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BACKGROUND: The recent resurgence and
dramatic evolution of visible-light photo-
redox catalysis has led to a paradigm shift
in organic synthesis that encompasses acti-
vation of small molecules, unconventional
modes of bond formation, and access to
heretofore elusive reaction pathways. Exoge-
nous photocatalysts undergo single-electron
or energy transfer from their excited states
to generate open-shell intermediates
that can participate in nontraditional,
low-energy reaction pathways comple-
mentary to more conventional thermal,
high-energy, two-electron processes.
These mechanisms undergird elegant
synthetic methodologies for the rapid
yet controlled construction of value-
added products with desired molecular
complexity. Ru(II) or Ir(III)-polypyridyl
complexes and organic dye sensitizers
have been the chromophores of choice
owing to strong absorption, long excited-
state lifetimes, and high redox poten-
tials. However, the cost and adverse
environmental impact of these com-
pounds, as well as their restrictive
conformational constraints (both with
respect to inner-sphere substrate in-
teractions and chiral ligand design for
asymmetric transformations), limit their
applications. Given the imperative need
to develop ecologically benign, cost-
effective, multipurpose, and flexible
catalytic systems, copper has emerged
as an appealing complement. Copper-
based photocatalysts display highly
tunable redox properties in their ex-
cited states, accommodate flexible ligand
architecture, allow stereoinduction, and offer
multiple accessible oxidation states to achieve
rapid radical capture or facile reductive elim-
ination, exerting exquisite control over the
photoredox processes occurring in their inner
coordination sphere.

ADVANCES: Conspicuous features of Cu(I)
photocatalysts include the generation of
radical species through the reduction of or-
ganic substrates upon photoexcitation and
capture of the incipient radical and/or anionic

species in a rebound process. The resulting
transitory Cu(III) intermediate can undergo
reductive elimination to furnish cross-coupled
products. Alternatively, the Cu(II) interme-
diate can exchange ligands with the radical
to form cross-coupled products. Following
this paradigm, the monoalkylation of pri-
mary amines with sterically hindered electro-
philes becomes possible, an elusive process by

way of the classical nucleophilic substitution
approach. Alternatively, nucleophiles such as
chlorosulfonyl anion or fluoride can be deliv-
ered to carbon-centered radicals. The redox
potential of copper photocatalysts is highly
tunable with ligand variation in a broad array
of synthetically accessible homoleptic or
heteroleptic complexes. Sauvage’s complex
{[Cu(dap)2]Cl} and other copper-based com-
plexes have found widespread applications
in photo-induced transformations, such as
bifunctionalization of olefins and various
C–C and C–N cross-coupling reactions. In

othermechanistic paradigms, Cu(I) and Cu(II)
substrate complexes can be directly excited
with visible light to instigate cross-coupling
reactions and homolytic cleavage, respectively.
Recently, the oxoazidation of vinyl arenes has
been developed in which a Cu(II) complex
simultaneously acts as electron-transfer and

aerobic oxygen-transfer
agent, obviating the re-
quirement of any ex-
ogenous oxidants. An
enantioselective alkyla-
tion of imines has also
been achieved, showcas-

ing the capacity of chiral photoactive copper
complexes to act as asymmetric/photoredox
bifunctional catalysts. Various copper salts
have also been used as cocatalysts alongside
iridium or ruthenium photocatalysts. Owing
to the persistent radical effect (PRE) demon-
strated by copper, organic radical intermedi-
ates generated by the visible light–induced
photocatalytic cycles are efficiently trapped

at the metal center and get stabilized.
Many photochemical cross-coupling re-
actions that forge C–C, C–N, C–O, and
C–S bonds have been developed. Cop-
per can also be used as a Lewis acid to
activate C–C multiple bond function-
alities. Enantioselective transforma-
tions such as cyanoalkylation of styrenes,
decarboxylative cyanation of alkyl car-
boxylic acids, and C(sp3)-H arylation
and alkynylation of tetrahydroisoqui-
nolines have been developed by exploit-
ing copper’s innate capacity to form
chiral tetrahedral complexes with poly-
dentate N,O/P-ligands.

OUTLOOK:Although copper is currently
enjoying signal success in photoredox
catalysis, a number of challenges re-
main to be addressed that warrant ex-
ploration of the oxidizing potential of
copper photocatalysts involving Cu(II)*
to Cu(I) or Cu(I)* to Cu(0) transitions,
further prolongation of the excited-
state lifetime through sophisticated
ligand design, and enhancement of
scale-up efficiency. Broader use of cop-
per photocatalysts in asymmetric trans-

formations will enhance their value for the
synthesis of drugs and natural products. The
prospects are limited only by the ingenuity
underlying the design of catalytic reaction
prototypes.▪
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Visible-light photoredox catalysis offers a distinct activation mode complementary to
thermal transition metal catalyzed reactions. The vast majority of photoredox processes
capitalizes on precious metal ruthenium(II) or iridium(III) complexes that serve as
single-electron reductants or oxidants in their photoexcited states. As a low-cost alternative,
organic dyes are also frequently used but in general suffer from lower photostability.
Copper-based photocatalysts are rapidly emerging, offering not only economic and
ecological advantages but also otherwise inaccessible inner-sphere mechanisms, which
have been successfully applied to challenging transformations. Moreover, the combination
of conventional photocatalysts with copper(I) or copper(II) salts has emerged as an
efficient dual catalytic system for cross-coupling reactions.

