
On timeline-based games and their complexity

Nicola Gigante, Angelo Montanari

University of Udine, Italy

Andrea Orlandini

CNR-ISTC, Rome, Italy

Marta Cialdea Mayer

University of Roma Tre, Rome, Italy

Mark Reynolds

The University of Western Australia

Abstract

In timeline-based planning, domains are described as sets of independent, but interacting, components,
whose behaviour over time (the set of timelines) is governed by a set of temporal constraints. A distinguishing
feature of timeline-based planning systems is the ability to integrate planning with execution by synthesising
control strategies for flexible plans. However, flexible plans can only represent temporal uncertainty, while
more complex forms of nondeterminism are needed to deal with a wider range of real-world domains. In this
paper, we propose a novel game-theoretic approach to timeline-based planning problems, generalising the
state of the art while uniformly handling temporal uncertainty and nondeterminism. We define a general
concept of timeline-based game and we show that the notion of winning strategy for these games is strictly
more general than that of control strategy for dynamically controllable flexible plans. Moreover, we show
that the problem of establishing the existence of such winning strategies is 2EXPTIME-complete.

Keywords: Timeline-based planning, Complexity, Games, Planning under uncertainty

1. Introduction

Timeline-based planning is an approach to planning originally proposed in the context of planning and
scheduling of space operations. The approach was outlined by Muscettola et al. [40], and deployed soon after
in the HSTS system [39], used to schedule and control the operations of the Hubble Space Telescope.

Timeline-based planning follows a different modelling perspective, when compared to action-based
planning paradigms à la STRIPS [26]. In the timeline paradigm, there is no explicit separation among states,
actions, and goals; rather, the domain is modelled as a set of independent, but interacting, components,
whose behaviour over time, described by the timelines, is governed by a set of temporal constraints, called
synchronisation rules. The solution plan consists of a set of timelines describing a possible behaviour of the
system’s components that satisfies all the rules. This is a more declarative point of view than that of common
action-based languages such as PDDL, since it is focused on what has or has not to happen, instead of on
what the agent has to do to achieve a given goal. Furthermore, the modelling of the system can be subdivided
among multiple knowledge engineers and domain experts, since the timelines of distinct components can be
separately modelled, and the resulting models can better reflect the architecture of the combined system.

In the last decades, timeline-based planning has been adopted and deployed in a number of systems
developed by space agencies on both sides of the Atlantic. Systems developed following this paradigm include
EUROPA [44], EUROPA 2 [3, 5], and ASPEN [15], developed by NASA, and APSI-TRF, developed for the
European Space Agency [11, 25, 28]. These systems have been repeatedly employed for mid- to long-term
mission planning [9, 10, 16, 17, 29, 41], but the approach was also used to handle on-board autonomy [16, 29, 41].
Recently, the timeline-based approach has been incarnated also in the PLATINUm system [47, 48], a general
purpose framework which is being employed in cooperative robotics [13] and assistive robotics tasks [14].

One of the flagship features of timeline-based systems, which makes them particularly suited for such
domains, is the ability to integrate the planning phase with the execution of the plan. Timeline-based planning
domains often model real-time systems, whose constraints heavily depend on the precise timing of execution of
the tasks. However, ensuring precise timing is often not possible, because of the inherent temporal uncertainty
that arises in the interaction with the environment. The controller executing the plan can handle temporal
uncertainty by the use of flexible plans, i.e., sets of different plans that differ in the execution time of the tasks.

Despite the practical success of the approach deployed in many complex real-world problems, little work
has been done on timeline-based planning from a foundational perspective, till very recently. The concept of
timelines and the main features of the paradigm have been characterised by different authors [6, 8, 21, 27]. A
formal framework capturing the concept of timeline-based planning, including aspects regarding uncertainty
and controllability issues of plans, has been defined a few years ago by Cialdea Mayer et al. [19]. Building on
this framework, recent work explored the timeline-based paradigm from a formal perspective, comparing
the expressiveness of timeline-based and action-based modeling languages and studying the computational
complexity of the involved planning problems [23, 24, 31, 32]. Gigante [30] provides a comprehensive reference
on the recent work on the formal properties of timeline-based planning.

