
The Collective Knowledge project

Grigori Fursin, the founder of cKnowledge.org and cKnowledge.io

or our community attempt to bring order to AI/ML/systems chaos

connecting researchers and practitioners
to make it easier to reproduce the SOTA ML/AI/systems research

and deploy efficient systems in production

Efficient AI/ML system must be
very carefully co-designed

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

Data sets

Hardware Algorithms

Libraries

Models

for various form factors
(IoT, mobile, data centers)

while trading off multiple constraints
(accuracy, speed, energy, size, costs)

and maximizing ROI
(faster time to market, R&D sustainability,

much better than all competitors)

Many groups are working to co-design efficient AI / ML / SW / HW stacks

Helping
the society

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

Numerous papers with ad-hoc code

90K+ AI / ML / SW / HW papers are published each year!

Numerous models, data sets,
benchmarks, libraries and tools

Multiple competitions
focusing mostly on accuracy

(Kaggle, DawnBench)

A few benchmarks an competitions
focusing on optimizing other metrics

besides accuracy:

LPIRC, MLPerf

Helping
the society

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

Numerous papers with ad-hoc code

90K+ AI / ML / SW / HW papers are published each year!

Numerous models, data sets,
benchmarks, libraries and tools

Helping
the society

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

Multiple competitions
focusing mostly on accuracy

(Kaggle, DawnBench)

A few benchmarks an competitions
focusing on optimizing other metrics

besides accuracy:

LPIRC, MLPerf

Can we now co-design
efficient SW/HW/ML stacks
and use them in production

to support
real-world applications?

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

The adoption of novel AI / ML techniques in production is extremely slow

Helping
the society

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

• Technological chaos: continuously
changing algorithm/model/SW/HW stack

• Non-representative / outdated training sets

• No common experimental frameworks
and established methodologies
which can adapt to this chaos

• Numerous reproducibility issues

• Very little artifact reuse in 1000+ ML papers

• Very little tech. transfer from academia
(toy examples and too many papers)

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

The adoption of novel AI / ML techniques in production is extremely slow

Helping
the society

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

• Technological chaos: continuously
changing algorithm/model/SW/HW stack

• Non-representative / outdated training sets

• No common experimental frameworks
and established methodologies
which can adapt to this chaos

• Numerous reproducibility issues

• Very little artifact reuse in 1000+ ML papers

• Very little tech. transfer from academia
(toy examples and too many papers)

• Docker, Kubernetes and VM images hide the
mess but do not solve above problems

Public outcry about reproducibility,
portability and reusability crisis

Docker
images

VM
images

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

Many great tools, data sets and models to help researchers …

Applications
• Meteorology
• Health
• Robotics
• Automotive
• Economics
• Physics
• Astronomy
• Education

Programs
• Image classification
• Object detection
• Natural Language

processing
• Text processing
• Video processing
• Personal assistant

OS
• Linux
• MacOS
• BSD
• Windows
• Android

AI/ML
frameworks

• TensorFlow
• PyTorch
• MXNet
• Caffe
• MCT (CNTK)
• Keras
• Kubeflow
• AutoML
• SageMaker
• Apache Spark

Libraries
• SciPy
• TFLite
• OpenBLAS
• MAGMA
• cuDNN
• cuFFT
• ArmNN
• CLBlast
• gemmlowp
• Boost
• HDF5
• MPI
• OpenCV
• Protobuf

Languages
• C++
• C#
• C
• Go
• PHP
• Fortran
• Java
• Python

Shells
• bash
• sh
• csh
• ksh
• Windows

shell

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot
• LaTeX
• Ipython

Build
tools

• Make
• Cmake
• SCons
• Bazel
• Gradle
• Ninja

Package
managers

• Anaconda
• Go
• Npm
• Pip
• Sbt
• dpkg
• Spack
• EasyBuild

Workload
managers
• MPI
• SLURM
• PBS
• FLUX

Databases /
experiments
• MySQL
• PostgreSQL
• MongoDB
• CouchDB
• Text files
• JSON files
• XLS files

Compilers
• LLVM
• GCC
• Intel
• PGI
• TVM
• CUDA

Hardware
• CPU
• GPU
• TPU / NN
• DSP
• FPGA
• Quantum
• Simulators
• Interconnects

