
bioexcel.eu

Partners Funding

BioSimSpace – filling the gaps between molecular
simulation codes

Presenter: Christopher Woods, University of Bristol
Host: Rossen Apostolov

BioExcel Webinar Series

27th June, 2018

bioexcel.eu

This webinar is being recorded

bioexcel.eu

BioExcel Overview
• Excellence in Biomolecular Software

- Improve the performance, efficiency and scalability of key codes

• Excellence in Usability
- Devise efficient workflow environments

with associated data integration

• Excellence in Consultancy and Training
- Promote best practices and train end users

DMI
Monitor

DMI Enactor

DMI
Executor

DMI Enactor

Data Delivery
Point

Data
Source

Monitoring flow

Data flow

Service Invocation

DMI
Optimiser

DMI
Planner

DMI
Validator

DMI
Gateway

DMI
Gateway

DMI
Gateway

DMI Enactor

Portal /
Workbench

DMI
Request

DADC
Engineer

DMI
Expert

Repository

Registry

DMI
Expert

Domain
Expert

bioexcel.eu

Interest Groups

• Integrative Modeling IG
• Free Energy Calculations IG
• Hybrid methods for biomolecular systems IG
• Biomolecular simulations entry level users IG
• Practical applications for industry IG
• Training IG
• Workflows IG

Support platforms
http://bioexcel.eu/contact

Forums Code Repositories Chat Channel Video Channel

http://bioexcel.eu/contact

bioexcel.eu

Audience Q&A
session

Please use the Questions
function in GoToWebinar

application

Any other questions or points
to discuss after the live

webinar? Join the discussion
the discussion at

http://ask.bioexcel.eu.

http://ask.bioexcel.eu/

bioexcel.eu

Today’s Presenter

Christopher Woods, University of Bristol
christopher.woods@bristol.ac.uk
Christopher manages the Research Software Engineering (RSE)
Group at the University of Bristol. He is an EPSRC RSE Fellow and
Joint-Chair of the UK RSE Association. He obtained his
undergraduate and postgraduate degrees in Chemistry from the
University of Southampton, working with Prof Jonathan Essex,
before moving to the University of Bristol as a chemist developing
novel software and algorithms for modelling biological molecules. In
2016 he started the University of Bristol’s RSE Group within the
Advanced Computing Research Centre.

Website: https://chryswoods.com

ORCID: https://orcid.org/0000-0001-6563-9903

Twitter: @chryswoods, @biosimspace / #biosimspace

6

Download these slides using the link at
https://chryswoods.com/talks

BioSimSpace
Filling the gaps between

molecular simulation codes
Christopher Woods

EPSRC Research Software Engineering Fellow
Advanced Computing Research Centre

University of Bristol

https://chryswoods.com/talks

Demo

How do I ….?

• Researcher needs to do X
• Searches the web for how to do it
• Finds a tutorial, blog post or online script
• Copies and pastes onto their computer

• Either something doesn’t work, instructions fail
• Or worse, it “works” but does the wrong thing
• Or, if lucky, it works

• Researcher keeps going down the list of search results
until they find a satisfactory solution (or give up)

• As a field, we are not good at sharing best practice
or making it easy for newcomers to learn how to
perform basic molecular simulation tasks

Who are we?
• CCP-BioSim and HEC-BioSim led a successful bid at

the last EPSRC Software Flagship Funding Call

John Chodera (Omnia)
MSKCC

MolSSI

Michael Shirts
U Colorado

Mike Gilson &
Rommie Amaro (D3R)
San Diego

Julien Michel
Edinburgh

Charlie Laughton
Nottingham

Francesco Gervasio
UCL

Cresset

Evotec

Chris Woods &
Adrian Mulholland
Bristol

Syngenta

What is our software problem?

We have a lot of software in the community…
…but it doesn’t fit together very well!

PyEMMA

pymbar ligandswap

ProtoMS

pmemd.cuda

gmx

charmm

antechamber MDAnalysis

FESetup

What is our software problem?

Difficult to know what exists, how to use it, what it does, or how to plug existing
tools into a workflow – lack of compatibility and interoperability
Result - Lots of bespoke and brittle blogs / scripts / workflows

PyEMMA

pymbar ligandswap

ProtoMS

pmemd.cuda

gmx

charmm

antechamber MDAnalysis

FESetup

What is the wrong solution?