T
he recent resurgence and dramatic evo-
lution of visible-light photoredox cataly-
sis has led to a paradigm shift in organic
synthesis (1–3). The inventive yet intricate
design principles, accompanied by prac-

tical technological developments for ease of
implementation, have allowed chemists to acti-
vate small molecules, to contrive unconventional
modes of bond formation, and to access here-
tofore elusive reaction pathways by efficiently
converting photonic energy into chemical energy.
In order to circumvent the incapacity of small
organic molecules to absorb in the visible-light
region of the electromagnetic spectrum, various
external chromophores have been induced to
undergo single-electron transfer (SET) or energy
transfer processes from their photoexcited states,
generating radical species upon reduction or oxi-
dation of organic substrates. In turn, these inter-
mediates participate in nontraditional reaction
pathways complementary to common thermal
two-electron processes (4, 5). For this purpose,
appropriately ligated heavy transition-metal
catalysts such as Ru(II) or Ir(III)-polypyridyl
complexes or metal-free organic dye sensitizers
have been most commonly used, owing to their
favorable characteristics such as long excited-
state lifetimes, strong absorption in the visible
region, and high reduction or oxidation poten-
tials of the corresponding excited states (3).
However, organic dyes generally suffer from
lower photostability, and heavy transitionmetal–
based complexes are expensive as well as envi-
ronmentally unfriendly. Moreover, the high
oxidation states of conventional Ir- or Ru-based
photocatalysts and the inflexibility of their ligand

orientation hinder their capacity to undergo
oxidative addition with organic substrates. In
addition, although stereoselective transforma-
tions have been elegantly developed through
the use of Ir- or Ru-based photocatalysts with
prefunctionalized substrates (6), synthesizing
the appropriate chiral octahedral complexes with

labile ligands remains a substantial challenge.
Catalysts that can straightforwardly direct pho-
toredox processes in their inner sphere, and
thereby control reactions through their ligand
environment, are desirable in this context. First-
row transition metal complexes hold the prom-
ise to meet this requirement (7). Consequently,
considerable advancements have been attained
by merging conventional Ir- or Ru-based photo-
catalysts with various nickel(II) salts or com-
plexes that are capable of effecting oxidative
addition to aryl, vinyl, and alkyl halides, leading
to C- orN-arylation, -olefination, and -alkylation
(8). However, with very recent discoveries cop-
per has now come to the fore in the arena of
photocatalysis (9), owing to its versatile redox
characteristics that make it capable both of ini-
tiating a reaction by means of single electron
transfer as well as directly interacting with sub-
strates in its coordination sphere. Moreover,
copper complexes are highly dynamic; various
heteroleptic complexes with N- and P-based
multidentate ligands (Fig. 1) can be readily syn-
thesized to tune redox properties and enhance
excited-state lifetime (10–12). Here, we chron-
icle the inception and evolution of copper as a
visible-light photoredox catalyst.

Cu(I) complexes as standalone
photocatalysts

In 1977,McMillin et al. synthesized [Cu(dmp)2]BF4
(dmp=2,9-dimethyl-1,10-phenanthroline), which
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Fig. 1. Representa-
tive varieties
of commonly
employed racemic
and chiral ligands
for copper-based
photocatalysts.
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can be excited at 454 nm; the resulting metal-to-
ligand charge transfer (MLCT) state can reduce
Co(III) in K[cis-Co(IDA)2]·1.5H2O to the corre-
sponding Co(II) complex (13). A decade later,
Sauvage introduced an ingeniously designed
Cu(I) complex that rigidly confined the copper
ion within the concave portions of two crescent-
shaped phenanthroline ligands, considerably en-
hancing the lifetime of its MLCT excited state
(≤270 ns) (14). The complex, [Cu(dap)2]Cl [dap =

2,9-bis(p-anisyl)-1,10-phenanthroline; Ered =
–1.43 V versus saturated calomel electrode (SCE)
in CH3CN], was shown to induce reductive cou-
pling of nitrobenzyl bromide to the correspond-
ing bibenzylic coupling product. Surprisingly,
this catalyst went into hibernation until it was
resuscitated in 2012 for a C–C bond-forming
atom transfer radical addition (ATRA) transfor-
mation (15). That study, along with concurrent
reports on electrocyclic 6p-reactions catalyzed by

heteroleptic Cu(I)-phenanthroline-bisphosphine
complexes (16) and palladium-free Sonogashira
couplings by means of light-activated copper(I)-
alkyne complexes (17), set in motion the recent
proliferation of studies involvingCu(I)- andCu(II)-
complexes as effective visible-light photocatalysts.
The general mechanistic paradigm of Cu(I)Ln

complexes as standalone photocatalysts is de-
picted in Fig. 2A. Upon excitation with visible
light, an appropriately ligated Cu(I)Ln complex

Hossain et al., Science 364, eaav9713 (2019) 3 May 2019 2 of 11

Fig. 2. Cu(I) complexes as
standalone photocatalysts.
(A) The mechanistic paradigm of
Cu(I) photocatalysts for cross-
coupling reactions is depicted.
The transformation can proceed
either by means of a Cu(I)/Cu(II)
catalytic cycle involving sequen-
tial elementary steps—namely,
SET, ligand exchange, and ligand
transfer—or a Cu(I)/Cu(II)/Cu(III)
catalytic cycle involving SET-
radical rebound, ligand exchange,
and reductive elimination steps
to yield the cross-coupled
product. L, ligand; R-X, electron-
accepting substrate (X = leaving
group); Nu, nucleophile; and
LED, light-emitting diode.
(B and C) Mechanistically
distinct copper-photocatalyzed
olefin-bifunctionalization
processes. OTf, Triflate.
aIn the presence of 10 mole %
[Ru(bpy)3](PF6)2 photocatalyst
(yield in parenthesis).
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transfers a single electron to an electron-accepting
substrate, producing a radical species (R•) [which
can further be intercepted by an alkene or alkyne,
resulting in a more nucleophilic radical species
(R′•)] and a transient Cu(II)Ln intermediate. At this
stage, two possibilities emerge: (i) The Cu(II)Ln
intermediate can exchange a ligand (L) with
an incoming nucleophilic cross-coupling part-
ner (Nu) to generate a Nu-Cu(II)L(n−1) intermediate

that transfers the newly coordinated nucleophile
to R• to furnish the cross-coupled product (R–Nu)
and reverts to the initial Cu(I)Ln complex by re-
uniting with the previously departed ligand (L);
and (ii) the incipient radical (R•) can rebind to the
Cu(II)Ln intermediate to generate a high-valent
R-Cu(III)-Ln intermediate (18) that exchanges
a ligand with Nu to form R-Cu(III)L(n−1)-Nu,
which undergoes facile reductive elimination

to deliver the desired cross-coupled product
(R–Nu) and regenerate the initial Cu(I)Ln com-
plex with L.

