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Abstract

Summary: Molecular dynamics simulations have found use in a wide variety of biomolecular appli-
cations, from protein folding kinetics to computational drug design to refinement of molecular struc-
tures. Two areas where users and developers frequently need to extend the built-in capabilities of
most software packages are implementing custom interactions, for instance biases derived from ex-
perimental data, and running ensembles of simulations. We present a Python high-level interface for
the popular simulation package GROMACS that i) allows custom potential functions without modify-
ing the simulation package code, ii) maintains the optimized performance of GROMACS and iii)
presents an abstract interface to building and executing computational graphs that allows transpar-
ent low-level optimization of data flow and task placement. Minimal dependencies make this inte-
grated API for the GROMACS simulation engine simple, portable and maintainable. We demonstrate
this API for experimentally-driven refinement of protein conformational ensembles.
Availability and implementation: LGPLv2.1 source and instructions are available at https://github.
com/kassonlab/gmxapi.
Contact: kasson@virginia.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As biomolecular simulations have advanced in complexity and scale,

programmatic control of simulations has become a common mode

of use. This has been accomplished both through middleware layers

(Balasubramanian et al., 2016 ; Pronk et al., 2011) and native pro-

gramming interfaces (Eastman et al., 2013 ; Phillips et al., 2005 ),

with Python interfaces becoming increasingly common due to

Python’s popularity in the scientific computing community, its ro-

bust scripting interface, and the rich ecosystem of data analysis and

visualization tools available. Among major molecular dynamics

(MD) software packages, the few that offer native Python interfaces

tend to do so via procedural calls so that the resulting code is exe-

cuted in a linear, stepwise fashion. This is a natural programming

paradigm for users accustomed to writing shell scripts, but it pre-

vents more advanced task placement and parallelization strategies.

Packages such as TensorFlow (Abadi et al., 2016 ) or the MD overlay

software Copernicus (Pronk et al., 2011) demonstrate an alternative

paradigm where the API provides an interface for constructing a

computational task graph that can then be executed in an optimized

manner by the underlying software.

Our design approach is to provide a native interface to the

GROMACS MD engine (Pronk et al., 2013 ) that supports two com-

mon use patterns that require either middleware packages or custom

modification of the GROMACS source. This interface also allows

simple, intuitive construction of computational task graphs in a

manner that permits abstraction of parallel optimizations and
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where n is the bin number, N is the number of ensemble members, M is the total 
number of samples within the boxcar averaging window of choice, and @"

;,? − @#
;,?  

denotes the distance between residues i and j in simulation s at time t. A new potential 
is then applied: 
 
BCD =

=

+
E ℎ"# $ − F"# $

+

.{HIJK		"#}   
 
where F"# $  is the smoothed experimentally-derived distance distribution for pair ij. 
This potential is applied for an interval Dt until another update step takes place. 
 

 
Figure S2. Restrained-ensemble fitting to DEER data.  Two residue-residue distance 
distributions for the protein Opa60 determined experimentally via DEER are plotted in 
black, together with initial distributions for a conformational ensemble in gray and the 
results of restrained-ensemble fitting with 20 ensemble members each simulated for 
100ns in dotted lines.  The restrained-ensemble fitting improves agreement with both 
sets of experimental DEER data simultaneously.  The starting structures are taken from 
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).  
Simulations were performed using the CHARMM36 force field (Best, et al., 2012), run 
under NPT conditions at 310K with the velocity-rescaling themostat (Bussi, et al., 
2007)and Parrinello-Rahman barostat (Parrinello and Rahman, 1982) with 2-ps and 10-
ps time constants respectively. Long-range electrostatics were treated with Particle 
Mesh Ewald (Darden, et al., 1993). 
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A work specification for the restrained-ensemble workflow then looks like the following 
JSON object, where the load_tpr params holds a list of absolute file paths. 
 

