
The OpenFlexure Project. The technical
challenges of Co-Developing a microscope in

the UK and Tanzania
Julian Stirling

Department of Physics
University of Bath

Bath, UK
j.stirling@bath.ac.uk

ORCID: 0000-0002-8270-9237

Valerian L. Sanga
STICLab

Dar es Salaam, Tanzania
ORCID: 0000-0001-8421-4134

Paul T. Nyakyi
STICLab

Dar es Salaam, Tanzania

Grace A. Mwakajinga
STICLab

Dar es Salaam, Tanzania

Joel T. Collins
Department of Physics

University of Bath
Bath, UK

ORCID: 0000-0002-9382-7511

Kaspar Bumke
Department of Physics

University of Bath
Bath, UK

Joe Knapper
Department of Physics

University of Bath
Bath, UK

ORCID: 0000-0002-5519-1700

Qingxin Meng
Department of Physics

University of Bath
Bath, UK

Samuel McDermott
Cavendish Laboratory

University of Cambridge
Cambridge, UK

ORCID: 0000-0003-2736-5467

Richard Bowman
Department of Physics

University of Bath
Bath, UK

r.w.bowman@bath.ac.uk
ORCID: 0000-0002-0167-4969

Abstract—The OpenFlexure Microscope is a 3D-printed
laboratory-grade motorised microscope. Over the past 3
years, the microscope has primarily been co-developed
between the University of Bath and the Tanzanian engi-
neering company STICLab. We are beginning the process
of preparing the microscope for medical certification, as
an in-vitro diagnostic device. In this paper we detail the
technical challenges of remote design of a complex scientific
instrument. We believe that identifying and solving these
issues is essential if we are to encourage research organi-
sations in the Global North to design instrumentation with
Africans, rather than “for Africa”.

Index Terms—Microscopy, Co-Design, Distributed man-
ufacturing, Medical Devices

I. INTRODUCTION

The OpenFlexure Microscope (OFM) [1], [2] is a
motorised laboratory-grade 3D-printed microscope. The
microscope has been engineered for precise motion
control and configurable high-performance imaging. As
an open source hardware project, the microscope has
been used on every continent in environments from

Funded by Royal Commission for the Exhibition of 1851; En-
gineering and Physical Sciences Research Council (EP/P029426/1,
EP/R011443/1, EP/R013969/1); Royal Society (RGF\EA\181034,
URF\R1\180153).

rainforest to the Antarctic ice. It has also been modified
by other research laboratories for advanced scientific
applications such as super-resolution imaging [3]. The
OFM forms part of the larger OpenFlexure project which
focuses on using low-cost 3D printers for highly-precise
positioning mechanisms by designing novel monolithic
flexure stages [4].

The World Health Organisation describes manual
optical microscopy as “the gold standard” of malaria
diagnosis [5]. A trained technician manually checks a
stained blood smear under a microscope and counts
any malaria-causing Plasmodium parasites. In regions
with restricted access to conventional microscopes, the
OFM offers an accessible, partially automated alternative
[1] with sufficient optical performance to identify and
quantify these protozoa. Malaria incidence has decreased
markedly over recent decades [6], but this makes ac-
cess to high quality, quantitative diagnosis even more
important. “Presumptive treatment” (where any patient
with a fever is given antimalarial medicine) is effective
when malaria incidence is extremely high, but at lower
incidence is likely to result in patients with potentially
life-threatening conditions being prescribed incorrect
medication. This risks the patient’s health and wastes



valuable antimalarials, as well as aiding the parasite’s
development of drug resistance [7]. Well-intentioned
donations of scientific and medical equipment often
go unused in sub-Saharan Africa, due to a lack of
consumables, spare parts, maintenance infrastructure,
and training. Local production of open-source hardware
goes a long way to addressing these key barriers to the
uptake of modern diagnostic technology, by ensuring the
availability of both spare parts and competent engineers,
as well as enabling products to be tailored to the needs
of local situations.