Bifunctionalization of olefins

A wide range of functionalities can coordinate
to the Cu(II)-intermediate generated by means
of SET from the photoexcited Cu(I)*, and con-
sequently, the process of ligand transfer to the
intermediate radicals gets accelerated in vari-
ous ATRA reactions. The first such example was
demonstrated in 2015 with the development of
vicinal trifluoromethylation/chlorosulfonylation
of olefins (Fig. 2B, i). Cognizant of the impor-
tance of fluorinated and trifluoromethylated
organic compounds in the pharmaceutical sec-
tor (19), when unactivated olefins were exposed
to triflyl chloride (CF3SO2Cl) in the presence
of 1 mole % [Cu(dap)2]Cl, the corresponding
trifluoromethyl-chlorosulfonylated products were
obtained in high yields (20), contrasting with
[Ru(bpy)3]Cl2, which yielded trifluoromethyl-
chlorinated products (21). The formation of the
unexpected sulfonylchloride was attributed to
coordination between the chlorosulfonyl anion,
which is generated uponmesolysis of triflyl chlo-
ride after single-electron reduction by excited-
state [Cu(dap)2]Cl and the concurrently formed
Cu(II)-center. In a similar vein, the iodoper-
fluoroalkylation of styrenes fails with common
ruthenium or iridium-based photocatalysts but
proceeds efficiently with [Cu(dap)2]Cl, suggest-
ing the intermediacy of an iodine-transferring
[CuII(dap)ClI] species (Fig. 2B, ii) (22). Along these
lines, Yu, Li, and co-workers have recently demon-
strated a remarkable fluorine atom-transfer (FAT)
capability of an innovative Cu(II)-F complex to ef-
ficiently promote carbofluorination of unactivated
olefins (Fig. 2B, iii) (23). The reaction proceeds in
the presence of CsF as the F-source, Umemoto’s
reagent, 5-(trifluoromethyl)dibenzothiophenium
tetrafluoroborate, as the CF3-source, andCu(OTf)2
as the catalyst, with the assistance of two ligands:
bathocuproine (BC) to reduce Cu(II) to Cu(I) and
electron-deficient 4,4′-di(methoxycarbonyl)-2,2′-
bipyridine (bpydc) to accelerate FAT from the
LCu(II)-F complex. A similar dicopper complex has
been synthesized by Fu, Peters, and co-workers to
effect the transfer of a thiotrifluoromethyl (SCF3)
group in a three-component reaction between
electrophiles, olefins, and trifluoromethylthiolate
(Fig. 2B, iv) (24). The process is initiated with the
photoexcitation of a CuI(BINAP)(SCF3) complex
that reduces the electrophile, which is intercepted
by an olefin to generate a more nucleophilic
alkyl radical. Meanwhile, the newly formed
[CuII(BINAP)(SCF3)]2 complex effectively trans-
fers an SCF3 group to this radical species to
furnish the targeted trifluoromethyl thioether
with concurrent regeneration of the initial CuI-
complex with the SCF3 source.
Whereas all previously discussed examples

can be explained either by ligand transfer or
rebound/reductive elimination of Cu(II) spe-
cies with a SET-generated radical, the three-
component cross-coupling protocol reported
by Xiao and co-workers involving redox-active
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Fig. 3. Cu(I) complexes as standalone photocatalysts: Synthetic applications in carbon-
heteroatom cross-coupling reactions.The mechanistic paradigms are similar to Fig. 2A. (A) Evolution
of copper in UV light–mediated photoreactions by means of a radical pathway. (B) Visible light–
mediated reactions. W, watt; CFL, compact fluorescent light bulb; DBU, 1,8-diazabicyclo[5.4.0]undec-7-
ene; BTTP, tert-butylimino-tri(pyrrolidino)phosphorane.
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cycloketone oxime esters, styrenes, and aryl bo-
ronic acids provides a strong case for the in-
termediacy of Cu(III) species by means of a
rebound pathway (Fig. 2C, i) (25). The proposed
mechanism involves photoexcited Cu(I)(dtbbpy)–
catalyzed SET-assisted formation of a cyanoalkyl
radical that reacts with an olefin to generate
another intermediate radical. Simultaneously,
the newly formedCu(II) species undergoes trans-
metalation with aryl boronic acid to form an
aryl-Cu(II) intermediate; it subsequently cap-
tures the intermediate radical to form a new
aryl-Cu(III)(alkyl) species that undergoes re-
ductive elimination to yield the cross-coupled
product.