Benchmarks
• SPEC
• EEMBC
• HPCG
• LINPACK
• cBench
• MLPerf

Datasets
• ImageNet
• KITTI
• COCO
• MiDataSets
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet
• AlexNet
• VGG
• ResNet
• MobileNets
• SSD
• SqueezeNet
• DeepSpeech

DevOps
tools

• Git
• Jenkins
• Docker
• Kubernetes
• Singularity

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Knowledge
sharing

• ArXiv
• ACM DL
• IEEE DL
• GitHub
• Zenodo
• FigShare
• Web pages

Web services
• GitHub
• GitLab
• BitBucket
• Travis
• JupyterHub
• Codelabs
• SageMaker

… but it’s not easy to connect them together into reproducible AI / ML workflows

Applications
• Meteorology
• Health
• Robotics
• Automotive
• Economics
• Physics
• Astronomy
• Education

Programs
• Image classification
• Object detection
• Natural Language

processing
• Text processing
• Video processing
• Personal assistant

OS
• Linux
• MacOS
• BSD
• Windows
• Android

AI/ML
frameworks

• TensorFlow
• PyTorch
• MXNet
• Caffe
• MCT (CNTK)
• Keras
• Kubeflow
• AutoML
• SageMaker
• Apache Spark

Libraries
• SciPy
• TFLite
• OpenBLAS
• MAGMA
• cuDNN
• cuFFT
• ArmNN
• CLBlast
• gemmlowp
• Boost
• HDF5
• MPI
• OpenCV
• Protobuf

Languages
• C++
• C#
• C
• Go
• PHP
• Fortran
• Java
• Python

Shells
• bash
• sh
• csh
• ksh
• Windows

shell

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot
• LaTeX
• Ipython

Build
tools

• Make
• Cmake
• SCons
• Bazel
• Gradle
• Ninja

Package
managers

• Anaconda
• Go
• Npm
• Pip
• Sbt
• dpkg
• Spack
• EasyBuild

Workload
managers
• MPI
• SLURM
• PBS
• FLUX

Databases /
experiments
• MySQL
• PostgreSQL
• MongoDB
• CouchDB
• Text files
• JSON files
• XLS files

Compilers
• LLVM
• GCC
• Intel
• PGI
• TVM
• CUDA

Hardware
• CPU
• GPU
• TPU / NN
• DSP
• FPGA
• Quantum
• Simulators
• Interconnects

Benchmarks
• SPEC
• EEMBC
• HPCG
• LINPACK
• cBench
• MLPerf

Datasets
• ImageNet
• KITTI
• COCO
• MiDataSets
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet
• AlexNet
• VGG
• ResNet
• MobileNets
• SSD
• SqueezeNet
• DeepSpeech

DevOps
tools

• Git
• Jenkins
• Docker
• Kubernetes
• Singularity

Platforms
• HPC
• Desktops
• IoT
• Mobile
• Cloud sevices

Knowledge
sharing

• ArXiv
• ACM DL
• IEEE DL
• GitHub
• Zenodo
• FigShare
• Web pages

Web services
• GitHub
• GitLab
• BitBucket
• Travis
• JupyterHub
• Codelabs
• SageMaker

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

What I’ve noticed when reproducing papers at ACM and IEEE conferences since 2014

Data setState of the system

image corner detection

matmul OpenCL

compression

neural network CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

Have some
common meta:
which datasets
can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
(common)

meta:
filename, size,
width, height,

colors, …

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Have some
common meta:

compilation,
linking and

optimization
flags

Authors develop their own ad-hoc
scripts to do exactly the same “actions”
across nearlly all artifact submissions:

• Detect target hardware properties
• Detect software dependencies
• Install missing packages (code/data)
• Build code; run experiments
• Plot graphs and validate results
• Generate papers

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graph

Have some
common meta:

features,
characteristics,
optimizations

GCC V8.1

LLVM V7.0

Intel Compilers 2017

cTuning.org/ae

https://ctuning.org/ae

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

What I’ve noticed when reproducing papers at ACM and IEEE conferences since 2014

Data setState of the system

image corner detection

matmul OpenCL

compression

neural network CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

Have some
common meta:
which datasets
can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
(common)

meta:
filename, size,
width, height,

colors, …

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Have some
common meta:

compilation,
linking and

optimization
flags

Authors develop their own ad-hoc
scripts to do exactly the same “actions”
across nearlly all artifact submissions:

• Detect target hardware properties
• Detect software dependencies
• Install missing packages (code/data)
• Build code; run experiments
• Plot and validate results
• Generate papers

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graph

Have some
common meta:

features,
characteristics,
optimizations

GCC V8.1

LLVM V7.0

Intel Compilers 2017

The reason I started developing
the open-source Collective Knowledge framework (CK) was

to help researchers share their artifacts
(code, data sets, models, scripts, experiments, papers)

as reusable, portable and customizable packages and workflows
with a simple Python API, CLI and JSON meta description.

I needed CK to support reproducibility initiatives
and help the community crowd-benchmark published techniques

across diverse software, hardware, data sets and models,
collaboratively reproduce and compare results,

and help companies quickly test and deploy new techniques
in production while supporting any technology and legacy code

cKnowledge.org

image corner detection

matmul OpenCL

compression

neural network CUDA

meta.json

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

meta.json

meta.json

meta.json

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

CK concept : create, share and reuse automation “actions” as Python API, CLI and JSON

data UID and alias

cvs speedups

txt hardware counters

xls table with graph

Such approach helped us to apply standard DevOps practices
and Continuous Integration to research and experimentation!

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

CK framework: simple CLI to create and access APIs (very portable - minimal dependencies)

data UID and alias

JSON
input

JSON
input

JSON
input

JSON
input

JSON
output

JSON
output

JSON
output

JSON
output

CK: small python module (~200Kb); any python and git; Linux; Win; MacOS

$ pip install ck
$ ck {function} {module name}:{data name} @input.json

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

CK framework: simple CLI to create and access APIs (very portable - minimal dependencies)

data UID and alias

JSON
input

JSON
input

JSON
input

JSON
input

JSON
output

JSON
output

JSON
output

JSON
output

CK: small python module (~200Kb); any python and git; Linux; Win; MacOS

$ pip install ck
$ ck {function} {module name}:{data name} @input.json

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

600+ shared open-source automation actions
from the past ACM, IEEE and ArXiv papers:

cKnowledge.io/actions

https://cknowledge.io/actions

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

data UID and alias

JSON
input

JSON
output

CK workflows describe dependencies on other CK packages
using simple tags (code, data sets, models, frameworks, etc)

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

CK concept: assemble customizable workflows with JSON input and output

CK concept: provide simple and unified directory structure for shared artifacts

setup soft

find

extract features
dataset

compile

run

add

replay
experiment

autotune

program

TensorFlow

PyTorch

ARM compute lib

image classification

object detection

ImageNet

Car video stream

Real surveillance camera

GEMM OpenCL

convolution CPU

performance results

training / accuracy

bugs

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

/ 1st level directory – CK modules / 2nd level dir - CK entries / CK meta info

Python moduleJSON API holder for original artifact CK meta

JSON file

JSON file

JSON file

cKnowledge.io/repos

http://cknowledge.io/repos

I started working with the community to gradually standardize all research artifacts

Applications
• Meteorology
• Health
• Robotics █
• Automotive █
• Economics
• Physics █
• Astronomy
• Education █

Programs
• Image classification █
• Object detection █
• Natural Language

processing █
• Text processing █
• Video processing █
• Personal assistant

OS
• Linux █
• MacOS █
• BSD
• Windows █
• Android █

AI/ML
frameworks

• TensorFlow █

• PyTorch █

• MXNet █
• Caffe █
• MCT (CNTK) █
• Keras █
• Kubeflow
• AutoML
• SageMaker █
• Apache Spark

