
bioexcel.eu

Partners Funding

Molecular simulation control and extension with
gmxapi for GROMACS

Presenter: Eric Irrgang, University of Virginia
Host: Rossen Apostolov

BioExcel Webinar Series

19th September, 2018

bioexcel.eu

This webinar is being recorded

bioexcel.eu

BioExcel Overview
• Excellence in Biomolecular Software

- Improve the performance, efficiency and scalability of key codes

• Excellence in Usability
- Devise efficient workflow environments

with associated data integration

• Excellence in Consultancy and Training
- Promote best practices and train end users

DMI
Monitor

DMI Enactor

DMI
Executor

DMI Enactor

Data Delivery
Point

Data
Source

Monitoring flow

Data flow

Service Invocation

DMI
Optimiser

DMI
Planner

DMI
Validator

DMI
Gateway

DMI
Gateway

DMI
Gateway

DMI Enactor

Portal /
Workbench

DMI
Request

DADC
Engineer

DMI
Expert

Repository

Registry

DMI
Expert

Domain
Expert

bioexcel.eu

Interest Groups

• Integrative Modeling IG
• Free Energy Calculations IG
• Hybrid methods for biomolecular systems IG
• Biomolecular simulations entry level users IG
• Practical applications for industry IG
• Training IG
• Workflows IG

Support platforms
http://bioexcel.eu/contact

Forums Code Repositories Chat Channel Video Channel

http://bioexcel.eu/contact

bioexcel.eu

Audience Q&A
session

Please use the Questions
function in GoToWebinar

application

Any other questions or points
to discuss after the live

webinar? Join the discussion
the discussion at

http://ask.bioexcel.eu.

http://ask.bioexcel.eu/

bioexcel.eu

Today’s Presenter

Eric Irrgang, University of Virginia
ericirrgang@gmail.com

Eric completed his undergraduate degree at the University of Texas,
Austin and his PhD in Materials Science & Engineering with Sharon
Glotzer at the University of Michigan before joining the Kasson Lab
as a postdoctoral fellow. Now he is building interfaces for flexible
and extensible molecular dynamics simulation. Eric believes strongly
in proper software engineering design and flexible simulation
interfaces but keeps a soft spot in his heart for Monte Carlo
methods. He is supported by a MolSSI Software Fellowship.

6

mailto:ericirrgang@gmail.com

M. Eric Irrgang
Jennifer M. Hays
Peter M. Kasson

BioExcel webinar series
19 September, 2018

Molecular	simulation	
control	and	extension	

with	gmxapi	for	GROMACS

research on physical mechanisms in
infectious disease

• infection by enveloped viruses
• drug-resistant bacteria

tools and methods development
• combining experiments with

advanced computation
• large-scale biomolecular simulation
• statistical learning

Kasson	lab

Simple	Python	interface,	C++	performance

Structural bioinformatics

gmxapi: a high-level interface for advanced
control and extension of molecular
dynamics simulations

M. Eric Irrgang1,2, Jennifer M. Hays1,2 and Peter M. Kasson1,2,*

1Department of Biomedical Engineering and 2Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, VA 22908, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 15, 2018; revised on May 23, 2018; editorial decision on June 8, 2018; accepted on June 12, 2018

Abstract

Summary: Molecular dynamics simulations have found use in a wide variety of biomolecular appli-
cations, from protein folding kinetics to computational drug design to refinement of molecular struc-
tures. Two areas where users and developers frequently need to extend the built-in capabilities of
most software packages are implementing custom interactions, for instance biases derived from ex-
perimental data, and running ensembles of simulations. We present a Python high-level interface for
the popular simulation package GROMACS that i) allows custom potential functions without modify-
ing the simulation package code, ii) maintains the optimized performance of GROMACS and iii)
presents an abstract interface to building and executing computational graphs that allows transpar-
ent low-level optimization of data flow and task placement. Minimal dependencies make this inte-
grated API for the GROMACS simulation engine simple, portable and maintainable. We demonstrate
this API for experimentally-driven refinement of protein conformational ensembles.
Availability and implementation: LGPLv2.1 source and instructions are available at https://github.
com/kassonlab/gmxapi.
Contact: kasson@virginia.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As biomolecular simulations have advanced in complexity and scale,