{ 
    "version": "gmxapi_workspec_0_1", 
    "elements": 
    { 
        “tpr_input”: 
        { 
            “namespace”: “gmxapi”, 
            “operation”: “load_tpr”, 
            “params”: […], 
            “depends”: [] 
        } 
        “md_sim”: 
        { 
            “namespace”: “gmxapi”, 
            “operation”: “md”, 
            “params”: [], 
            “depends”: [“tpr_input”, “ensemble_restraint”] 
        } 
        “ensemble_restraint_1”: 
        { 
            “namespace”: “myplugin”, 
            “operation”: “ensemble_restraint”, 
            “params”: […], 
            “depends”: [] 
        } 
    } 
} 

 
Instead of reading the experimental distribution directly from a file, the array of values 
and the histogram parameters are provided to the ensemble restraint work element 
parameters. The working histograms are generated in memory and updated with the 
help of an ensemble reduce operation, which appears as an additional downstream 
node in the execution graph, generated by the ensemble_restraint builder. In future 
versions of gmxapi, such a Context-provided resource may be expressed in the higher-
level work specification. 
 
Performance data 
The gmxapi interface is designed to minimize overhead by constructing and executing a 
computational graph rather than executing Python calls individually.  We therefore do 
not incur a substantial overhead per API call.  Using our custom implementation of the 
restrained-ensemble formalism, each 10-ps window between potential updates (5000 
steps) ran in an average of 136.6 seconds on 20 Xeon E5-2670 cores, whereas in the 
gmxapi implementation averaged 138.8 seconds for the same window length, 
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Figure S2. Restrained-ensemble fitting to DEER data.  Two residue-residue distance 
distributions for the protein Opa60 determined experimentally via DEER are plotted in 
black, together with initial distributions for a conformational ensemble in gray and the 
results of restrained-ensemble fitting with 20 ensemble members each simulated for 
100ns in dotted lines.  The restrained-ensemble fitting improves agreement with both 
sets of experimental DEER data simultaneously.  The starting structures are taken from 
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).  
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Examples

Docs  » User Guide  » Ge!ng started

Getting started

The primary user interface provided through gmxapi  is a Python module called gmx .
The interface is designed to be maximally portable to different execu#on environments,
with an API that can be used and extended from Python or C++.

For full documenta#on of the Python-level interface and API, use the pydoc  command
line tool or the help()  interac#ve Python func#on, or refer to the Procedural interface
documenta#on.

Once the gmxapi  package is installed, running simula#ons is easy with
gmx.workflow.from_tpr()  and gmx.run() .:

import gmx
md = gmx.workflow.from_tpr(tpr_filename)
gmx.run(md)

To run a batch of simula#ons, just pass an array of inputs.:

import gmx
md = gmx.workflow.from_tpr([tpr_filename1, tpr_filename2, ...])
gmx.run(md)

If addi#onal arguments need to be provided to the simula#on as they would for the
mdrun  command line tool, you can add them to the workflow specifica#on when you

create the MD work element.:

md = gmx.workflow.from_tpr(tpr_list,
                           tmpi=20,
                           grid=[3, 3, 2],
                           pme_threads_per_rank=1,
                           pme_ranks=2,
                           threads_per_rank=1)
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md = gmx.workflow.from_tpr([tpr_filename1, tpr_filename2, ...])
gmx.run(md)

If addi#onal arguments need to be provided to the simula#on as they would for the
mdrun  command line tool, you can add them to the workflow specifica#on when you

create the MD work element.:

md = gmx.workflow.from_tpr(tpr_list,
                           tmpi=20,
                           grid=[3, 3, 2],
                           pme_threads_per_rank=1,
                           pme_ranks=2,
                           threads_per_rank=1)

https://github.com/kassonlab/gmxapi



Full	script
Python does not wrap a command-line tool, so once installa#on is complete, there
shouldn’t be any addi#onal configura#on necessary, and any errors that occur should be
caught at the Python level. Excep#ons should all be descendants of
gmx.exceptions.Error .