Libraries
• SciPy █
• TFLite █

• OpenBLAS █
• MAGMA
• cuDNN █

• cuFFT
• ArmNN █

• CLBlast █
• gemmlowp
• Boost █
• HDF5 █
• MPI █
• OpenCV █

• Protobuf █

Languages
• C++ █
• C#
• C █
• Go
• PHP █
• Fortran █
• Java █
• Python █

Shells
• bash █
• sh █

• csh
• ksh
• Windows

shell █

Scientific
tools

• MATLAB
• Scilab
• Simulink
• LabVIEW
• Gnuplot █
• LaTeX █

• Ipython █

Build
tools

• Make █
• Cmake █

• SCons █
• Bazel █
• Gradle
• Ninja

Package
managers

• Anaconda █
• Go
• Npm
• Pip █
• Sbt
• dpkg █

• Spack █

• EasyBuild █

Workload
managers
• MPI █
• SLURM █
• PBS
• FLUX █

Databases /
experiments
• MySQL █
• PostgreSQL
• MongoDB
• CouchDB
• Text files █
• JSON files █
• XLS files █

Compilers
• LLVM █
• GCC █
• Intel █
• PGI █
• TVM █
• CUDA █

Hardware
• CPU █
• GPU █
• TPU / NN
• DSP
• FPGA █
• Quantum █
• Simulators █
• Interconnects

Benchmarks
• SPEC █
• EEMBC █
• HPCG
• LINPACK
• cBench █

• MLPerf █

Datasets
• ImageNet █
• KITTI █
• COCO █
• MiDataSets █
• Human Cell Atlas
• 1000 Genomes
• Earth models
• OpenStreetMap

Models
• GoogleNet █
• AlexNet █
• VGG █
• ResNet █
• MobileNets █
• SSD █
• SqueezeNet █
• DeepSpeech

DevOps
tools

• Git █

• Jenkins
• Docker █
• Kubernetes
• Singularity

Platforms
• HPC █
• Desktops █
• IoT █

• Mobile █
• Cloud sevices █

Knowledge
sharing

• ArXiv █
• ACM DL █
• IEEE DL
• GitHub █
• Zenodo █

• FigShare
• Web pages █

Web services
• GitHub █
• GitLab █

• BitBucket █
• Travis █
• JupyterHub █

• Codelabs
• SageMaker █

Collective Knowledge
• Simple Python APIs with JSON (dictionary) I/O
• Simple JSON meta-description of all components
• Simple access from command line,

different languages and web
• Simple sharing of all components

via GitHub, Zenodo, etc …

I collaborate with CK partners to solve AI / ML portability and adaptation to any platform

1) Describe different operating systems (Linux, Android, Windows, MacOS, etc)

ck pull repo:ck-env
ck ls os
ck load os:linux-64 --min

2) Detect and unify information about platforms

ck detect platform --help
ck detect platform --out=json
ck load os:linux-64 --min

3) Detect installed software (code, data, models, scripts)

ck search soft --tags=dataset
ck detect soft:compiler.llvm

ck show env --tags=llvm

4) Install missing packages (code, data, models, scripts)

ck search package --tags=dataset,imagenet
ck install package --tags=dataset,imagenet,2012,min

ck show env --tags=dataset
ck virtual env –tags=dataset,imagenet

We now have reusable automation actions to adapt to any platform and environment

while using containers to make stable snapshots

600+ shared packages:
cKnowledge.io/packages

250+ software detection plugins:
cKnowledge.io/soft

We implemented and shared such automations
to support real use cases:

cKnowledge.org/partners

All automation actions are now available at
cKnowledge.io

https://cknowledge.io/packages
https://cknowledge.io/soft
https://cknowledge.org/partners
https://cknowledge.io/

We started developing and sharing workflows for portable AI/ML/systems benchmarking

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,
simulators

Run-time environment

Run-time state
of the system

Inputs Various models

Algorithm / source code

AI framework

Common JSON API We developed a universal program workflow to
compile, run, profile and autotune AI/ML applications

across diverse models, data sets and platforms,
validate results, record experiments,

share and reproduce them,
and report discrepancies

JSON
meta

$ ck pull repo:ck-crowdtuning

$ ck ls program

$ ck ls dataset

$ ck load program:cbench-automotive-susan --min

$ ck compile program:cbench-automotive-susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-susan

$ ck crowdtune program:cbench-automotive-susan

$ ck replay experiment

CK workflows describe dependencies on CK soft detection plugins and packages
to automatically adapt to a given platform and environment

cKnowledge.io/ml-object-detection-coco-tf-dependencies

https://cknowledge.io/ml-object-detection-coco-tf-dependencies

Customizable CK workflows can be also used to autotune the whole AI/ML/SW/HW stack!