programmatic control of simulations has become a common mode

of use. This has been accomplished both through middleware layers

(Balasubramanian et al., 2016 ; Pronk et al., 2011) and native pro-

gramming interfaces (Eastman et al., 2013 ; Phillips et al., 2005),

with Python interfaces becoming increasingly common due to

Python’s popularity in the scientific computing community, its ro-

bust scripting interface, and the rich ecosystem of data analysis and

visualization tools available. Among major molecular dynamics

(MD) software packages, the few that offer native Python interfaces

tend to do so via procedural calls so that the resulting code is exe-

cuted in a linear, stepwise fashion. This is a natural programming

paradigm for users accustomed to writing shell scripts, but it pre-

vents more advanced task placement and parallelization strategies.

Packages such as TensorFlow (Abadi et al., 2016) or the MD overlay

software Copernicus (Pronk et al., 2011) demonstrate an alternative

paradigm where the API provides an interface for constructing a

computational task graph that can then be executed in an optimized

manner by the underlying software.

Our design approach is to provide a native interface to the

GROMACS MD engine (Pronk et al., 2013) that supports two com-

mon use patterns that require either middleware packages or custom

modification of the GROMACS source. This interface also allows

simple, intuitive construction of computational task graphs in a

manner that permits abstraction of parallel optimizations and

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2018, 1–3

doi: 10.1093/bioinformatics/bty484

Advance Access Publication Date: 15 June 2018

Applications Note

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty484/5038467
by Serials Periodicals user
on 03 September 2018

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Structural bioinformatics

gmxapi: a high-level interface for advanced
control and extension of molecular
dynamics simulations

M. Eric Irrgang1,2, Jennifer M. Hays1,2 and Peter M. Kasson1,2,*

1Department of Biomedical Engineering and 2Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, VA 22908, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 15, 2018; revised on May 23, 2018; editorial decision on June 8, 2018; accepted on June 12, 2018

Abstract

Summary: Molecular dynamics simulations have found use in a wide variety of biomolecular appli-
cations, from protein folding kinetics to computational drug design to refinement of molecular struc-
tures. Two areas where users and developers frequently need to extend the built-in capabilities of
most software packages are implementing custom interactions, for instance biases derived from ex-
perimental data, and running ensembles of simulations. We present a Python high-level interface for
the popular simulation package GROMACS that i) allows custom potential functions without modify-
ing the simulation package code, ii) maintains the optimized performance of GROMACS and iii)
presents an abstract interface to building and executing computational graphs that allows transpar-
ent low-level optimization of data flow and task placement. Minimal dependencies make this inte-
grated API for the GROMACS simulation engine simple, portable and maintainable. We demonstrate
this API for experimentally-driven refinement of protein conformational ensembles.
Availability and implementation: LGPLv2.1 source and instructions are available at https://github.
com/kassonlab/gmxapi.
Contact: kasson@virginia.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As biomolecular simulations have advanced in complexity and scale,

programmatic control of simulations has become a common mode

of use. This has been accomplished both through middleware layers

(Balasubramanian et al., 2016 ; Pronk et al., 2011) and native pro-

gramming interfaces (Eastman et al., 2013 ; Phillips et al., 2005),

with Python interfaces becoming increasingly common due to

Python’s popularity in the scientific computing community, its ro-

bust scripting interface, and the rich ecosystem of data analysis and

visualization tools available. Among major molecular dynamics

(MD) software packages, the few that offer native Python interfaces

tend to do so via procedural calls so that the resulting code is exe-

cuted in a linear, stepwise fashion. This is a natural programming

paradigm for users accustomed to writing shell scripts, but it pre-

vents more advanced task placement and parallelization strategies.

Packages such as TensorFlow (Abadi et al., 2016) or the MD overlay

software Copernicus (Pronk et al., 2011) demonstrate an alternative

paradigm where the API provides an interface for constructing a

computational task graph that can then be executed in an optimized

manner by the underlying software.