C(sp3/sp2)- heteroatom cross-coupling

A seminal report by Fu and Peters (26) in 2012
disclosing anultraviolet (UV) light–mediated rad-
ical variant of the Ullmann C–N cross-coupling
protocol between a copper-carbazolide complex
and aryl halides and a succeeding report describ-
ing the extension of the chemistry to alkyl electro-
philes (27) paved the way for developing various
other UV light–induced copper-catalyzed carbon-
heteroatom coupling reactions (Fig. 3A, i). The
authors have subsequently demonstrated that
other heteroatomic nucleophiles such as thio-
phenols (Fig. 3A, ii) (28) and phenols (Fig. 3A,
iii) (29) can also be viable coupling partners in
C(sp2)–S and C(sp2)–O cross-coupling reactions
advancing by means of the intermediacy of UV
light–absorbing Cu(I)-nucleophile species such
as [Cu(SPh)2]

–, [Cu2(SPh)3]
–, and [Cu(OPh)2]

–,
respectively.
Shifting the classical pathway of nucleophilic

substitution to a radical regime under visible-
light irradiation conditions provides remark-
able solutions to longstanding challenges for
the (asymmetric) synthesis of amines, as pro-
gressively addressed by the pioneering contri-
butions from the groups of Peters and Fu. An
enantioconvergent cross-coupling of racemic
tertiary a-chloroamides with carbazoles and
indoles could be achieved in the presence of a
Cu(I)/Nu/(S)-SITCP complex (Nu = carbazole
or indole) that acts both as a photocatalyst and
as the source of enantioinduction (Fig. 3B, i)
(30, 31). The commercially available chiral
phosphine ligand (S)-SITCP controls the abso-
lute configuration of the products regardless of
the initial stereochemistry of the electrophiles.
A mechanistic inquest indicated toward the
plausible intermediacy of a photoactive {Cu(I)-
[(S)-SITCP]2-carbazolide} complex. Hence, with
a view to generalizing the protocol, a novel
tridentate bisphosphine/carbazolide ligand-
containing [Cu(CbzdiphosiPr)] photocatalyst was
later prepared and used in combination with
CuBr to accomplish C–N cross-coupling between
unactivated secondary alkyl halides and carba-
mates in an “out-of-cage” process (Fig. 3B, ii) (32).
The use of Ru- or Ir-based photocatalysts instead
of the aforementioned Cu(I) photocatalyst led to
<1% formation of the desired product.
The scope of nitrogen-containing cross-coupling

counterpart could be further extended to pri-

mary aliphatic amines circumventing usual syn-
thetic problems such as overalkylation and steric
encumbrance. The same groups used a photo-
active Cu(I)-binaphtholate complex to mediate
the desired cross-coupling between the primary

amines with unactivated secondary alkyl iodides
for the exclusive synthesis of the corresponding
mono-alkylated amine derivatices under mild
reaction conditions (Fig. 3B, iii) (33). The rac-
BINOL ligand was found to be essential in this
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Fig. 4. Cross-coupling reaction by means of photoexcitation of in situ–generated Cu(I)-
substrate complexes. (A) In situ–generated Cu(I) substrate complexes reduce an electrophilic
coupling partner upon irradiation with visible light as a starting point for cross-coupling. FG,
functional group; X, counter anion; EA, electron acceptor. (B) A few representative examples of the
synthetic methodologies developed on the basis of this concept are shown, though (vi) differs in
that the in situ–formed [Cu(NCS)2]

– complex acts as a sensitizer in the excited state and as a Lewis
acid in the ground state. OAc, acetate.
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reaction. According to the proposed reaction
mechanism, the photoexcited Cu(I)/BINOL com-
plex undergoes SET to generate an alkyl radical
and a Cu(II)/BINOL species that, upon ligand
exchange with an amine, forms the key Cu(II)-
amine species. Then, the alkyl radical combines

with the Cu(II)-amine species, and subsequent
cross coupling furnishes the desired product.
From the perspective of sustainability, carbox-

ylic acids are a more abundant, stable, and less
toxic chemical feedstock in comparison with
alkyl halides. N-(hydroxy)phthalimide (NHPI)

esters are being widely exploited as superior
sources of alkyl radicals through a SET-reduction-
decarboxylation process, leading to the devel-
opment of a wide variety of decarboxylative
cross-coupling methodologies (34). This prin-
ciple was exploited for a decarboxylative C–N

Hossain et al., Science 364, eaav9713 (2019) 3 May 2019 5 of 11
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Fig. 5. Photocatalysis with Cu(II) complexes (LMCTexcitation). (A) Z, nucleophile; Y, heteroatom. Key steps are (B) [Cu(II)-N3]-species excitation.
(C) [Cu(II)-alkyl]-species excitation. Ar, 4′-(OMe)C6H4; X, counter anion.
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coupling as an azide-free alternative to the Curtius
rearrangement (Fig. 3B, iv) (35). NHPI-esters
in the presence of a Cu(I) photocatalyst offered
a route to protected amines by means of initial
SET from a photoexcited Cu(I)/dmp/xantphos
complex to form a Cu(II) species and the radical
anion of the NHPI ester. Fragmentation produces
an alkyl radical, CO2, and the phthalimide anion,
which binds to Cu(II). The recombination of
the alkyl radical with this Cu(II)-phthalimide
species and subsequent cross coupling affords
the desired product, with regeneration of the
Cu(I) catalytic species.

Photoexcitation of in situ–generated
Cu(I) substrate complexes

Amechanistically distinct class of reactionmani-
folds specific to copper has emerged in which suit-
able substrates can form visible light–absorbing
complexes by coordinating to Cu(I), obviating
the use of exogenous ligands. The excited Cu(I)
substrate complex reduces an electrophile by
means of a SET process, and the resulting Cu(II)
substrate complex then participates in a diverse
range of synthetic transformations, including
cross-coupling reactions and functional group
modifications (Fig. 4A). By capitalizing on this
concept, Hwang and co-workers developed a
visible light–mediated, high-yielding Sonogashira
cross-coupling reaction between aryl halides and
alkyl- or aryl-substituted terminal alkynes in the
presence of catalytic amounts of CuCl (17).
This group has also applied this concept to a