Such a recent work was initially confined to timeline-based planning problems where no uncertainty about
the interaction with the environment was considered. In this paper, we add uncertainty back into the picture.
Timeline-based planning systems generally focus on handling temporal uncertainty, but nondeterminism
is not supported in general terms: even the behaviour of external variables, completely controlled by the
environment, is known up to temporal uncertainty only. The choice on concentrating on temporal reasoning
and temporal uncertainty only is coherent with the history and scope of timeline-based systems. However,
timeline-based modelling languages are expressive enough to model complex scenarios, such as those faced in
cooperative robotics applications [13], that involve non-temporal nondeterminism, such as uncertainty about
the task the environment will perform at a certain point in time. In such cases, current systems often employ
a re-planning stage as part of their execution cycle (see, e.g., [46]): any mismatch between the expected
and actual behaviours of the environment results into a revision of the flexible plan, which then can resume

Preprint submitted to Elsevier 27 May 2020

execution. Unfortunately, the cost of such a re-planning phase may be incompatible with the requirements
of real-time execution and, more importantly, if a wrong choice is made by the original flexible plan, the
re-planning might happen too late to be able to recover a controllable state of the system. Hence, knowledge
engineers have to explicitly account for this problem if they want to avoid unnecessary failures and costly
re-planning during execution, which make the system less effective and more complex to use.

To address such limitations, this paper introduces the novel concept of timeline-based planning game,
a game-theoretic generalisation of the timeline-based planning problem with uncertainty, which uniformly
deals with both temporal uncertainty and general nondeterminism: the controller tries to satisfy the given
temporal constraints no matter what the choices of the environment are. We compare the proposed games
with the current approaches based on flexible plans. In particular, we show how current timeline-based
modelling languages can express problems that, only seeming to involve temporal uncertainty at first, in
fact model scenarios which would require the controller to handle non-temporal nondeterminism. We show
that these problems do not admit dynamically controllable flexible plans (as defined in [19]), but do admit
winning strategies when viewed as instances of timeline-based games. Then, we prove that establishing the
existence of a winning strategy for a given timeline-based planning game is 2EXPTIME-complete.

The paper is structured as follows. Section 2 defines timeline-based planning, including the concepts of
flexible plan and dynamic controllability, borrowed from the formal framework provided by Cialdea Mayer
et al. [19], which forms the basis of our analysis. Then, Section 3 discusses in detail a few limitations of the
current approach based on flexible plans, motivating the rest of the paper. Section 4 addresses these issues by
defining timeline-based games, and proving that the existence of a winning strategy for such games subsumes,
and is strictly more general than, the existence of dynamically controllable flexible plans. Finally, Section 5
shows that the problem of establishing whether such a strategy exists is 2EXPTIME-complete. Section 6
concludes the paper by summarising its results and discussing future lines of research and open problems.

2. Timeline-based planning

In this section, we formally define timeline-based planning problems. At first (Section 2.1), we introduce
problems that are not concerned with any uncertainty in the interaction with the external environment. Such
an ingredient will be added in Section 2.2, by means of the notion of flexible plan.

2.1. Timelines, plans, synchronization rules, and timeline-based planning problems

In our setting, interesting properties of the modelled system are represented by state variables.

Definition 1 (State variable). A state variable is a tuple x = (Vx, Tx, Dx, γx), where Vx is the finite
domain of x, Tx : Vx → 2Vx is the value transition function of x, Dx : Vx → N× N ∪ {+∞} is the duration
function of x, and γx : Vx → {c, u} is the controllability tag.

Definition 1 can be interpreted as follows. The transition function specifies which values can follow any
other during the evolution of the variable. The duration function Dx maps any value v ∈ Vx into a pair of
non-negative integers (d,min, which respectively specify the minimum and maximum duration of any time
interval (more precisely, of any token, as defined below) where x = v. The maximum duration can be infinite
(d=
max), in which case there is no upper bound to how long the variable can hold the given value. The

controllability tag comes into play when handling uncertainty. Intuitively, it states whether the duration
of any token where x = v is controllable by the system (γx(v) = c) or not (γx(v) = u).

