for synthesizing nanospheres by adding reducing agents or ligands
 [52-54]

. Also, 

dendrimers were utilized as a stabilizer in the synthesis of Au nanospheres
 [55-60]

. The shape size of these nanospheres depended on 

factors like the concentration of reactant, HAuCl4, and blocked co-polymers. The absorption peaks of the nanospheres were about 510 

nm to 550 nm. As their size increased, the absorption peak gained a longer wavelength. Several types of research tried to grow these 

nanospheres into human cells
 [61]

. 

 

NANORODS 

Many technologies were inspected for the synthesis of the Au nanorods. It was performed using the template method, based 

on the electrochemical deposition of Au in the pores of nonporous polycarbonate or alumina template membrane
 [62, 63]

. Its diameter 

can be estimated by the diameter of the pores of the membrane. The length of the nanorod is controlled by the amount of deposition of 

Au in the membrane. Also, a major disadvantage of this technique is the low yield of Au nanorods, as only a single layer could be 

obtained. An electrochemical synthetic method for producing Au nanorods was recorded, where its length could be determined, which 

affects the ratio of long diameter over a shorter one
 [64-66]

. The most commonly used method of synthesis of Au nanorods is the "Seed-

mediated Synthesis", as it gave a higher ratio when compared with other methods
 [67, 68]

. Au seed solution was also made in the 

presence of strong reducing agent NaBH4 for reducing Au chloride. This seed acts as a site for nucleation for the nanorods. By 

regulation of Au seed solution with respect to Au precursor, the ratio of Au nanorods could be controlled. Also, if AgNO3 is added, it 

increases the yield of nanorods exponentially
 [69, 70]

. 

 

NANOSHELLS 

Nanoshells also mentioned as a type of spherical nanoparticle with dielectric core, with a layer of thin metallic shell mostly 

Au
 [71]

. They include a quasi-particle, named Plasmon, manufactured from collective excitation of quantum plasma oscillation, where 

the electrons simultaneously oscillate with respect to all ions. This continuous oscillation referred to as Plasmon hybridization, is 

related to the hybridization of outer and inner shells, produces higher or lower energy levels. The lower level combines with the 

incident ray, while the higher level could not bind and become weak against the light. Therefore, the interactions of Plasmon 

hybridization on the thin shell layers would have more strength, and the shell thickness, overall particle radius, and all others 

combined together could find the wavelength of the incident light
[72]

. Due to the high reflective optical and chemical properties of the 

nanoshells, it is utilized in biomedical optical imaging, fluorescence enhancement of molecular emitters, in various therapies, surface 

enhancement, Raman spectroscopy, and surface-enhanced infrared absorption spectroscopy. Optical imaging uses interference from 

the deflected emitted light from a laser or an infrared source in studying their structure, texture, anatomic and chemical properties. In 

the near-infrared region between 700-900 nm, absorbance levels of bimolecular reached minimum level, giving a clear window for 

optical imaging
 [73]

. Au nanoshells could also be processed by changing the composition and measurement of the layers, which could 

be made with Surface Plasmon Resonance (SPR) with peaks between visible and NIR regions
 [74]

. By altering the core size ratio of its 

shell thickness, the SPR peak of Au nanoshells could be set for a required composition. By layering Au nanoshells with silica or 

polymer beads, Au nanoshells may be processed with SPR in the NIR regions
 [75]

. The growth of silica cores was done by the 

reduction of Tetraethyl orthosilicate in ethanol, under the Stober process. A layer of Au solution by using the seed-mediated method 

was formed on the silica NPs. Other trials showcased the attachment process of small Au nanospheres to the core made of silica of 

diameter 2-4nm. Amino terminated saline was used until the seed particle integrated into one layer of the shell by the reduction of Au
 

[76]
. The diameter of the silica core could help calculate the diameter of the Au nanoshells.  
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Its thickness could be controlled by monitoring the amount of Au deposited on the core. Synthesis of Au nanoshells was 

performed by the Situ formation of Au nanoparticle from sensitive core-shell particles. The microgel can act as a core, which would 

diminish the particle aggregation and help in modulating the thickness of Au nanoshells from the plating of Au. We could produce 

cores with a relatively small radius, approximately 40 nm, with a narrow size distribution unlike silica
 [77]

. 