Our design approach is to provide a native interface to the

GROMACS MD engine (Pronk et al., 2013) that supports two com-

mon use patterns that require either middleware packages or custom

modification of the GROMACS source. This interface also allows

simple, intuitive construction of computational task graphs in a

manner that permits abstraction of parallel optimizations and

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2018, 1–3

doi: 10.1093/bioinformatics/bty484

Advance Access Publication Date: 15 June 2018

Applications Note

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty484/5038467
by Serials Periodicals user
on 03 September 2018

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Need:	API	access	to	MD	tools

Need:	API	access	to	MD	tools

Need:	API	access	to	MD	tools

Need:	API	access	to	MD	tools

Sample	scenarios

MDP

topology

configuration

MD input exploratory trajectory
0ps - (arbitrary)

primary trajectory
segment 0ps - 10ps

exploratory trajectory
10ps - (arbitrary)

primary trajectory
segment 10ps - 20ps

Sample	scenarios HPC job script

copy files

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

MD task

analysis

filesystem
output

010101010101010101010101

data files

010101010101010101010101

m
ul

tip
le

-w
in

do
w

 a
na

ly
sis

m
ul

tip
le

-w
in

do
w

 a
na

ly
sis

MDP

topology

configuration

MD input exploratory trajectory
0ps - (arbitrary)

primary trajectory
segment 0ps - 10ps

exploratory trajectory
10ps - (arbitrary)

primary trajectory
segment 10ps - 20ps

�

Simulation
distribution

Update pull potential:

Experimental
distribution

Restart
Simulations

Complex	workflows	and	custom	code

restrained ensemble

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

�

Simulation
distribution

Update pull potential:

Experimental
distribution

Restart
Simulations

Complex	workflows	and	custom	code

restrained ensemble

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

ℎ"# $ =
1
'

1

2)*+
,- ./0- 12

3,5-16
3,5 7

/+97
:

;<=

>

?<=

where n is the bin number, N is the number of ensemble members, M is the total
number of samples within the boxcar averaging window of choice, and @"

;,? − @#
;,?

denotes the distance between residues i and j in simulation s at time t. A new potential
is then applied:

BCD =

=

+
E ℎ"# $ − F"# $

+

.{HIJK		"#}

where F"# $ is the smoothed experimentally-derived distance distribution for pair ij.
This potential is applied for an interval Dt until another update step takes place.

Figure S2. Restrained-ensemble fitting to DEER data. Two residue-residue distance
distributions for the protein Opa60 determined experimentally via DEER are plotted in
black, together with initial distributions for a conformational ensemble in gray and the
results of restrained-ensemble fitting with 20 ensemble members each simulated for
100ns in dotted lines. The restrained-ensemble fitting improves agreement with both
sets of experimental DEER data simultaneously. The starting structures are taken from
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).
Simulations were performed using the CHARMM36 force field (Best, et al., 2012), run
under NPT conditions at 310K with the velocity-rescaling themostat (Bussi, et al.,
2007)and Parrinello-Rahman barostat (Parrinello and Rahman, 1982) with 2-ps and 10-
ps time constants respectively. Long-range electrostatics were treated with Particle
Mesh Ewald (Darden, et al., 1993).

Distance (nm)

Pr
ob

ab
ili

ty

MD Initial
DEER

77 - 107 117 - 107

Building	the	simulation

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

Specifying	work

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

Specifying	work

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

Dispatching	for	execution

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

Work	specification	schema

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

A work specification for the restrained-ensemble workflow then looks like the following
JSON object, where the load_tpr params holds a list of absolute file paths.

{
 "version": "gmxapi_workspec_0_1",
 "elements":
 {
 “tpr_input”:
 {
 “namespace”: “gmxapi”,
 “operation”: “load_tpr”,
 “params”: […],
 “depends”: []
 }
 “md_sim”:
 {
 “namespace”: “gmxapi”,
 “operation”: “md”,
 “params”: [],
 “depends”: [“tpr_input”, “ensemble_restraint”]
 }
 “ensemble_restraint_1”:
 {
 “namespace”: “myplugin”,
 “operation”: “ensemble_restraint”,
 “params”: […],
 “depends”: []
 }
 }
}

Instead of reading the experimental distribution directly from a file, the array of values
and the histogram parameters are provided to the ensemble restraint work element
parameters. The working histograms are generated in memory and updated with the
help of an ensemble reduce operation, which appears as an additional downstream
node in the execution graph, generated by the ensemble_restraint builder. In future
versions of gmxapi, such a Context-provided resource may be expressed in the higher-
level work specification.