By co-developing the microscope in the UK and Tan-
zania, we have been able to ensure that the microscope
is not only appropriate for use in Tanzania, but also that
the components can be reliably sourced in Tanzania and
that the microscope can be produced locally. While we
have found that co-development is essential to producing
a device that is both appropriate for and manufacturable
in Tanzania, co-development has not been without its
drawbacks in design efficiency. We do not believe that
co-design is intrinsically less efficient, but that the tools
we would need to do it effectively are not available.
Throughout the project, we have utilised software devel-
opment platforms for our hardware development. In this
work we will discuss the workflows we have developed
that have enhanced our co-development, issues we have
found that have impacted development, and the tools we
would need to address these issues.

II. CAPTURING AN EVOLVING DESIGN

For any complex engineering task, knowledge of the
evolution of the design and the reasoning behind design
decisions is essential to understanding the project. What
is common sense or best practice for one designer may
appear inefficient or damaging to another, particularly
if there is no record of why each decision was made.
This is particularly true for medical devices where design
decisions must be recorded for the certification process.
To capture the history of the design the OpenFlexure
project has used Git, a distributed version control system
primarily designed for software engineering. Git allows
design snapshots (commits) to be saved along with
messages that describe the changes that have been made.
It also allows multiple changes to be made by different
teams in parallel, which can then be merged together.

The hardware repository for the OFM has over 600
commits [8]. This excludes other repositories for the
software [9], custom electronics [10], and calibration
procedures [11]. This means that any member of the
OpenFlexure project, or any member of the public, can
browse, use, and build upon a huge body of collected
knowledge in a way that would not be possible if the
project was stored in a cloud storage program such
as Google Drive or Dropbox. GitLab—the platform we

Fig. 1. Exploded view of the OpenFlexure Microscope.

use to share the project—also has project management
features allowing the team to discuss changes to the
design, problems, and feature requests in a public forum.
These “issue threads” allow a distributed team to effec-
tively communicate while producing a permanent and
public record of the discussion. As this record includes
usernames and dates, this may make people reluctant
to publicly ask for explanations or advice for fear of
damaging how they are perceived [12]. However, the
larger the project gets, the more likely it is that more
collaborators may have the same question, and answering
enquiries causes the decision makers to consider and
justify choices clearly.

In practice, however, we have found that a platform
like GitLab can somewhat isolate some members of the
team. Subtle differences in key terminology is often
difficult for new users to learn, such as the difference
between project branches and forks, commits and pushes,
clones and checkouts, etc. Furthermore, the simple act
of modifying a file can involve multiple steps, including
checking for changes in the “master” version of the
project, merging these changes into a local copy, modi-
fying the file, syncing this change to a personal copy of
the project on the server, and opening a merge request
to have these changes merged into the main repository.



This workflow is important for members of the team to
be able to work independently. The numerous steps, the
number of possible options during each step, and the
possibility of a merge not being accepted if the often
unclear workflow was not followed can be frustrating
and off-putting. These workflows require not only the
technical understanding of key terminology, but also a
grasp of how each project community expects them to be
used. As version control creates permanent records, any
such mistakes will be visible to collaborators indefinitely.
Since most tools for interacting with Git repositories are
written for computer programmers, the above workflow
is usually performed on a command line interface which
can be daunting to new team members. While graphical
interfaces such as GitHub Desktop or GitKraken do exist,
they are often either too simple for this workflow, or
too complicated for inexperienced users. These problems
are compounded by the difficulty of resolving conflicts
when multiple members of the team edit the same file.
This leads to members being reluctant to share their
improvements, keeping them locally or sharing them
through other mechanisms.