CK Python modules (wrappers) with a unified JSON API

C
K

 in
p

u
t

(J
SO

N
/d

ic
t)

C
K

 o
u

tp
u

t
(J

SO
N

/d
ic

t)Unified input

Behavior

Choices

Features

State

Action

Unified output

Behavior

Choices

Features

State

b = B(c , f , s)
… … … …

Formalized function B
of a behavior of any CK object

Flattened CK JSON vectors
(dict converted to vector)

to simplify statistical analysis,
machine learning
and data mining

Some

actions

Tools (compilers, profilers, etc) Generated files

Chain CK modules to implement research workflows such as multi-objective autotuning and co-design

Choose
exploration

strategy

Perform SW/HW DSE
(math transforms,
skeleton params,

compiler flags,
transformations …)

Perform
stat.

analysis

Detect
(Pareto)
frontier

Model
behavior,

predict
optimizations

Reduce
complexity

Set
environment

for a given
tool version

CK program module
with pipeline function

Compile
program

Run
code

i

i

i i

First expose coarse grain high-level choices, features, system state and behavior characteristics via CK APIs

Then automate crowd-benchmarking and optimization across diverse models, datasets and platforms

Keep best species (AI/SW/HW choices); model behavior; predict better optimizations and designs
cKnowledge.io/reproduced-results

https://cknowledge.io/reproduced-results

We can gradually expose more optimization parameters and characteristics via JSON files

Autotuning and machine learning specification:

{

"characteristics":{

"execution times": ["10.3","10.1","13.3"],

"code size": "131938", ...},

"choices":{

"os":"linux", "os version":"2.6.32-5-amd64",

"compiler":"gcc", "compiler version":"4.6.3",

"compiler_flags":"-O3 -fno-if-conversion",

"platform":{"processor":"intel xeon e5520",

"l2":"8192“, ...}, ...},

"features":{

"semantic features": {"number_of_bb": "24", ...},

"hardware counters": {"cpi": "1.4" ...}, ... }

"state":{

"frequency":"2.27", ...}

}

CK flattened JSON key

##characteristics#execution_times@1

"flattened_json_key”:{

"type": "text”|"integer" | “float" | "dict" | "list” | "uid",

"characteristic": "yes" | "no",

"feature": "yes" | "no",

"state": "yes" | "no",

"has_choice": "yes“ | "no",

"choices": [list of strings if categorical choice],

"explore_start": "start number if numerical range",

"explore_stop": "stop number if numerical range",

"explore_step": "step if numerical range",

"can_be_omitted" : "yes" | "no"

...

}

We organized the 1st reproducible ML/system optimization tournament in 2018

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks
across diverse models, data sets and platforms

via open competitions,
share them as reusable CK components

and visualize on a public scoreboard

CK platform & CodeReef

Interdisciplinary
community

Organizers (A-Z)

Luis Ceze, University of Washington
Natalie Enright Jerger, University of Toronto
Babak Falsafi, EPFL
Grigori Fursin, cTuning foundation
Anton Lokhmotov, dividiti
Thierry Moreau, University of Washington
Adrian Sampson, Cornell University
Phillip Stanley Marbell, University of Cambridge

Real
use-cases

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Many groups in
academia & industry
(Google, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

http://cknowledge.org/request

We reproduced results from published ML papers and shared portable ML workflows!

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-18

MXNet;
NNVM/TVM

Xilinx FGPA
(Pynq board)

ResNet-*

ArmCL 18.01 vs
18.02 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Public validation at github.com/ctuning/ck-request-asplos18-results via GitHub issues.