Performance data
The gmxapi interface is designed to minimize overhead by constructing and executing a
computational graph rather than executing Python calls individually. We therefore do
not incur a substantial overhead per API call. Using our custom implementation of the
restrained-ensemble formalism, each 10-ps window between potential updates (5000
steps) ran in an average of 136.6 seconds on 20 Xeon E5-2670 cores, whereas in the
gmxapi implementation averaged 138.8 seconds for the same window length,

Middleware	layer

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

A work specification for the restrained-ensemble workflow then looks like the following
JSON object, where the load_tpr params holds a list of absolute file paths.

{
 "version": "gmxapi_workspec_0_1",
 "elements":
 {
 “tpr_input”:
 {
 “namespace”: “gmxapi”,
 “operation”: “load_tpr”,
 “params”: […],
 “depends”: []
 }
 “md_sim”:
 {
 “namespace”: “gmxapi”,
 “operation”: “md”,
 “params”: [],
 “depends”: [“tpr_input”, “ensemble_restraint”]
 }
 “ensemble_restraint_1”:
 {
 “namespace”: “myplugin”,
 “operation”: “ensemble_restraint”,
 “params”: […],
 “depends”: []
 }
 }
}

Instead of reading the experimental distribution directly from a file, the array of values
and the histogram parameters are provided to the ensemble restraint work element
parameters. The working histograms are generated in memory and updated with the
help of an ensemble reduce operation, which appears as an additional downstream
node in the execution graph, generated by the ensemble_restraint builder. In future
versions of gmxapi, such a Context-provided resource may be expressed in the higher-
level work specification.

Performance data
The gmxapi interface is designed to minimize overhead by constructing and executing a
computational graph rather than executing Python calls individually. We therefore do
not incur a substantial overhead per API call. Using our custom implementation of the
restrained-ensemble formalism, each 10-ps window between potential updates (5000
steps) ran in an average of 136.6 seconds on 20 Xeon E5-2670 cores, whereas in the
gmxapi implementation averaged 138.8 seconds for the same window length,

Restrained	Ensemble	Simulation

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

Irrgang, Hays, & Kasson. Bioinformatics (2018).

DOI: 10.1093/bioinformatics/bty484

�

Simulation
distribution

Update pull potential:

Experimental
distribution

Restart
Simulations

ℎ"# $ =
1
'

1

2)*+
,- ./0- 12

3,5-16
3,5 7

/+97
:

;<=

>

?<=

where n is the bin number, N is the number of ensemble members, M is the total
number of samples within the boxcar averaging window of choice, and @"

;,? − @#
;,?

denotes the distance between residues i and j in simulation s at time t. A new potential
is then applied:

BCD =

=

+
E ℎ"# $ − F"# $

+

.{HIJK		"#}

where F"# $ is the smoothed experimentally-derived distance distribution for pair ij.
This potential is applied for an interval Dt until another update step takes place.

Figure S2. Restrained-ensemble fitting to DEER data. Two residue-residue distance
distributions for the protein Opa60 determined experimentally via DEER are plotted in
black, together with initial distributions for a conformational ensemble in gray and the
results of restrained-ensemble fitting with 20 ensemble members each simulated for
100ns in dotted lines. The restrained-ensemble fitting improves agreement with both
sets of experimental DEER data simultaneously. The starting structures are taken from
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).
Simulations were performed using the CHARMM36 force field (Best, et al., 2012), run
under NPT conditions at 310K with the velocity-rescaling themostat (Bussi, et al.,
2007)and Parrinello-Rahman barostat (Parrinello and Rahman, 1982) with 2-ps and 10-
ps time constants respectively. Long-range electrostatics were treated with Particle
Mesh Ewald (Darden, et al., 1993).

Distance (nm)

Pr
ob

ab
ili

ty

MD Initial
DEER

77 - 107 117 - 107

Examples

Docs » User Guide » Ge!ng started

Getting started

The primary user interface provided through gmxapi is a Python module called gmx .
The interface is designed to be maximally portable to different execu#on environments,
with an API that can be used and extended from Python or C++.

For full documenta#on of the Python-level interface and API, use the pydoc command
line tool or the help() interac#ve Python func#on, or refer to the Procedural interface
documenta#on.