Two example state variables, that belong to the domain of the operations of a satellite orbiting a planet
(a scenario elicited from the ESA Mars Express mission [12]), are depicted in Fig. 1. The first variable (xp)
represents the pointing mode of the satellite, i.e., whether it is pointing towards Earth, doing maintenance,
doing scientific measurements, slewing between the direction facing Earth and the direction facing the
underlying planet, or whether it is transmitting some information. The domain of the variable thus consists of
the five depicted values, and the transition function states which task can follow each other, being visualisable
as a state machine. Minimum and maximum duration of each value are reported inside the bubbles. The
second variable (xv) represents the visibility window of the Earth ground station, which determines when the

2

Earth
[1,+∞]

Slewing
[30, 30]

Science
[36, 58]

Comm
[30, 50]

Maintenance
[90, 90]

Visible
[60, 100]

Not Visible
[1, 100]

xv
Not Visible Visible

xp
Earth Slewing Science Slewing Earth Comm Earth

(a) Example state variables. (b) Example timelines.

Figure 1: On the left, values of the example state variables xp (above) and xv (below) visualised as state machines. Uncontrollable
values are marked in orange. On the right, example timelines for the two variables.

station is visible for transmitting. In this example, γxp(Comm) = u, i.e., the Comm value is uncontrollable,
meaning that the system can decide when to start communicating but can neither decide nor predict how
much time will be required by the transmission. All the values of the variable xv are uncontrollable since, of
course, the satellite cannot decide when the ground stations are visible or not. In the rest of the section, the
controllability tag will be ignored; it will be considered again in Section 2.2.

The evolution over time of the values of each state variable is modelled by the timelines, which are the
core concept of the whole formalism.

Definition 2 (Timeline). A token for a state variable x is a triple τ = (x, v, d), where v ∈ Vx is the value
taken by the variable, and d ∈ N+ (positive integers) is the duration of the token. A timeline for a state
variable x is a finite sequence τ = 〈τ1, . . . , τk〉 of tokens for x.

A timeline thus represents how a state variable changes its value over time in terms of a sequence of
time intervals where the variable keeps the same value. Figure 1b shows two example timelines for the
state variables xp and xv. Note that d ∈ N+, i.e., the duration of tokens cannot be zero. For any token
τi = (x, vi, di) in a timeline τ = 〈τ1, . . . , τk〉, we define val(τi) = vi and duration(τi) = di. The functions

start-time(τ , i) =
∑i−1
j=1 dj and end-time(τ , i) = start-time(τ , i) + di, for all 1 ≤ i ≤ k, map each token τi to

the corresponding [start-time(τ , i), end-time(τ , i)) time interval (right endpoint excluded). When there is no
ambiguity about which timeline we refer to, we write start-time(τi) and end-time(τi) to denote, respectively,
start-time(τ , i) and end-time(τ , i). Note that two consecutive tokens can hold the same value.

Let us denote by TSV the set of all the possible timelines for the set of variables in SV. A plan is a set of
timelines describing the evolution of the considered set of state variables.

Definition 3 (Plan). Let SV be a set of state variables. A plan over SV is a function π : SV→ TSV, that
maps each variable to the timeline describing its behaviour, such that all the timelines have the same total
duration.

We denote by tokens(π) the set of tokens in π(SV) and by tokens(π(xi)) the set of tokens in π(xi). The
behaviour of a system over time, described by a set of state variables, is governed by a set of temporal
constraints, called synchronisation rules. Let N = {a, b, . . .} be an arbitrary set of token names. The building
blocks of synchronisation rules are atomic temporal relations.

3

Definition 4 (Atomic temporal relation). An atomic temporal relation (atom for short) over N is
defined by the following grammar:

〈term〉 := t | start(a) | end(a)

〈atom〉 := 〈term〉 ≤[] 〈term〉

where t, l ∈ N, u ∈ N ∪ {+∞}, and a ∈ N . Terms of the form t, with t ∈ N, are called timestamps.