Problems with the Git workflow can lead to certain
files being lost from the project, becoming out of date,
or having misleading history information (e.g. hiding
a team member’s contribution). This workflow often
only records successful modifications. This means that
contributors can repeat previously attempted but undocu-
mented modifications, rediscovering the same problems.
Even issue threads can be problematic, as they are
not easy to access through a phone, and only notify
participants by email. From a university laboratory it
may be simple to open a web-browser when something
goes wrong, but from a workshop in Dar es Salaam
one may have to find a laptop and tether it to a phone
before being able to interact with the issue thread. This
extra inconvenience drives conversation to platforms
such as WhatsApp, which are neither public nor simple
to archive and search. To understand the difference
in workflow between the teams, we have found that
regular and extended visits between members of both
teams are essential to build understanding of each other’s
workflow.

Using a software development platform such as Git-
Lab has also had benefits for members of the team less
comfortable with programming. By using the Continuous
Integration (CI) features, we have been able to automati-
cally generate documentation and publish to our website,
automatically build and zip the 3D design files ready for
printing from the CAD code, package the microscope
software into an installable application, and even build
an SD card image for the Raspberrry Pi computer that
powers the microscope with all necessary software pre-
installed.

We have found that underlying technology that pow-
ers software development platforms has all the fea-
tures needed for remote hardware development. What
is lacking is the user-interface to make the project more
accessible to a wider audience. We would hence advise
that members of the open hardware and humanitarian
communities that are interested in building development
platforms consider building upon open source software
development platforms rather than trying to re-invent
version control.

III. CONVEYING ESSENTIAL INFORMATION

A. Computer aided design

The key design information for the microscope is
in computer aided design (CAD) files. The choice of
CAD packages is always problematic for any distributed
hardware project, as most CAD packages cannot use
each other’s files. This means that teams that are used
to different CAD packages either design in two in-
compatible packages or need to learn a new package.
Interoperability is partially solved by exchange formats
such as STEP or STL files, however these only capture
the object shape, not the design constraints. As such it
is very hard to edit and improve a STEP or STL file.

When running an open source hardware project, es-
pecially one with humanitarian goals, it is important to
strike a balance between open source purity and prag-
matism. Open source CAD packages such as FreeCAD,
OpenSCAD or LibreCAD are less advanced than the pro-
prietary options and are often less well known. However,
the high price of proprietary options and the number
of incompatible proprietary CAD packages means that,
whichever option was chosen, a large number of poten-
tial collaborators not be using their preferred tool. The
OFM primarily uses OpenSCAD, an open source text-
based CAD language, for its design. By choosing an
open source option, we can at least guarantee that price
does not affect availability of the package.

The other big choice is whether to use a text-based or a
graphical CAD package. Graphical CAD has the benefit
of a faster learning curve, and as most CAD packages are
graphical, CAD skills are largely transferable between
different packages. Also, graphical CAD does not require
programming experience. Text-based CAD, however, has
the benefit that it is very simple to compare versions,
which is important for collaboration. It also doesn’t
suffer from topological renaming issues where changes
to one part of a structure break parts that were drawn
later; this is partially problematic for a very complex
monolithic structure like the main body of the OFM.
While there are practical reasons for wanting to ensure
that the entire design is in a consistent CAD package,
this has resulted in certain components designed in other
packages not being shared effectively. As a project, we



need to find a way to ensure that the consistency that
allows us to build the core printable files in the cloud
does not stop us capturing work that is done in other
packages.

B. Documentation

In addition to the CAD files that are needed to
print the components, a large amount of supplementary
documentation is also required. This is complicated by
the fact that multiple versions of the microscope exist,
for example to allow different cameras, or lower cost
optics for educational use. As such there is no one single
bill of materials either for the printed parts or for other
components that need to be purchased. As the design is
continuously evolving, it is difficult to ensure that all the
instructions for all versions are maintained. In addition
to assembly instructions, the project requires documen-
tation for the software and for use of the microscope,
as well as documentation about our work flow, how we
design and even how we document.

Our documentation is produced in a markup language
called Markdown. Markdown can easily be converted
into a website and different versions can be compared
using the same revision control tools we use for the
code. Compared to most markup languages, the syntax
is very simple. However, our use of Markdown is yet
another barrier to entry for collaborators who are used
to standard word processing packages.