Once the gmxapi package is installed, running simula#ons is easy with
gmx.workflow.from_tpr() and gmx.run() .:

import gmx
md = gmx.workflow.from_tpr(tpr_filename)
gmx.run(md)

To run a batch of simula#ons, just pass an array of inputs.:

import gmx
md = gmx.workflow.from_tpr([tpr_filename1, tpr_filename2, ...])
gmx.run(md)

If addi#onal arguments need to be provided to the simula#on as they would for the
mdrun command line tool, you can add them to the workflow specifica#on when you

create the MD work element.:

md = gmx.workflow.from_tpr(tpr_list,
 tmpi=20,
 grid=[3, 3, 2],
 pme_threads_per_rank=1,
 pme_ranks=2,
 threads_per_rank=1)

Docs » User Guide » Ge!ng started

Getting started

The primary user interface provided through gmxapi is a Python module called gmx .
The interface is designed to be maximally portable to different execu#on environments,
with an API that can be used and extended from Python or C++.

For full documenta#on of the Python-level interface and API, use the pydoc command
line tool or the help() interac#ve Python func#on, or refer to the Procedural interface
documenta#on.

Once the gmxapi package is installed, running simula#ons is easy with
gmx.workflow.from_tpr() and gmx.run() .:

import gmx
md = gmx.workflow.from_tpr(tpr_filename)
gmx.run(md)

To run a batch of simula#ons, just pass an array of inputs.:

import gmx
md = gmx.workflow.from_tpr([tpr_filename1, tpr_filename2, ...])
gmx.run(md)

If addi#onal arguments need to be provided to the simula#on as they would for the
mdrun command line tool, you can add them to the workflow specifica#on when you

create the MD work element.:

md = gmx.workflow.from_tpr(tpr_list,
 tmpi=20,
 grid=[3, 3, 2],
 pme_threads_per_rank=1,
 pme_ranks=2,
 threads_per_rank=1)

https://github.com/kassonlab/gmxapi

Full	script
Python does not wrap a command-line tool, so once installa#on is complete, there
shouldn’t be any addi#onal configura#on necessary, and any errors that occur should be
caught at the Python level. Excep#ons should all be descendants of
gmx.exceptions.Error .

If you have wri$en plugins or if you have downloaded and built the sample plugin, you
a$ach it to your workflow by making it a dependency of the MD element. You can use
the add_dependency() member func#on of the gmx.workflow.WorkElement returned by
from_tpr() . The following example applies a harmonic spring restraint between atoms

1 and 4:

import gmx
import myplugin
assert gmx.version.is_at_least(0,0,6)

md = gmx.workflow.from_tpr([tpr_filename])
params = {'sites': [1, 4],
 'R0': 2.0,
 'k': 10000.0}
potential_element = gmx.workflow.WorkElement(namespace="myplugin",
 operation="create_restraint",
 params=params)
potential_element.name = "harmonic_restraint"
md.add_dependency(potential_element)
gmx.run(md)

Refer to the sample plugin for an addi#onal example of an ensemble-restraint biasing
poten#al that accumulates sta#s#cs from several trajectories in parallel to refine a pair
restraint to bias for a target distribu#on.https://github.com/kassonlab/gmxapi

gmxapi	0.0.6

Change Log¶

0.0.6
Interface and feature updates

• Updates to gmx.version module
• Automatically set and restore from MD simulation checkpoints in the session working directory.
• Allow control of whether simulation output is appended or truncated (PR #126).
• Allow plugins to issue a stop signal to MD simulations (reference #62 for gromacs-gmxapi and sample_restraint repos).
• Changes to gmx.exceptions
• Allow full CMake-driven install
• Updated example notebooks in sample_restraint repository.

Internal
• Improved CI testing
• #64 Unique work spec identification.