three-component coupling of anilines, terminal
alkynes, and benzoquinones to regioselectively
synthesize functionalized indoles (Fig. 4B, i)
(36). The transformation advances with the in
situ formation of a Cu(I)-phenylacetylide species
that, upon excitation by blue LEDs, reduces ben-
zoquinone through SET (−2.048 V versus SCE
in CH3CN) to enable further reactions with
aniline. The visible light–absorbing properties
of Cu-acetylide species have also been applied
to denitrogenative oxidative C(sp2)–C(sp) cou-
pling between hydrazinylpyridines and terminal
alkynes (37), oxidative C–N coupling of anilines
with terminal alkynes to synthesize a-ketoamides
(38), oxidative C–N coupling of 2-aminopyridine
with terminal alkynes via C–C triple bond cleav-
age (39), and oxidative C(sp)–C(sp) homo and
cross-coupling of terminal alkynes (40, 41). An
intriguing example of this strategy entailed the
coupling of phenols and terminal alkynes in the
presence ofmolecular oxygen to produce aryl and
alkylketones.According to theproposedmechanism,
the excited state of the in situ–generated Cu(I)-
acetylide species reducesmolecular oxygen through
SET to generate a Cu(II)-acetylide species and a su-
peroxide radical anion. Simultaneously, phenol is
also converted to benzoquinone by the Cu(II)-
superoxo intermediate. Sequential Paterno-Buchi-
type [2+2] cycloaddition of Cu(II)-phenylacetylide
and benzoquinone, oxetane ring–opening, frag-
mentation, formation of a peracid species, CO2

extrusion, and keto-enol tautomerism furnish
the aryl ketone product (Fig. 4B, ii) (42, 43). By
contrast, the coupling between phenylacetelyne
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Fig. 6. Cooperative photoredox dual catalysis. (A) The general mechanistic pathways are
shown. The radical capture by Cu(II) species gives rise to a high-valent Cu(III) intermediate that
undergoes facile reductive elimination to furnish the cross-coupled product. (B) A series of
nonstereoselective transformations involving C–C and C–N bond formations are shown. The wide
variety of organic radicals captured by Cu(II) intermediates is highlighted.
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and aliphatic alcohols in the presence of oxy-
gen, stoichiometric 2-picolinic acid, and cata-
lytic copper(I) iodide furnished a-keto esters in
high yields (44). Very recently, a CuCl-catalyzed
three-component reaction between N-alkylanilines,
terminal alkynes, and primary alcohols in the
presence of stoichiometric benzoquinone as an
oxidant to furnish propargylamines is reported
by the same group (Fig. 4B, iii) (45). The photoex-
citedCu(I)-phenylacetylide reduces benzoquinone,
and then the corresponding radical anion spe-
cies triggers a hydrogen atom transfer process
with a primary alcohol to generate an a-oxy rad-
ical. It undergoes a radical-radical cross-coupling
with aminyl radical cation previously generated
upon ligand-to-metal charge transfer (LMCT)
excitation of a Cu(II)-amine species. Subsequent
intramolecular proton-transfer followed by elimi-
nation of water molecule results in the formation

of an iminium species, which gets trapped by
Cu(I)-phenylacetylide to produce the desired
product. Lalic and co-workers found that catalytic
amounts of CuCl in combination with a substi-
tuted terpyridine ligand can modulate the reac-
tivity of the photoexcited Cu(I)-acetylide complex
to achieve the coupling of unactivated alkyl
iodides and terminal alkynes (Fig. 4B, iv) (46). Wu
and co-workers have reported a C–H functional-
ization protocol in which Cu(II) salts can bind
2-arylaminoacetates for the in situ formation of
Cu(I) intermediates that can be excited with
visible light to promote the alkylation of enolates
(Fig. 4B, v) (47). In situ–generated Cu(NCS)2

– can
play the dual role of a photocatalyst and a Lewis
acid, as exploited by Liu and co-workers (Fig.
4B vi) (48). Energy transfer from photoexcited
Cu(NCS)2¯* to a vinyl azide effects rearrangement
to an azirine intermediate that, upon coordina-

tion by ground state Cu(NCS)2
–, is activated for

the subsequent coupling with thiocyanide to
give rise to 2-aminothiazole derivatives.

Cu(II) complexes as standalone
photocatalysts

Very recently, the successful applications of
Cu(II) complexes as visible light photoredox
catalysts have been reported. Following the semi-
nal work of Kochi and co-workers, who dem-
onstrated that CuCl2 undergoes homolysis to
Cu(I)Cl and Cl• upon UV irradiation (49), the
activation of Cu(II)X2 complexes endowed with
suitable ligands to redshift absorption into the
visible region can produce radicals X• that ini-
tiate productive organic transformations (Fig. 5A).
Thus, rather than MLCT states fundamental to
photoexcitation of Cu(I) complexes, Cu(II) com-
plexes react from LMCT states (50, 51), which
oxidize the anionic nucleophile.
Following this concept, the synthesis of azido

ketones from vinyl arenes, TMSN3, and oxygen
was developed by use of the copper(II) complex
[Cu(dap)Cl2] as photoredox catalyst (Fig. 5B) (52).
The Cu(II) complex undergoes ligand exchange
with azide to give rise to a new LCu(II)azide-
bridged dimer. Upon visible light–induced ho-
molysis (VLIH), LCu(I) and an azido radical are
formed, and the latter can be intercepted by an
alkene followed by molecular oxygen. Rebound
of theO-centered radical with LCu(I) regenerates
the LCu(II) species, which upon elimination re-
leases the product and closes the catalytic cycle.
A second, notable examplewas reported shortly

after byGong and co-workers (Fig. 5C) (53). In this
case, a chiral Cu(II)-bisoxazoline complex is alkyl-
ated through transmetallation from the corre-
sponding trifluoroborate salt, andonce again,VLIH
generates an alkyl radical and aCu(I) intermediate.
In a second catalytic cycle, this alkyl radical adds
to the substrate—here, a protected imine that is
activated by the same chiral Cu(II)-bisoxazoline
complex. The newly generated N-centered radi-
cal is reduced by the previously formed Cu(I)
species in the first cycle to release the alkylated
imine with high enantioselectivity.
Very recently, [Cu(dap)Cl2] has been success-