• Top-down
• Collect the GREAT AND THE GOOD to create and

mandate a NEW STANDARD FORMAT for Biomolecular
Simulation
• Make everyone read and write to this NEW STANDARD
• Create a single STANDARD SIMULATION PACKAGE that

everyone must use and develop tools within
• Replace all existing tools with this STANDARD

• A top-down approach would fail.
• Wouldn’t unify anything. Would just create another

“standard”
• We do not need more standards and more software!

• Work with the existing formats and software we have
• Make it easier for this software to plug together
• Make it easier to translate one format into another

Make it easier to write the “shims”

PyEMMA

pymbar ligandswap

ProtoMS

pmemd.cuda

gmx

charmm

antechamber MDAnalysis

FESetup

What is our solution?

• Bottom-up
• BioSimSpace is a collection of shims that make it easy for us

to plug the community’s existing software together
• Exposes these tools within an easy-to-use Python

environment
• Ensure all tools can be used with a common, simple API, i.e.

same interface to run dynamics in all dynamics packages,
same interface to do alignment, trajectory analysis etc. etc.

• BioSimSpace Python scripts can act as workflow nodes that
plug into existing workflow engines, e.g. Knime, Pipeline-
Pilot, ExTASY, command-line etc.

• Scripts can be used from the command line, from within a
workflow engine, or interactively in a notebook

Example workflow node

• Load a protein-ligand complex
• …in any file format

• Run equilibration for a certain number of steps
• …using any available MD package

• Calculate the RMSD with respect to the starting
structure
• …using any available trajectory analysis tool

• Output the equilibrated structure with a plot of the
RMSD
• …using the same file format as was loaded

Example workflow node

• Load a protein-ligand complex
• …in any file format

• Run equilibration for a certain number of steps
• …using any available MD package

• Calculate the RMSD with respect to the starting
structure
• …using any available trajectory analysis tool

• Output the equilibrated structure with a plot of the
RMSD
• …using the same file format as was loaded

BioSimSpace Workflow Node
Run MD equilibration and output
the equilibrated structure and the

RMSDs against the input

Protein/Ligand
Complex

Equilibrated complex

RMSD values

Plug into Knime, Pipeline Pilot or ExTASY
Run in a Jupyter notebook
Or run from the command line using;

python component.py --complex files

import BioSimSpace as BSS

node = BSS.Gateway.Node("A node to perform MD equilibration.")
node.addAuthor(name="Lester Hedges", email="lester.hedges@bristol.ac.uk",

affiliation="University of Bristol")
node.setLicense("GPLv3")

node.addInput("complex", BSS.Gateway.FileSet(help="a set of molecular input files"))
node.addOutput("equilibrated", BSS.Gateway.FileSet(

help="the equilibrated molecular system"))
node.addOutput("rmsd", BSS.Gateway.File(help="the rmsd"))

system = BSS.readMolecules(node.getInput("files"))

protocol = BSS.Protocol.Equilibration(runtime=0.05, temperature_start=0,
temperature_end=300, restrain_backbone=True)

process = BSS.MD.run(system, protocol)

rmsd = process.getTrajectory().RMSD(frame=0,
molecule=system[BSS.MolWithResName("ALA")])

with open("rmsd.txt", "w") as file:
for index, value in enumerate(rmsd):

file.write("%d %5.4f\n" % (index, value))

node.setOutput(”equilibrated", BSS.saveMolecules("equilibrated”,
process.getSystem(), system.fileFormat())

node.setOutput(”rmsd”, ”rmsd.txt”)
node.validate()

Current progress…

• Written many file conversion parsers
• Amber, Gromacs, Charmm, PDB, Mol2

• Written drivers for MD programs
• Amber, Gromacs

• Written interfaces for molecular analysis
• MDAnalysis, MDTraj

• Written node interface
• Command line, Jupyter, Knime (coming soon)

• Written molecular search parser
• molecules with (resname /ala/i or within 5 angstrom of ligand)

Working on now…

• Setting up molecules
• tleap, antechamber, parmchk, sqm, pdb2gmx

• Solvating molecules
• tleap, solvate

• Mapping molecules for single-topology free energy
calculations
• Drivers for single- and dual-topology free energy

calculations
• Amber, gromacs, somd

• Project runs until the end of 2019

import BioSimSpace as BSS
from BSS.Units import angstrom

Read a protein-ligand complex that has been parameterised with charmm
s = BSS.IO.readMolecules([“NA16.gro”, “NA16.grotop”])