All validated papers are published in the ACM DL
with portable, customizable and reusable CK components and workflows:

dl.acm.org/citation.cfm?doid=3229762

See ACM ReQuEST report: portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://dl.acm.org/citation.cfm?doid=3229762
https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

All results are available at online scoreboards

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically

generated with a calibration process from FP32 model without the

need of fine-tuning or retraining. We show that the inference

throughput and latency with ResNet-50, Inception-v3 and SSD are

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard
and become available for public comparison and further customization,

optimization and reuse: cKnowledge.io/reproduced-results

We are not announcing a single winner! We show all multi-dimensional results at
cKnowledge.io/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018

and let the users select best ML/SW/HW stacks depending on multiple constraints
for their production use!

https://github.com/ctuning/ck-request-asplos18-caffe-intel
https://cknowledge.io/reproduced-results
https://cknowledge.io/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018

Other companies managed to reproduce these results and started using CK

Accelerate technology transfer: companies can validate published techniques
in their production environment using shared CK workflows!

We made a joint presentation with Amazon at O’Reilly AI conference (October 2018)

CK can also automatically generate

a Docker image for this stack

CK assists

AWS market place

with collaboratively

optimized AI/ML stacks

Collective Knowledge is now a community effort

to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient

software/hardware stacks for emerging AI/ML workloads

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard
and become available for public comparison and further customization,

optimization and reuse: cKnowledge.io/reproduced-results

https://cknowledge.io/reproduced-results

General Motors uses CK to select the most efficient SW/HW stacks for ML

Performance, accuracy, power consumption practically never match official reports!

CK workflows and automation helped GM evaluate numerous models, datasets,
frameworks and libraries to find the most efficient SW/HW stacks for object detection

across Nvidia, AMD, ARM and Intel platforms (CUDA, OpenCL, OpenMP …)

Live presentation about how GM and partners use CK: www.youtube.com/watch?v=1ldgVZ64hEI

http://www.youtube.com/watch?v=1ldgVZ64hEI

Continuously collect statistics, bugs and misclassifications

Winning solutions
on various frontiers

Firefly-RK3399

The number of distinct participated platforms:800+

The number of distinct CPUs: 260+

The number of distinct GPUs: 110+

The number of distinct OS: 280+

Power range: 1-10W

No need for a dedicated and expensive cloud –

volunteers help us validate research ideas

similar to SETI@HOME

Also collecting real images from users
for misclassifications to build an open

and continuously updated training set)!

Ti
m

e
 p

e
r

im
ag

e
 (

se
co

n
d

s)

Cost(euros)

CK workflows were used to crowdsource AI/ML benchmarking across Android devices

If performance is bad (Caffe on Firefly-RK3399) we can continue crowd-tuning it

Name Description Ranges

KWG 2D tiling at workgroup level {32,64}

KWI KWG kernel-loop can be unrolled by a factor KWI {1}

MDIMA Local Memory Re-shape {4,8}

MDIMC Local Memory Re-shape {8, 16, 32}

MWG 2D tiling at workgroup level {32, 64, 128}

NDIMB Local Memory Re-shape {8, 16, 32}

NDIMC Local Memory Re-shape {8, 16, 32}

NWG 2D tiling at workgroup level {16, 32}

SA manual caching using the local memory {0, 1}

SB manual caching using the local memory {0, 1}

STRM Striding within single thread for matrix A and C {0,1}

STRN Striding within single thread for matrix B {0,1}

VWM Vector width for loading A and C {8,16}

VWN Vector width for loading B {0,1}

Tunable parameters of OpenCL-based BLAS (github.com/CNugteren/CLBlast)
For now only two data sets (small & large)

Some extra constraints
to avoid illegal
combinations

Use different autotuners
and ML to speed up

design space exploration
based on probabilistic

focused search,
generic algorithms,

deep learning, SVM, KNN,
MARS, decision trees …

CK also helps to automatically benchmark combinations of different libraries and compilers

• Caffe with autotuned OpenBLAS (threads and batches) is the fastest
• Caffe with autotuned CLBlast is 6..7x faster than default version and competitive with

OpenBLAS-based version– now worth making adaptive selection at run-time.

Universal software and hardware benchmarking

CK helped to automate MLPerf.org inference submissions

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications” (Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):

● Parameterised CNN family using depthwise separable convolutions.
● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below).
● Input image resolution: 224, 192, 160, 128 - marker size.

cKnowledge.io/?q=“reproduced-results”+AND+MLPerf

A broad ML benchmark suite for measuring
performance of ML software frameworks,

ML hardware accelerators, and ML cloud platforms.