fully used in a photochemical ATRA reaction be-
tween sulfonyl chloride and olefins (54). In line
with Kochi’s proposal, VLIH of LCu(II)–Cl bond
generates LCu(I) species for reduction of sulfonyl
chlorides. The presence of stoichiometric amount
Na2CO3 is necessary when unactivated olefins
(such as allylbenzene) are subjected to the afore-
mentioned reaction, in contrast to activated olefins
(such as styrene), for which no additive is required.
The role of Na2CO3 is proven to prevent the cat-
alyst poisoning during the reaction in case of a
less efficient radical trapping through the un-
activated alkene substrate.
Another report by Yuan and co-workers (55)

discloses the ability of CuCl2 salt to form photo-
active species with solvents (namely, acetonitrile
or acetone), which can efficiently convert benzyl
alcohol to benzaldehyde in the presence of molec-
ular oxygen. Detailed mechanistic studies sug-
gest that molecular oxygen helps only in the
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Fig. 7. Mechanistic paradigms are similar to Fig. 6A. (A) Efficient mergers of radical-capture
and asymmetric induction by chiral Cu-complexes have been demonstrated. (B) Cross-coupling
through decarboxylation from Cu(II)-carboxylate intermediates has been demonstrated. BTMG,
2-tert-butyl-1,1,3,3-tetramethylguanidine.
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regeneration of the catalyst but does not act
as a source of oxygen in benzaldehyde.

Cooperative photoredox-copper
dual catalysis

Cu(I) and Cu(II) salts have also recently been
applied in conjunction with traditional Ir- or
Ru-based photocatalysts. Owing to the persistent
radical effect (PRE) demonstrated by copper, or-
ganic radical intermediates generated by the
visible light–induced photocatalytic cycles are
efficiently trapped and thus stabilized by the
metal center. The resulting organocopper inter-

mediates display a wealth of prospective follow-
up chemistry. Themechanistic paradigm involves
the following generic steps (irrespective of order):
(i) exogenous excited-state photocatalyst-assisted
generation of a radical species bymeans of single-
electron reduction of an electrophile; (ii) simulta-
neous single-electron oxidation of the initial Cu(I)
species to the ligated Cu(II)Ln species by the
oxidized state of the photocatalyst; (iii) anionic
ligand (Z) substitution from one of the reaction
counterparts and formation of Cu(II)L(n−1)Z (or
in some cases transmetallation); (iv) capture of
the incipient radical (R1•) emanating from the

photocatalytic cycle by Cu(II)L(n−1)Z and forma-
tion of the high-valent transient Cu(III)R1L(n−1)Z
species; and (v) collapse ofCu(III)R1L(n−1)Z through
reductive elimination to generate the cross-coupled
product and to regenerate the initial Cu(I) spe-
cies to close the copper-catalytic cycle (Fig. 6A).
The carbophilic nature of copper allows access to
various Cu–C species, such as Cu-aryl andCu-alkyl,
that in turn translate to several cross-coupling
strategies with the formation of a wide variety of
vital bonds, such as C(sp2)–C(sp3), C(sp2)–C(sp2),
C(sp3)–N(sp2), C(sp3)–N(sp3), C(sp3)–O, C(sp3)–
C(sp), and C(sp3)–C(sp3).
In apioneering studypublished in2012, Sanford

and co-workers revealed amild synthetic method
for the preparation of perfluoroalkylated (hetero)
aromatic compounds by the cross coupling of
(hetero)aryl boronic acids and perfluoroalkyl
iodides in the presence of [Ru(bpy)3]Cl2·6H2O
as the photocatalyst and copper(I) acetate as
the C(sp2)–C(sp3) bond-forming catalyst (Fig.
6B, i) (56).
Although high-valent Cu(III) species undergo

facile reductive elimination, oxidative addition
of carbon-halogen bonds to low-valent Cu(I)
species was a longstanding problem in copper
chemistry that had barred the widespread use
of Cu as an efficient cross-coupling catalyst.
MacMillan and co-workers have provided an ex-
cellent work-around by developing an efficient
cross-coupling strategy between aryl bromides
and a trifluoromethylating agent in the presence
of an Ir-based photocatalyst and copper cocatalyst
(57). The transformation proceeds through the
initial formation of a reactive silyl radical from
tris(trimethylsilyl)silanol that abstracts bromine
from aryl bromide to generate an aryl radical.
Meanwhile, the Cu(I) complex combines with the
CF3 radical generated from the trifluoromethylat-
ing agent during the closure of the Ir-photocatalytic
cycle and forms a Cu(II)CF3 complex, which cap-
tures the aryl radical to subsequently reductively
eliminate the trifluoromethylated arenes in ex-
cellent yields (Fig. 6B, ii).
A different mechanistic manifestation of re-

ductive elimination fromCu(III) species has been
reported by Glorius and co-workers, entailing de-
carboxylative olefination of primary carboxylic
acids to produce terminal alkenes (58). Redox-
active esters were reduced by the excited photo-
catalyst, and after the extrusion of carbon dioxide,
the corresponding alkyl radical was generated
and subsequently captured by the Cu(II) complex.
The newly formedCu(III)alkyl species underwent
b-hydride elimination to generate the desired
terminal olefin in high yields concurrent with
regeneration of the Cu(I) complex, which was
subsequently oxidized to the initial Cu(II) species
to close the photocatalytic cycle (Fig. 6B, iii).
Cognizant of the challenges associated with