Notice that the only meaningful atoms are those where at least one of the two terms is not a timestamp.
Let a and b be two token names. Examples of atoms are start(b) ≤[5],start(a) ≤[] end(b), and start(a) ≤[]

start(b). Intuitively, a token name a refers to a specific token in a timeline, and start(a) and end(a) to its
endpoints. Then, an atom such as start(a) ≤[] end(b) constrains a to start before the end of b, and the
distance between the two endpoints to be comprised between the lower and upper bounds l and u. Atoms
are grouped into quantified clauses called existential statements.

Definition 5 (Existential statement). Given a set SV of state variables, an existential statement over
SV is a statement of the following form:

〈ex . statement〉 := 〈quantifier prefix 〉 . 〈clause〉
〈quantifier prefix 〉 := ∃a1[x1 = v1]a2[x2 = v2] . . . an[xn = vn]

〈clause〉 := 〈atom〉 ∧ 〈atom〉 ∧ . . . ∧ 〈atom〉

where n ∈ N, a1, . . . , an ∈ N , x1, . . . , xn ∈ SV, and vi ∈ Vxi for all 1 ≤ i ≤ n.

The blocks of the form ai[xi = vi] are called quantifiers. All the token names appearing in the atoms
inside the clause C of an existential statement E ≡ ∃a1[x1 = v1] . . . an[xn = vn] . C, that do not appear in the
quantifier prefix, are said to be free in E , and all those that do appear are said to be bound. An existential
statement is closed if it does not contain free token names. Note that the quantifier prefix may as well be empty.

The syntax of synchronisation rules is defined as follows.

Definition 6 (Synchronisation rules). Given a set of state variables SV, a synchronisation rule over SV
is an expression matching the following grammar:

〈body〉 := 〈ex . statement〉 ∨ . . . ∨ 〈ex . statement〉
〈rule〉 := a0[x0 = v0]→〈body〉
〈rule〉 := >→〈body〉

where a0 ∈ N , x0 ∈ SV, v0 ∈ Vx0
, and the only token name appearing free in the body is a0, and only in

rules of the first form.

In rules of the first form, the quantifier in the head is called trigger ; rules of the second form are called
trigger-less rules. Intuitively, a synchronisation rule requires that, whenever a token exists that satisfies the
trigger, at least one of the disjuncts (existential statements) is satisfied, i.e., there exist other tokens, as
specified in the quantifier prefix, such that the corresponding clause is satisfied. Trigger-less rules have a
trivial universal quantification, which means that they only ask for the existence of some tokens, as specified
by the existential statements. Consider, for instance, the timelines in Fig. 1b, and the synchronisation rules:

a[xp = Comm]→ ∃b[xv = Visible] . start(b) ≤[start] a) ∧ end(a) ≤[end] b)

a[xp = Science]→ ∃b[xp = Comm] . end(a) ≤[0,50] start(b)

The first rule expresses an essential guarantee for the satellite system represented by the two example
variables, namely, that when the spacecraft is communicating with Earth, the ground station is visible. The
timelines in Fig. 1b satisfy this constraint, since the time interval corresponding to the execution of the token
where xp = Comm is contained in the one of the token where xv = Visible. The second rule instructs the
system to transmit data back to Earth after every measurement session, within a certain time bound.

4

A trigger-less rule can instead be used to state the goal of the system, namely, to perform some scientific
measurement at all:

> → a[xp = Science]

Some simple syntactic sugar can be introduced on top of the basic syntax. A strict version of unbounded
atoms can be added by writing T <[T] for T ≤[] T

′. Moreover, one can force two endpoints to coincide in
time by writing start(a) = start(b) for start(a) ≤[] start(b), and two tokens to coincide by writing a = b for
start(a) = start(b) ∧ end(a) = end(b). More generally, all the Allen’s interval relations [1] can be expressed
in terms of these basic temporal relations.

We conclude the section by providing the notion of timeline-based planning problem. As a preliminary
step, we give a formal account of the semantics of synchronisation rules, to back up their intuitive meaning.