Bug fixes
• #66 Docker does not access current gmxpy version.
• #123 Race condition in session closing.

https://github.com/kassonlab/gmxapi

http://localhost:63342/gmxpy/cmake-build-debug-default-nompi/docs/reference.html#module-gmx.version
https://github.com/kassonlab/gmxapi/pull/126
https://github.com/kassonlab/gmxapi/issues/62
http://localhost:63342/gmxpy/cmake-build-debug-default-nompi/docs/reference.html#module-gmx.exceptions
https://github.com/kassonlab/gmxapi/issues/64
https://github.com/kassonlab/gmxapi/issues/66
https://github.com/kassonlab/gmxapi/issues/123

Better	data	flow	(future)
>>>	my_stop_condition	=	gmx.logical_and(potential1.stop,	potential2.stop)	
>>>	md	=	gmx.workflow.from_tpr([tpr_filename,	tpr_filename],	
																															restraint=[potential1,	potential2],	
																															stop=[my_stop_condition],	
																															override_nsteps=True)	
>>>	potential3	=	myplugin.new_restraint(alpha=potential1.output.alpha)	
>>>	#	or	
>>>	#	potential3	=	myplugin.new_restraint(params=potential1.output.params)

Architecture	and	protocols

gmxapi_mdmodule.def(
 "bind",
 [](std::shared_ptr<TestModule> self, py::object object){
 auto holder = (gmxapi::MDHolder*) PyCapsule_GetPointer(
 object.ptr(),
 gmxapi::MDHolder::api_name);
 auto spec = holder->getSpec();
 spec->addModule(self);
 }
);

system.def(
 "add_mdmodule",
 [](System* system, py::object force_object){
 auto spec = system->getSpec();
 auto holder = new gmxapi::MDHolder(spec);
 holder->name_ = "pygmx holder";
 auto deleter = [](PyObject *o) {
 if (PyCapsule_IsValid(o, gmxapi::MDHolder_Name))
 {
 auto holder_ptr = (gmxapi::MDHolder *) PyCapsule_GetPointer(o, gmxapi::MDHolder_Name);
 delete holder_ptr;
 };
 };
 auto capsule = py::capsule(holder,
 gmxapi::MDHolder_Name,
 deleter);
 py::object bind = force_object.attr("bind");
 py::object obj = capsule;
 bind(obj);
 };

gmx::PotentialPointData EnsembleHarmonic::calculate(gmx::Vector v,
 gmx::Vector v0,
 double t);

gmxapi: a high-level interface for advanced control
and extension of molecular dynamics simulations.
Irrgang, M. Eric, Hays, Jennifer M., & Kasson, Peter M. (2018).
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty484

National Institutes of Health R01GM115790 to P.M.K,
in collaboration with

• Pascal Merz & Michael Shirts, U.C. Boulder

• Mark Abraham, KTH Stockholm

MolSSI fellowship to M.E.I through subaward to
National Science Foundation ACI1547580

https://github.com/kassonlab/gmxapi

bioexcel.eu

Audience Q&A session

Please use the Questions
function in GoToWebinar

application

Any other questions or points
to discuss after the live webinar?

Join the discussion at
 http://ask.bioexcel.eu.

http://ask.bioexcel.eu/

Status	of	"context"	abstraction

https://github.com/kassonlab/gmxapi

API	compartmentalization	

user interface,
convenience API

external interface

core APIs

computing environment

Python module

Python API C++ API

I/O Library API MD Module API

File
interfaces

CLI
extension
module

MD	plugin

utilities

interface
utilities

Directed,	acyclic	work	graph
Configuration	&	
state 
SOURCE

Topology 
SOURCE

Simulation	
parameters  
SOURCE

Trajectory	
PROPAGATOR

plugin	
MDMODULE

shared	data	
FILEDATA

Trajectory	
PROPAGATOR

Traj.	frame	
SINK

plugin	
MDMODULE

shared	data	
FILEDATA

Trajectory	
PROPAGATOR

Traj.	frame	
SINK

plugin	
MDMODULE

shared	data	
FILEDATA

Data	stream	expression

params

topology

microstate

checkpoint

generic data

plugin r0 state

TPR r0

MD r0

params

topology

microstate

checkpoint

plugin r1 state
TPR r1

MD r1

reduce reduce reduce

bioexcel.eu

Audience Q&A
session

Please use the Questions
function in GoToWebinar

application

Any other questions or points
to discuss after the live

webinar? Join the discussion
the discussion at

http://ask.bioexcel.eu.

http://ask.bioexcel.eu/

bioexcel.eu

Coming up next

Immersive visual exploration of biomolecular
systems in virtual reality – from static views to
interactive dynamics (2018-10-04)
Presenter: Marc Baaden

Open Force Field Initiative: The SMIRNOFF
format and learned chemical perception (2018-
10-10)
Presenter: Caitlin C. Bannan

8