 

NANOCAGES 

In the year 2006, Au nanocages, made of controllable pores on its surface, synthesized in the galvanic replacement reaction 

of truncated silver nanocubes and aqueous HAuCl4 were produced. Also, it was noted that the generated morphology of the Silver 

nanostructures could be monitored by Pylol reduction. In Pylol reduction, ethylene glycol made AgNo3 undergo reduction to produce 

silver atoms, and further reduction resulted in nanocrystals or seeds. Required nanostructures were obtained through the use of 

excessive silver atoms and by modulating the silver seed crystalline structure by polyvinylpyrrolidone, which had the potential of 

selective binding on the surface
 [78]

. These nanostructures were used as a sacrificial template, used for the metamorphosis of Au into an 

internal hollow space through galvanic replacement
 [78, 79]

. By adjustment in the molar ratios of silver to HAuCl4, the various 

dimensions including the thickness of the produced Au nanocages could be jurisdiction. Au nanocages showcased major advantages 

like: 

i) Their surface Plasmon Resonance peaks could be altered by changing the ratios between Au nanocubes and HAuCl4. This could 

also complete the entire spectral region from 500 to 1200nm. 

ii) It is controllable in the number of truncated corners and void size; their absorption coefficient could be changed. 

iii) The Au nanocages could show the resonance peaks in the near IR region with a very small size. 

iv) Surface specifications could be changed and thus could be used in different biomedical applications
 [79]

. 

 

PHARMCACOKINECTIC AND BIO-DISTRIBUTION 

Chemotherapeutic drugs including Au NPs, is highly effective in overcoming certain biological barriers that are removed by 

the help of nanoparticle design. In almost all kinds of drug delivery systems, clearance by RES is commonly used, happens due to 

opsonization and is reliable on its size, and can be circumvented via the AuNPs coating with hydrophilic polymer with a decrease in 

the size of the nanoparticles. Amplified angiogenesis, a trait of tumors, increases the fluid pressure, preventing the nanoparticles to 

affect the tumor interstitium. This shortcoming can be overcome by the utilization of passive accumulation of AuNPs by extravasation 

of leaky tumor vasculature. The site of action of the drug delivery is very important in nanoparticle drug delivery systems and is done 

by incorporating AuNPs with tumor-targeting ligands, and therapeutic molecules. In the process of designing AuNPs as a drug 

delivery vector, all the above-mentioned problems need to be overcome, by investigation of pharmacokinetic and different targeting 

strategies for different nanoparticle designs. 

Generally, the size of a nanoparticle delivery system is between 10 to 100 nm. Within this range, there comes a range of 

pharmacokinetics and bio-distribution standards. There are many types of size-dependent blood half-life and bio-distribution 

specifications for spherical and rod-shaped AuNPs. De Jong and his co-workers detected AuNPs, in plasma mass spectrometry in the 

blood, liver, spleen, lung, kidney, testis, thymus, heart, brain after injecting 10,50,100 and 250 nm spherical AuNPs in male rats. Most 

amounts of AuNPs were detected in the blood, liver, and spleen and least in the lungs, kidney, testis, thymus, heart, and in the brain, 

after 24 hours passed from the time the injection was given. AuNPs of 10 nm worked mostly through every different organ, with the 

highest concentration in the liver and then in the spleen. After a day of the ejection, the percentage of dosage of Au was detected to be 

46, 21, 44, and 31% in the liver for 10, 50,100, and 250 nm AuNPs respectively, in the spleen
 [80]

. 

 

USES OF AuNPs IN CANCER  

Standard methods for cancer treatment include surgery, chemotherapy, and radiation therapy. Utilizing their unique 

properties, most research of gold nanoparticles-based cancer treatment use photothermal therapy for targeting the cancer cells or tumor 

tissue, which is useful in the clinical trials. When radiation of focused laser pulses having a suitable wavelengths target, the gold 

nanospheres, nanorods, nanoshells and nanocages could kill the bacteria ( Zharov et al) and cancer cells( Loo et al, Huang et al, Chen 

et al, Tong et al). It was estimated that a temperature of around 70-80°C could be obtained through light absorption by the gold 

nanoparticles (Huang et al) with about 150 antibodies conjugated to a nanoshell through a bifunctional PEG linker (Lowery et al). A 

common observation in this process is that it targets either EGFR or human epidermal growth factor receptor 2, mainly due to the 

availability of monoclonal antibodies (approved by the Food and Drug Administration for cancer therapy).  

As the absorbance wavelength (in the visible region) of small gold nanospheres is not efficient in vivo application, the 

assembly of gold nanoclusters on the membrane of the cell was studied (Zharov et al). The study showed that the formation of 

nanoclusters resulted in increment in local absorption and red shifting when compared to cells without nanoclusters. Several 

advancements in laser-induced cancer cell killing were noted using a NIR laser. Gold nanoshells are comparatively larger (100-300nm 

in diameter) for SPR peaks in the NIR region. A similar study suggests that human breast cancer cells when incubated with gold 

nanoshells, undergo photo thermal-induced morbidity upon exposure to NIR light. In vivo testing, it was noted that exposure to NIR 

light in less amount to solid tumors treated with gold nanoshells gave a significant temperature increment, which was capable of 

producing irreversible tissue damage, while those not treated with gold nanoshells showed much lower temperature on exposure to 