If you have wri$en plugins or if you have downloaded and built the sample plugin, you
a$ach it to your workflow by making it a dependency of the MD element. You can use
the add_dependency()  member func#on of the gmx.workflow.WorkElement  returned by
from_tpr() . The following example applies a harmonic spring restraint between atoms

1 and 4:

import gmx
import myplugin
assert gmx.version.is_at_least(0,0,6)

md = gmx.workflow.from_tpr([tpr_filename])
params = {'sites': [1, 4],
          'R0': 2.0,
          'k': 10000.0}
potential_element = gmx.workflow.WorkElement(namespace="myplugin",
                                             operation="create_restraint",
                                             params=params)
potential_element.name = "harmonic_restraint"
md.add_dependency(potential_element)
gmx.run(md)

Refer to the sample plugin for an addi#onal example of an ensemble-restraint biasing
poten#al that accumulates sta#s#cs from several trajectories in parallel to refine a pair
restraint to bias for a target distribu#on.https://github.com/kassonlab/gmxapi



gmxapi	0.0.6

Change Log¶

0.0.6
Interface and feature updates

• Updates to gmx.version module
• Automatically set and restore from MD simulation checkpoints in the session working directory.
• Allow control of whether simulation output is appended or truncated (PR #126).
• Allow plugins to issue a stop signal to MD simulations (reference #62 for gromacs-gmxapi and sample_restraint repos).
• Changes to gmx.exceptions
• Allow full CMake-driven install
• Updated example notebooks in sample_restraint repository.

Internal
• Improved CI testing
• #64 Unique work spec identification.

Bug fixes
• #66 Docker does not access current gmxpy version.
• #123 Race condition in session closing.

https://github.com/kassonlab/gmxapi

http://localhost:63342/gmxpy/cmake-build-debug-default-nompi/docs/reference.html#module-gmx.version
https://github.com/kassonlab/gmxapi/pull/126
https://github.com/kassonlab/gmxapi/issues/62
http://localhost:63342/gmxpy/cmake-build-debug-default-nompi/docs/reference.html#module-gmx.exceptions
https://github.com/kassonlab/gmxapi/issues/64
https://github.com/kassonlab/gmxapi/issues/66
https://github.com/kassonlab/gmxapi/issues/123


Better	data	flow	(future)
>>>	my_stop_condition	=	gmx.logical_and(potential1.stop,	potential2.stop)	
>>>	md	=	gmx.workflow.from_tpr([tpr_filename,	tpr_filename],	
																															restraint=[potential1,	potential2],	
																															stop=[my_stop_condition],	
																															override_nsteps=True)	
>>>	potential3	=	myplugin.new_restraint(alpha=potential1.output.alpha)	
>>>	#	or	
>>>	#	potential3	=	myplugin.new_restraint(params=potential1.output.params)



Architecture	and	protocols

gmxapi_mdmodule.def( 
    "bind", 
    [](std::shared_ptr<TestModule> self, py::object object){ 
            auto holder = (gmxapi::MDHolder*) PyCapsule_GetPointer( 
                object.ptr(), 
                gmxapi::MDHolder::api_name); 
            auto spec = holder->getSpec(); 
            spec->addModule(self); 
   } 
); 

system.def( 
    "add_mdmodule", 
    [](System* system, py::object force_object){ 
            auto spec = system->getSpec(); 
            auto holder = new gmxapi::MDHolder(spec); 
            holder->name_ = "pygmx holder"; 
            auto deleter = [](PyObject *o) { 
                if (PyCapsule_IsValid(o, gmxapi::MDHolder_Name)) 
                { 
                    auto holder_ptr = (gmxapi::MDHolder *) PyCapsule_GetPointer(o, gmxapi::MDHolder_Name); 
                    delete holder_ptr; 
               }; 
            }; 
            auto capsule = py::capsule(holder, 
                                       gmxapi::MDHolder_Name, 
                                       deleter); 
            py::object bind = force_object.attr("bind"); 
            py::object obj = capsule; 
            bind(obj); 
   }; 

gmx::PotentialPointData EnsembleHarmonic::calculate(gmx::Vector v, 
                                                    gmx::Vector v0, 
                                                    double t); 
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Status	of	"context"	abstraction

https://github.com/kassonlab/gmxapi
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