Extract the protein and ligand molecules
protein = s.search(“molecule with resname /ala/i”)
ligand = s.search(“molecule with resname /zan/i”)

Parameterise the protein using Amber FF14SB
protein = BSS.Parameters.ff14SB(protein).getMolecule()

Parameterise the ligand using Amber GAFF2
ligand = BSS.Parameters.gaff2(ligand).getMolecule()

Now re-solvate the complex using TIP3P water with a 10 A buffer
system = BSS.Solvate.tip3p(protein + ligand, buffer=10*angstrom).getSystem()

Minimise and then equilibrate the new system
process = BSS.MD.run(system, BSS.Protocol.Minimisation())
process = BSS.MD.run(process.getSystem(), BSS.Protocol.Equilibration())

Save the new molecules using the same file format as input
BSS.IO.saveMolecules(process.getSystem(), “NA16_updated”, s.fileFormat())

What Science will we be Investigating?

• Software should be used while it is developed!
• Ensures it is useful, and finds and fixes bugs

• Two “grand challenge” applications
1. Automatic setup and running of binding free energy

calculations on a large number of protein-ligand
systems, comparing results against D3R datasets, to
improve quality and predictivity of results (run Q4
2018)

2. Automatic run and investigation of protein-ligand
binding kinetics and binding free energies from
advanced metadynamics and post-metadynamics
simulations (run H1 2019)

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Execute
on

server

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Execute
on

server
Return
result

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Execute
on

server
Return
result

Return renderable

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Execute
on

server
Return
result

Return renderable

Compute DataUser Input Rendered
output

Server

HTML5 Web Browser
(with fully-working WebSockets)

Client HTTP / HTTPS

Python Kernel
Jupyter Notebook

Python Snippet

Execute
on

server
Return
result

Return renderable

Compute DataUser Input Rendered
output

nglview

WebGL Data

WebGL Rendering

Eastern US
Home

(Bristol)
Public Internet

Data transfer limited to what is needed to actually render the visualization (e.g. WebGL data)

All interaction and rendering performed in the browser, making it smooth and lag-free

Kubernetes is a container orchestrator
Dynamically allocates containers to servers

A container running on a server is a called a pod

Kubernetes is a container orchestrator
Pods are networked together using named services

Services can be made visible outside the cluster using a LoadBalancer

Kubernetes is a container orchestrator
If demand for services increases, then more pods are spawned

If demand for services decreases, then pods are destroyed

Kubernetes is a container orchestrator
If one of the pods fails, or goes silent, then it is automatically killed

and restarted. Can also do in-place upgrades and A/B testing

Kubernetes is a container orchestrator
Essentially, Kubernetes is an on-demand “scheduler for containers”

tmplogin

Jupyter
Server

workshop.biosimspace.orgClient(s)

https

AKS
Azure Kubernetes Service

Run JupyterHub/Jupyter on the Azure
Kubernetes Container Service in the
Cloud.

Use “tmplogin” authenticator so
anyone can connect without a
password. Spawns single-use
containers with custom docker image

Cost to support up to 60
simultaneous users is £11 per day
(£4152 per year)

BioSimSpace Cloud

• Partnership with Microsoft Azure and Oracle Cloud
Infrastructure
• Aim to allow upfront charging of cloud compute and storage

costs on a “per simulation” basis
• Replaces current low-level charging based on VMs, network,

disk etc.
• BioSimSpace can estimate compute and storage

requirement of a simulation and will present an up-front
guaranteed cost to run the calculation
• Users can set daily caps and maximum runtimes
• Best resource that fits the caps will be automatically chosen

import BioSimSpace as BSS

account = BSS.Cloud.login()
account.setMaxDailySpend(“£10”)
account.setMaxRunTime(“1 week”)

process = None
system = # load the system
protocol = # define the simulation protocol

try:
process = BSS.MD.run(system, protocol)

except BSS.Cloud.CostBreakConstraintsError as e:
permission = account.emailRequestForPermission(e)

if permission.granted():
process = BSS.MD.run(system, protocol, account.grant(permission))

except BSS.Cloud.InsufficientFundsError as e:
account.emailRequestForFunds(e)

if account.waitForFunds(e.requiredCost(), “48h”):
process = BSS.MD.run(system, protocol)

if not process:
print(“Cannot run the simulation as insufficient cloud funds!”)