Definition 7 (Semantics of atomic temporal relations). An atomic evaluation is a function λ : N →
N2 that maps each token name a to a pair λ(a) = (s, e) of natural numbers. Given a term T and an atomic
evaluation λ, the evaluation of T induced by λ, denoted JT Ks defined as follows:

• JtK=foranyt∈ N;

• for any a ∈ N , if λ(a) = (s, e), then Jstart(a)K=andJend(a)K=. Given an atomic temporal relation α ≡ T ≤[] T
′

and an atomic evaluation λ, we say that λ satisfies α, written λ |= α, if and only if l ≤ JT ′K− ≤ u.

Given a clause C ≡ α1 ∧ . . . ∧ αk, by extension we write λ |= C if λ |= αi for all 1 ≤ i ≤ k. Atomic
evaluations are extracted from tokens when trying to satisfy a whole existential statement.

Definition 8 (Semantics of existential statements). Let π be a plan over a set of state variables SV,
and let E ≡ ∃a1[x1 = v1] . . . an[xn = vn] . C be an existential statement. A function η : N → tokens(π)
mapping any token name to a token belonging to the plan π is called token mapping.

We say that π satisfies E with the token mapping η, written π |=η E , if, for all 1 ≤ i ≤ n, there is a token
τi ∈ tokens(π(xi)) such that η(ai) = τi and val(τi) = vi, and λ |= C for an atomic evaluation λ such that
λ(ai) = (start-time(τi), end-time(τi)) for all 1 ≤ i ≤ n.

Given a synchronisation rule R ≡ a0[x0 = v0]→ E1 ∨ . . . ∨ Em, we say that π satisfies R, written π |= R,
if for any token τ0 ∈ π(x0), if val(τ0) = v0, then there is an existential statement Ei and a token mapping
η such that η(a0) = v0 and π |=η Ei. For a trigger-less rule R ≡ > → E1 ∨ . . . ∨ Em, π |= R if there exist
an existential statement Ei and a token mapping η such that π |=η Ei.

Definition 9 (Timeline-based planning problems). A timeline-based planning problem is a pair P =
(SV, S), where SV is a set of state variables, and S is a set of synchronisation rules over SV. A plan π over
SV is a solution plan for P if and only if π |= R for all synchronisation rules R ∈ S.

Let P be a timeline-based planning problem. It has been shown that the problem of establishing whether
there exists a plan π |= P , is EXPSPACE-complete [30, 32].

Definition 9 captures the deterministic variant of the problem, where there is no support for modelling
the uncertainty coming from the interaction with the external world. The next section defines timeline-based
planning problems with uncertainty, which account for this important feature.

2.2. Timeline-based planning with uncertainty

In this section, we extend the above definitions with the notion of temporal uncertainty, defining timeline-
based planning problems with uncertainty. We basically follow the way in which they are presented in Cialdea
Mayer et al. [19]. The ability of dealing with this form of uncertainty, integrating the planning and execution
phases, is one of the key features of timeline-based planning systems, which usually employ the concept of
flexible timeline and, consequently, of flexible plan.

A flexible timeline can be viewed as a set of timelines that differ only in the precise timings of the start and
the end of the tokens therein, embodying some temporal uncertainty about the events described by the timeline.

5

τxp
Earth

110 120

Slewing

140 150

Science

181 200

Slewing

215 233

Earth

τ ′xp

Earth

115

Slewing

148

Science

185

Slewing

220

Earth

Figure 2: Example of flexible timeline τxp and one of its instances τ ′xp , for the variable xp of Fig. 1.

Definition 10 (Flexible timeline). A flexible token for a state variable x is a tuple τ = (x, v, [e, E], [d,D]),
where v ∈ Vx, [e, E] ∈ N× N is the interval of possible end times of the token, and [d,D] ∈ N× N+ is the
interval of possible token durations. A flexible timeline for x is a finite sequence τ = 〈τ1, . . . , τk〉 of flexible
tokens τi = (x, vi, [ei, Ei], [di, Di]) for x, where [e1, E1] = [d1, D1], ei ≥ ei−1 + di, and E1 ≤ Ei−1 +Di.