It is now possible to test how object detection from MLPerf works live:
cKnowledge.io/solution/demo-obj-detection-coco-tf-cpu-webcam-linux-azure

https://arxiv.org/abs/1704.04861
https://cknowledge.io/?q=%22reproduced-results%22+AND+MLPerf
https://cknowledge.io/solution/demo-obj-detection-coco-tf-cpu-webcam-linux-azure

CK was used to autotune MobileNets across diverse devices for MLPerf submissions

cKnowledge.io/reproduced-results mlperf.org

The MLPerf consortium has released over 500 inference benchmarking v0.5 results from 14 organizations
(including DellEMC, Nvidia, Google, Intel, Alibaba, Habana) measuring how fast and how well a pre-trained
computer system can classify images, detect objects, and translate sentences.

Over 400 of these results were automated with the CK framework.

https://cknowledge.io/results
https://mlperf.org/
http://mlperf.org/
https://mlperf.org/inference-results/

CK helps to automate, customize and reproduce HPC workloads

We collaborate with the Student Cluster Competition at ACM/IEEE Supercomputing
to automate installation, execution and customization of HPC applications:

across different platforms, environments and datasets:
github.com/ctuning/ck-scc18
github.com/reproindex/ck-scc

© www.seissol.org

• Support automatic detection of already installed tools and data sets
• Can install missing dependencies via Spack and EasyBuild
• Can deploy application on different supercomputers with different job managers
• Can automatically validate the correctness of results (output, performance)

https://github.com/ctuning/ck-scc18
https://github.com/reproindex/ck-scc

CK is used to collaboratively advance quantum computing

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)
to support reproducible hackathons, and help researchers share, compare

and optimize different algorithms across conventional and quantum platforms

cKnowledge.io/reproduced-results

Results from the Quantum Machine
Learning Hackathon in Paris

http://cknowledge.org/quantum
https://cknowledge.io/reproduced-results

CK is used to collaboratively advance quantum computing

Results from the Quantum Machine
Learning Hackathon in Paris

The most efficient design

cKnowledge.io/reproduced-results

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)
to support reproducible hackathons, and help researchers share, compare

and optimize different algorithms across conventional and quantum platforms

https://cknowledge.io/reproduced-results
http://cknowledge.org/quantum

ACM evaluates CK to package research workflows and results along with published papers

Presentation about ACM pilot to improve research reproducibility and reusability:
youtu.be/DIkZxraTmGM

https://youtu.be/DIkZxraTmGM

cKnowledge.io portal to close the gap between research and practice

CK JSON API

Object detection

Object classification

Speech recognition
…

Tasks

Training/inference
…

CK JSON API

MobileNets

ResNet

VGG
…

SqueezeDet
…

Models

CK JSON API

TensorFlow

Caffe

MXNet
…

PyTorch/Caffe2
…

Software

CK JSON API

ImageNet

KITTI

VOC
…

Real data sets
…

Data sets

CK JSON API

CPU

GPU

TPU
…

NN accelerators
…

Hardware

CK solutions with portable workflows and unified API

Tasks

Models

Data sets

Software Hardware

CK client (cBench) API Build Run Validate

Customizable dashboards
for crowd-benchmarking

input output

Our goal is to enable “live” papers, i.e. to share CK workflows and components along with
research papers to make it easier for the community to reproduce the results and try the

algorithms with the latest/different components: cKnowledge.io/solutions

https://cknowledge.io/solutions

The current state of the Collective Knowledge technology

• The CK platform is a complete functional prototype: cKnowledge.io

• CK is used in production by companies and universities
but there is still a lot to be improved to make it a user-friendly product!

• Current major issues preventing further adoption:
• CLI and JSON meta is not user friendly (similar to Git)
• Distributed nature of CK makes it difficult to understand who is using CK

and ensure the stability/testing of workflows
• Lack of an open portal to exchange stable components (similar to PyPi)
• Lack of automatic testing of all components and workflows

• Currently supported by my non-profit cTuning foundation (cTuning.org)
but our resources are very limited - we want to attract more organizations and
companies to improve our open-source technology together

Don’t hesitate to get in touch if you are interested to help with this effort:
gfursin@cKnowledge.io

https://cknowledge.io/
mailto:Grigori.Fursin@cTuning.org