NIR light and had no damage in the tissues
[81]

. 
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APPLICATIONS OF AuNPs 

Several reports suggest the versatility of AuNPs as a lifesaving drug delivery agent. The drug delivery system became very 

efficient in transferring the drug on the site without any safety issues. The most common routes being through the skin, nasal, mouth, 

ocular, rectal, buccal, and inhalation. Different biomolecules like proteins, antibodies, peptides, genes, and vaccinations also failed in 

delivering the drugs through the above-mentioned methods due to the organism’s potential enzymatic degradation. These 

biomolecules were not absorbed in the circulation easily due to their molecular sizes. These could have been the major reasons for 

difficulty for protein and peptide-based drugs when it comes to delivering them with nanoneedle array. Thus, several different drugs 

were synthesized to increase the reproducibility, reliability, sensitivity, and specificity of the targeted areas. The following few 

methods are listed below. 

A thin film drug delivery method rapidly dissolves hydrophilic polymer, which is easily absorbed when in contact with the 

buccal cavity. This self-micro emulsifying drug delivery system uses microemulsion for a special Ouzo effect. The neural drug 

delivery system targeted the specific injured nervous system. The acoustic targeted drug delivery is dependent on ultrasound for the 

transfer of energized molecules into the tissues. Drug delivery systems became a field of great study in nanomedicines. Thus, Au 

colloids became the preferred choice in the field of nanomedicines and drug delivery. The reason behind using AuNPs is to improve 

the targeted drug delivery, mainly in various cancer therapies. An excellent anticancer agent, Tumor necrosis factor-alpha (TNF- α) a 

cytokine, had toxic effects against cancer cells. A nanoparticle drug delivery system was formed with TNF- α combined with PEG-

coated Au nanoparticle, which improved the damage to the tumor cells with a decreased toxicity from TNF- α
 [82-86]

. From the above 

information, the combination of temperature and TNF- α PEG-coated Au nanoparticle enhanced the results when compared with TNF- 

α alone. TNF-α combined along with PEG-coated Au nanoparticle, given a proper dose and on time, prevents tumor growth. It also 

inhibited blood flow to the tumor cells thus, killing them by anti-angiogenesis approach. Even though the particles were monitored, no 

signs of accumulation in the organs were recorded. Another Au based formulation, named as CYT-6091, was created and distributed 

into the bloodstream, for delivering TNF-α into solid tumors9. Methotrexate (MTX), which inhibits dihydrofolate reductase, was used 

in chemotherapy for treating various types of cancer. A hybrid product of MTX-Au nanoparticle was produced to test its antitumor 

and toxic effects in vitro and in vivo. In a comprehensive study, MTX-Au hybrid inhibited tumor growth, with an equal amount of free 

MTX and no antitumor effect. Also, Au nanoshells with encapsulated horseradish peroxide (HRP) enzyme in the form of hydrogel in a 

hollow space were synthesized by soft chemical method for photothermal modulation of drug delivery. Au nanoshells permitted HRP 

to remain active in the hollow AuNPs. The intracellular uptake of AuNPs was found to be relying on their physical measurements, for 

example their size and shape, specifically when AuNPs were combined with ligands. Hence, this combination between the ligand and 

AuNPs had to be made stable and more reliable. As thiolated DNA strands could have been combined onto AuNPs via an Au-S bond, 

the femtosecond pulse excitation of AuNPs at 400nm wavelength could easily destroy the Au-S bond by an increment in the 

temperature of the particles absorbing the energy
 [87-91] 

 

Objectives: 

AuNPs are largely applicable in the health care sector. It is used in manufacturing of drugs used to treat carcinoma cells. It is 

considered to possess an essential drug delivery system. It is capable of delivering drugs at the most difficult of sites, which is often 

difficult by the other delivery systems like vaccinations. 

 

CONCLUSION 

The systemic review suggests that Au-NPS are an exclusive component in medical applications. The ease with which Au-

NPS work provides it a huge platform in nanobiological products like oligonucleotides, antibodies, and proteins. Au colloids can be 

thoroughly dried and redispersed in any solution without any side-effects making them remarkable precursors for various 

functionalities. Au-NPs acts as an electrophile in the photoinduced electron transfer process. Au-NPs conjugated with ligands helps in 

controlling the reaction time, feed ratio, for various synergistic applications. Colloidal gold particles have widely been utilized in 

different fields. Au nanoparticles possess versatility and can be used in a broad range of applications, due to their electronic and 

physical properties and well-developed synthetic procedures. Many such features have made gold nanoparticles a preferred choice for 

various scientific researches, on nanomaterials. It also has various applications in health care and industrial products. 
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