amine synthesis from readily available chemical
feedstocks, Hu and co-workers have recently de-
veloped an efficient cross-coupling method be-
tween activated carboxylic acids and nitrogen
nucleophiles for the synthesis of a wide range of
alkyl amines (59). In the initial step, benzophe-
none imine coordinates Cu(I), and subsequent
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Fig. 8. Miscellaneous roles of copper in photoredox catalysis. DEBM, diethyl bromomalonate;
QUINAP, 1-(2-diphenylphosphino-1-naphthyl)isoquinoline.
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deprotonation generates a Cu(I) amido complex.
Efficient capture of the alkyl radical generated
from the alkyl NHPI ester with the help of the
photocatalyst forms the alkyl Cu(II) species. The
oxidized photocatalyst oxidizes this Cu(II) com-
plex to a corresponding Cu(III) complex that
subsequently collapses through reductive elim-
ination to give the cross-coupled product, with
concurrent regeneration of the initial Cu(I) com-
plex. The benzophenone imine group can be sub-
sequently hydrolyzed or transaminated to give the
corresponding primary amines (Fig. 6B, iv). Hu’s
group has further expanded the scope of the C–N
bond-formation to anilines (Fig. 6B, v) (60) as well
as to C–O bond-forming reactions with phenols
(Fig. 6B, vii) (61).
MacMillan and co-workers further extended

the scope of the strategy by using a wide range
of primary, secondary, and tertiary alkyl carbox-
ylic acids through in situ iodonium activation
with a broad range of nitrogen nucleophiles, such
as heteroaromatics, amides, sulfonamides, and
anilines (Fig. 6B, vi) (62). The synthetic transfor-
mation proceeds bymeans of the initial formation
of the Cu(I)-amido species through sequential
binding of amine with Cu(I) and deprotonation.
The excited Ir(III)* complex oxidizes this Cu(I)-
amido species to the corresponding Cu(II)-
amido species, and the resultant Ir(II) reduces
the iodomesitylene dicarboxylate to generate the
carboxyl radical and ultimately the alkyl radical
(after CO2 extrusion). In contrast to Hu’s pro-
tocol, the Cu(II)-amido species captures the alkyl
radical to form the corresponding alkyl-Cu(III)-
amido species that collapses by means of reduc-
tive elimination to furnish the desired alkyl amine
product and regenerate the Cu(I) catalyst.
Ligand modularity of the Cu complexes can

again greatly vary the chemistry and redox prop-
erties in Cu/photocatalyst cooperative systems,
as reflected in the decarboxylative cyanation
reaction developed by Lin, Liu, and co-workers.
Secondary benzylic NHPI esters were used along
with trimethylsilyl cyanide (TMSCN) in the pres-
ence of [Ir(ppy)3], CuBr, and the chiral pyBOX
ligand to produce benzyl nitriles (Fig. 7A, i) (63).
The key step is the combination of the radical
obtained through photoreduction of the NHPI
ester with the chiral L*Cu(II)CN complex, the
latter stemming from oxidation of the initially
formed L*Cu(I)CN by the oxidized photocatalyst.
Reductive elimination from the resulting Cu(III)
species provided the products in good yields with
excellent enantioselectivities. Enantioselective
bifunctionalization—cyanoalkylation of olefins—
has been accomplished as well with this strategy
(Fig. 7A, ii) (64).
The aforementioned studies invariably re-

quired activation of the carboxylic acids either
as their NHPI esters or through in situ iodonium
formation. This potential drawback has recently
been addressed in photoredox catalysis by using
copper as the cocatalyst to enable the direct de-
carboxylation of the free carboxylic acids through
formation of Cu(II)-carboxylate complexes, which
can capture the photochemically generated radi-
cal to form Cu(III)(alkyl)-carboxylates. These can

then undergo decarboxylation, radical recombi-
nation, and reductive elimination to furnish the
cross-coupled product (Fig. 6A). In one such
study, Liu and co-workers achieved difluoroacet-
ylation of a,b-unsaturated carboxylic acids with
ethyl iododifluoroacetate (Fig. 7B, i) (65). The
transformation proceeds by theRu(II)*-catalyzed
initial oxidation of the Cu(I) cocatalyst to Cu(II),
which accommodates two coordinated carbox-
ylates. In turn, upon reoxidation ofRu(I) toRu(II),
difluoroacetyl radical is generated and adds to
the a-position of the olefinic double bonds of the
Cu(II)-carboxylate species, which subsequently
undergoes simultaneous elimination of Cu(I) and
CO2 to produce the desired difluoroacetylated
olefin derivatives in good yields.
Along the same lines,MacMillan and co-workers

have recently reported the decarboxylative tri-
fluoromethylation of aliphatic carboxylic acids
(Fig. 7B, ii) (66). Initially, the free carboxylic acid
coordinates the Cu(II) cocatalyst, which is oxi-
dized by photoexcited Ir(III)* to the correspond-
ingCu(III)-carboxylate complex. Then, subsequent
extrusion of carbon dioxide and recombination
of the incipient alkyl radical generates the alkyl-
Cu(III) intermediate, which oxidizes Ir(II) to
ground-state Ir(III) to close the photocatalytic
cycle and generate an alkyl-Cu(II) intermediate.
This intermediate engages with Togni’s reagent,
3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole,
to furnish the targeted alkyl-CF3 product in good
yields and regenerates the Cu(II) cocatalyst to
reenter the catalytic cycle.