For software development, a number of tools, such as
Sphinx for Python, allow documentation to automatically
be generated from information embedded in the code.
Hardware development requires its own tools that can
track the components and tools used in assembly proce-
dures. This would allow multiple variations of a project
to generate documentation by selecting from the same set
of procedures, helping the documentation stay consistent.
We have begun a project called GitBuilding [13], where
we are trialing the implementation of these features. The
syntax for GitBuilding is a superset of Markdown, which
allows it to interact well with revision control tools and
simplify development. However, by adding more syntax
to hold this meta information, it is possible that we
will make the documentation harder to write for some
members of the community. For this reason we need to
carefully consider the user interface of the software to
make it as inclusive as possible.

IV. CONCLUSION

We have described how the OpenFlexure project has
used software development platforms to enable dis-
tributed development of a complex scientific instrument
in a way that has ensured that it is both of laboratory
quality and can be produced locally in Tanzania. While
adoption of these platforms has allowed us to curate a

rich history of the development and automate a number
of difficult procedures, it has not been without its draw-
backs. Primarily, the drawback is that these platforms
have been designed for software programmers, and the
cryptic terminology and intimidating menus create a
barrier to entry that can deter collaboration. We believe
that these issues largely stem from the user interface
of the platform and its associated software rather than
being a limitation of the core functionality. We have also
described the difficulties of maintaining complete and
up-to-date documentation, and the frustrations that stem
from incompatible CAD packages. Our team is actively
working on an open source solution to a number of these
documentation problems, and would welcome external
input.

ACKNOWLEDGEMENT

The authors would like to acknowledge all members
of the community that have interacted with the Open-
Flexure project over the years, especially those who
submitted bug reports, asked probing questions on issue
threads, and contributed code.

REFERENCES

[1] J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi,
V. Mayagaya, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga,
D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg,
P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman,
“Robotic microscopy for everyone: the openflexure microscope,”
Biomed. Opt. Express, vol. 11, no. 5, pp. 2447–2460, May 2020.

[2] J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and
R. W. Bowman, “A one-piece 3d printed flexure translation stage
for open-source microscopy,” Review of Scientific Instruments,
vol. 87, no. 2, p. 025104, 2016.

[3] S. D. Grant, G. S. Cairns, J. Wistuba, and B. R. Patton, “Adapting
the 3d-printed openflexure microscope enables computational
super-resolution imaging,” F1000Research, vol. 8, no. 2003, p.
2003, 2019.

[4] Q. Meng, K. Harrington, J. Stirling, and R. Bowman, “The
openflexure block stage: sub-100 nm fibre alignment with a
monolithic plastic flexure stage,” Opt. Express, vol. 28, no. 4,
pp. 4763–4772, Feb 2020.

[5] World Health Organization, Malaria microscopy quality
assurance manual-version 2. World Health Organization, 2016.
[Online]. Available: https://www.who.int/malaria/publications/
atoz/9789241549394/en/

[6] ——, “World malaria report 2019,” 2019. [On-
line]. Available: https://www.who.int/publications-detail/
world-malaria-report-2019

[7] ——, Guidelines for the treatment of malaria, 3rd ed. World
Health Organization, 2015.

[8] GitLab repository of main OFM hardware https://https://gitlab.
com/openflexure/openflexure-microscope.

[9] GitLab organisation that holds the OpenFlexure Project reposi-
tories https://gitlab.com/openflexure.

[10] GitLab repository of Sangaboard motor controller https://gitlab.
com/bath open instrumentation group/sangaboard.

[11] R. Bowman, B. Vodenicharski, J. T. Collins, and J. Stirling, “Flat-
field and colour correction for the raspberry pi camera module,”
Journal of Open Hardware, vol. 4, p. 1, 2020.

[12] A. W. Brooks, F. Gino, and M. E. Schweitzer, “Smart people
ask for (my) advice: Seeking advice boosts perceptions of com-
petence,” Management Science, vol. 61, no. 6, pp. 1421–1435,
2015.

[13] https://gitbuilding.io.