Hence, flexible timelines provide an uncertainty range for the end time and the duration of each flexible
token of the timeline. Note that each flexible token reports a range of its end time, rather than its start time,
because in this way it can explicitly constrain its horizon. Tokens and timelines as specified in Definition 2 are
also called scheduled tokens and scheduled timelines. Similarly to the notation used for scheduled timelines,
the set of all the possible flexible timelines for the set of state variables SV is denoted as FSV.

Let x = (Vx, Tx, Dx, γx) be a state variable. We now focus on the controllability tag γx, which has been
ignored in Section 2. The controllability tag tells, for each value of the domain of each variable, if the
duration of tokens that hold the given value are under the control of the planner or not. Hence, a value
v ∈ Vx is said to be controllable if γx(v) = c, and uncontrollable if, otherwise, γx(v) = u.

Given a flexible timeline τ = 〈τ1, . . . , τk〉, with τi = (x, vi, [ei, Ei], [di, Di]), a scheduled timeline
τ ′ = 〈τ ′1, . . . , τ ′k〉, with τi = (x, v′i, d

′
i) is an instance of τ if di ≤ d′i ≤ Di and ei ≤ end-time(τ ′i) ≤ Ei.

Figure 2 shows a flexible timeline for the example state variable xp of Fig. 1, and one of its instances. We
are now ready to define the concept of flexible plan.

Definition 11 (Flexible plan). Given a set of state variables SV, a flexible plan over SV is a pair Π = (π,R),
where π : SV→ FSV is a function providing a flexible timeline π(x) for each state variable x, and R is a set
of atoms (Definition 4) using as token names the set of tokens of the timelines in π.

Intuitively, the flexible plan Π = (π,R) represents a set of instances of the flexible timelines of π which,
additionally, satisfy the constraints imposed by the atoms included in R.

Definition 12 (Instances of flexible plans). Let Π = (π,R) be a flexible plan over SV. A plan π′ is an
instance of Π if π′(x) is an instance of π(x) for all x ∈ SV, and all the atoms T ∈ R are satisfied by the
atomic evaluation λ such that λ(τ ′) = (start-time(τ ′), end-time(τ ′)) for all tokens τ ′ of π′(x), for any x ∈ SV.

To understand the role of the R component in Definition 11, consider the example given in Fig. 3,
which shows flexible timelines τx = 〈τx0 , τx1 , τx2 〉 and τy = 〈τy0 , τ

y
1 , τ

y
2 〉 for two variables x and y, that have

to be constrained by the shown synchronisation rule. The lower part of the picture shows some example
instances of the flexible timelines. Given how the token τx1 is instantiated, not all the possible instances of
the timeline for y are valid according to the considered rule. The first example instantiation, namely, τ ′y,
violates the rule, while the second one satisfies it. This happens because a simple set of flexible timelines
misses the key information that τy1 cannot start before the end of τx1 . A flexible plan satisfying such a rule
would then have to provide additional constraints ensuring this fact, such as R = {end(τx1) = start(τy1)} or
R′ = {end(τx1) ≤[] start(τy1)}.

We are now ready to introduce the timeline-based planning problem with uncertainty, as an extension of
the timeline-based planning problem of Definition 9. We first provide the definition of the problem and of
the flexible solution plan, and then discuss in detail their meaning and structure.

Definition 13 (Timeline-based planning problem with uncertainty).
A timeline-based planning problem with uncertainty is defined as a tuple P = (SVC ,SVE , S,O), where:

6

1. SVC and SVE are the sets of, respectively, the controlled and the external variables;

2. S is a set of synchronisation rules over SVC ∪ SVE ;

3. O = (πE ,RE) is a flexible plan, called the observation, specifying the behaviour of external variables.

Definition 14 (Flexible solution plan). Let P = (SVC ,SVE , S,O), with O = (πE ,RE), be a timeline-
based planning problem with uncertainty. A flexible solution plan for P is a flexible plan Π = (π,R) over
SVC ∪ SVE such that:

1. Π agrees with O, i.e., π(x) = πE(x), for each x ∈ SVE , and RE ⊆ R;

2. the plan does not restrict the duration of uncontrollable tokens, i.e., for any state variable x and any
flexible token τ = (x, v, [e, E], [d,D]) in π(x), if γx(v) = u, then d = dmindD=dmaxanyinstanceofπ is
a solution plan for the timeline-based planning problem P ′ = (SVC ∪ SVE , S), and there is at least one
such instance.