Miscellaneous examples

Apart from the aforementioned studies, copper
has enriched the field of photoredox catalysis by
adopting various other roles in a wide panoply of
synthetic applications. A regioselective halofunc-
tionalization of unsaturated carboxylic acids has
been accomplished by Nicewicz and co-workers
(Fig. 8A, i). The transformation proceeds by
means of the initial oxidation of the alkene by an
acridinium photocatalyst followed by the nucle-
ophilic addition of the internal carboxylate to the
radical cation intermediate. Then, Cu(II) cocata-
lyst transfers the halide from an external halide
source to newly generated C-centered radical to
furnish the corresponding product (67). Zhu and
co-workers have recently achieved remote C(sp3)-
H functionalization of N-alkoxypyridinium salts
with silyl reagents through photoredox/copper
dual catalysis (Fig. 8A, ii). The transformation
takes place through the reductive generation of
an alkoxy radical with Ir(III) photocatalyst and
1,5-hydrogen atom-transfer followed by function-
alization of the C-centered radical with Cu(II)-
catalyzed transfer of pseudohalide groups such
as azido, cyano, and isothiocyanato from their
corresponding trimethylsilylated precursors to
furnish various d-functionalized alcohols (68).
In 2012, Rueping et. al. developed a photo-

catalytic oxidative alkynylation reaction of tet-
rahydroisoquinolines using [Ru(bpy)3](PF6)2
as a photocatalyst and a catalytic amount of
[Cu(MeCN)4]PF6 to generate copper acetylide as
the active nucleophile from terminal alkyne (69).

Later, Li and co-workers substantially advanced
the strategy with the development of its asym-
metric variant by using a chiral Cu-QUINAP com-
plex. It activates the terminal alkyne and forms
a chiral Cu-QUINAP-acetylide species that acts
as the active nucleophile toward the iminium
intermediate and furnishes the corresponding
1-alkynyl tetrahydroisoquinoline derivativeswith
excellent enantioselectivity (Fig. 8B) (70). The
strategy has also been successfully extended to
the functionalization of isochromans with b-keto
esters in which a catalytic amount of Cu(OTf)2
has been used to activate the nucleophiles for
their addition to oxonium intermediates (71).
A photocatalyzed decarboxylative alkynylation
of NHPI esters of a-amino acids with terminal
alkynes has been achieved by Fu and co-workers,
inwhich a catalytic amount of CuIwas necessary
to generate the active nucleophile in the form of
copper acetylide (72).
An improved Chan-Lam coupling reaction be-

tween electron-deficient aryl boronic acids and
anilines has been developed by Kobayashi and
co-workers (Fig. 8C) by means of a combined
copper/photocatalyst system. The reaction takes
off with Cu(II) undergoing ligand exchange with
aromatic amine and transmetalation with aryl
boronic acid to form an organo-Cu(II)-amide
species. It subsequently gets oxidized by Ir(IV) to
form a Cu(III) intermediate that, upon reductive
elimination, generates the desired cross-coupled
product (73). Aerobic oxidation of awide range of
primary amines to the corresponding nitriles
(Fig. 8D, i) could be accomplished by Tao’s group
by use of a [Ru(bpy)3]Cl2/CuBr dual catalytic sys-
tem. Themechanistic pathway involves an initial
ligand exchange of Cu(I) with amine to form a
copper amide intermediate that undergoes single-
electron oxidation by a photoexcited Ru(II) cata-
lyst and subsequent hydrogen abstraction and
neutralization by a superoxide radical anion and
hydrogen peroxide anion, respectively, to form a
copper amido intermediate. Then, another sim-
ilar catalytic cycle furnishes the desired nitrile
derivative (74). In another study, photoredox
catalyzedC4–Hsulfonylation of 1-naphthylamides
could be achieved by using Cu(OAc)2 catalyst,
which aided in single-electron oxidation of the
substrate in the presence of an oxidant (75).
Copper’s Lewis acidity has also been leveraged

in activation of C≡C triple bonds through the
formation of a p-complex between an internal
alkyne and Cu(II) to form a three-center two-
electron (3c-2e) systemconducive to single-electron
oxidation by an exogenous photocatalyst, as shown
by Guo and co-workers (Fig. 8D, ii). The newly
formed 3c-1e system could then undergo an arene-
yne cyclization reaction to produce phenanthrene
derivatives (76).
Apart from the aforementioned studies, Cu(II)

salts have been used in an intramolecular oxi-
dative cyclization/oxygen insertion of aromatic
enamines to furnish polysubstituted quinolines
under mild reaction conditions (77). Bode and
co-workers have used stoichiometric Cu(OTf )2
as the Lewis acid to lower oxidation potentials
of demanding imine substrates that can then
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participate in photocatalytic syntheses of var-
ious aza-heterocycles by using the silicon amine
protocol (SLAP) (78). Stoichiometric Cu(II) salts
have also found other uses in photocatalyzed
synthetic applications, such as additives in O-
sialylation (79) and as terminal oxidants, as re-
cently shown by Yoon and co-workers in a study
involving oxyamination of olefins (80).

Conclusion and outlook

Although copper-based photocatalysts have pre-
dominantly been used for single-electron reduc-
tion from photoexcited states involving transition
from Cu(I)* to Cu(II), there have been tangible
successes that exploit the photo-oxidizing poten-
tial of transitions from Cu(I)* to Cu(0) (81, 82) or
from Cu(II)* to Cu(I) (83). The high degree of
tunability in the coordination sphere and ligand-
coordinationmode renders copper complexes con-
ducive to further optimization of redox properties
and excited-state lifetimes in the development
of more sophisticated catalytic systems (10).
Likewise, a structurally predistorted bis(chelated)
Cu(I) complex with a guanidine-quinoline ligand
system has been prepared that sustains its con-
strained geometry in both the +1 and +2 oxida-
tion states to instigate photochemical reactions
by facilitating faster MLCT transition (84). In
the coming years, copper complexes with such
augmented potential will almost certainly have
extensive impact in organic synthesis, materials
science, and pharmaceutical chemistry.
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abundance, copper opens up a variety of distinct mechanisms involving electron transfer within the coordination sphere.

 review recent progress in the use of copper complexes as an alternative. In addition to its Earthet al.Hossain 
Initially, the technique relied primarily on complexes of precious metals, such as ruthenium or iridium, to absorb the light. 

Photoredox catalysis relies on visible-light excitation to accelerate a burgeoning number of chemical reactions.
Spotlight on copper
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