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

Object Store

User logs into their cloud account from within the BioSimSpace Jupyter notebook.

This returns a key that can be used to authenticate the user with other services.

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

Object Store

/user/sim

input

To run the simulation, BioSimSpace will use the key to authenticate with an object
store. The input simulation data will be copied into a bucket for the simulation within

this object store, e.g. /user/sim/input

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

Object Store

/user/sim

input

/user/sim Server(s)

HPC Disk

Next, BioSimSpace will use the key to authenticate with a serverless function service
(e.g. Fn running on Oracle). This will automatically provision a fast server connected to a

fast disk that will be used to run the simulation. BioSimSpace supplies the server with
the authentication key needed to access the object store.

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

Object Store

/user/sim

input

/user/sim

Server(s)

HPC Disk
input

The function server uses the authentication key to copy data from the /user/sim bucket
in the object store to the fast (posix) disk which will be used for the simulation.

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

Object Store

/user/sim

input

Server(s)

HPC Disk
input

MD

output

The function server runs the MD simulation, writing output to the fast (posix) disk.

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

Object Store

/user/sim

input

/user/sim

Server(s)

HPC Disk
input

MD

output

Copy

output

As the simulation is running a “copy service” copies files output from the simulation
back to an “output” key in the /user/sim bucket on the object store. This authenticates

using the key originally supplied by the BioSimSpace from the notebook

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

plot(process…) Object Store

/user/sim

input

/user/sim

Server(s)

HPC Disk
input

MD

output

Copy

output/user/sim

At any time while the simulation is running BioSimSpace in the notebook can use the
object store authentication key to query the output, and thus plot graphs, extract

energies or plot 3D views of the molecules as they are being simulated

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

plot(process…) Object Store

/user/sim

input

/user/sim

Server(s)

HPC Disk
input
output

Verify

output

Once the simulation has finished on the function server, the copy service verifies that all
output data has been successfully copied to the object store (e.g. by comparing

checksums and object sizes). Once all output data has been copied and verified, the
function server shuts down, with all data removed from the HPC disk

BioSimSpace
Jupyter Notebook

on kubernetes

MD service on Fn
(function service)

account =
BSS.Cloud.login()

process = BSS.MD(…)

plot(process…)

result =
process.getSystem()

Object Store

/user/sim

input
output

/user/sim

The user interacting with BioSimSpace running in the Jupyter server can query and
analyse the results using the authentication key and path to the output data in the

object store (e.g. /user/sim/output). The data in the object store is write-protected, so
that it can be safely re-used by other scripts without fear of modification or deletion

Simulation Output

• Outputs will be read-only and up-front costs covers
one year’s storage in the object store
• Object store key can become a DOI that allows

them to be accessed from other scripts, or
published and accessed by others
• Web console will allow researchers to manage

outputs, e.g. control access permissions, delete
the output (receive a pro-rata storage refund), pay
of extra years storage, or pay a one-off charge for
the output to be archived (15 years)

Demand versus Batch Computing

Notebooks

Visualisation
Data analysis

Interactive
papers

Demand Computing

Simulations

Shared multi-
user systems

Batch queues

Batch Computing

Demand versus Batch Computing

Notebooks

Visualisation
Data analysis

Interactive
papers

Demand Computing

Simulations

Shared multi-
user systems

Batch queues

Batch Computing

of simulation

Demand versus Batch Computing

Notebooks

Visualisation
Data analysis

Interactive
papers

Demand Computing

Simulations

Shared multi-
user systems

Batch queues

Batch Computing

of simulation

How to handle user accounts on
multiple systems; movement of data;

custom docker images; usage/cost
accounting

Acknowledgements

• BioSimSpace Team
• Lester Hedges, Antonia Mey, Julien Michel, Adrian Mulholland,

Charlie Laughton, Francesco Gervasio

• EPSRC for funding (EP/P022138/1)
• CCP-BioSim and HEC-BioSim for support
• Microsoft – in particular Kenji Takeda
• Oracle – in particular Phil Bates and Gerardo Viedma
• BioExcel – for inviting me and hosting this webinar

https://biosimspace.org
https://chryswoods.com/talks

https://biosimspace.org/
https://chryswoods.com/talks