The definitions above are worth a detailed explanation. The timeline-based planning problem with
uncertainty considers two different sources of uncertainty: the behaviour of external variables, and the
duration of uncontrollable tokens. In contrast to the simple problem without uncertainty (see Definition 9),
the set of state variables is split into the controlled variables SVC and the external variables SVE . The
behaviour of external variables cannot be constrained by the planner in any way, hence any solution plan is
constrained to replicate the flexible timelines given by the observation O, which is a flexible plan describing
their behaviour. Since O is a flexible plan, there is temporal uncertainty on the start and end times of the
involved tokens, but the behaviour of the variables is otherwise known beforehand to the planner. Despite
the name, borrowed from Cialdea Mayer et al. [19], the observation O is more an a priori description of
how the external variables will behave during the execution of the plan, up to the given temporal uncertainty
on the precise timing of the events. The intended role of the external variables, then, is not so much that
of independent components interacting with the planned system, but rather, of external entities useful to
represent given facts and invariants that the planner has to account for during the search for a solution.

As an example, consider a satellite seeking the right time to transmit data to Earth. When modelling this
scenario as a timeline-based planning problem with uncertainty, the window of visibility of Earth’s ground
stations can be represented as an external variable with a suitable observation. Note that the exact timing of
when each station will effectively be available can be uncertain, but each visibility time slots are usually
scheduled for the next months to come, and the planner has not to account for any variability in that regard.
Hence, specifying the expected behavior of the environment as a flexible plan is usually enough when external
variables are used in this way, not so much if a more general specification of the environment behavior is
needed, as we will see in the next section.

The second considered source of temporal uncertainty comes from tokens holding uncontrollable values.
The duration of such tokens cannot be decided by the planner, and thus their minimum and maximum
duration in the flexibility range of the timeline has to coincide with that specified by the duration function
of the variable. The planner can, however, decide which tokens to start and when, on controlled variables,
even if γx(v) = u (the uncontrollability is specifically limited to the duration of the token). It is worth noting
how the formalism has intentionally been tailored to consider only temporal uncertainty, both with regards
to external variables and to uncontrollable tokens.

2.3. Controllability of flexible plans

As already pointed out, the timeline-based approach to planning is specifically targeted at the integration
between the planning phase and the execution of the plan. Hence, it is important to ensure that, once a flexible
plan is found for a timeline-based planning problem with uncertainty, the plan can be effectively executed.
This is not a trivial requirement given the presence of uncontrollable tokens, whose duration is decided during
execution and is unknown beforehand. Definition 11, indeed, ensures that any scheduled instance of the plan
is a solution for the problem, but it does not guarantee that (1) such an instance exists for any possible choice

7

τx
v

τy
v′

τ ′x = τ ′′x

v

τ ′y
v′

τ ′′y
v′

a0[x = v]→ ∃a1[y = v′]. end(a0) ≤[]
start(a1) ∨ end(a0) ≤[]

start(a1)

Figure 3: Example flexible timeline for two state variables x and y, where not all the possible instances satisfy the above
synchronisation rule.

of the duration of uncontrollable tokens, and (2) at any time during the execution, the correct choice to keep
following an instance of the plan depends only on events already happened and information already known.

For this reason, we must take into consideration the controllability of flexible plans, i.e., the property of
being effectively executable by a controller. There are three major kinds of controllability that one may want
to ensure on a flexible plan, depending on the application, which can be intuitively defined as follows.

Weak controllability For any possible choice of the duration of uncontrollable tokens, there is an instance of
the flexible plan respecting that choice.

Strong controllability There is a way of instantiating controllable tokens that results into a valid instance of
the flexible plan, no matter which is the duration of uncontrollable ones.

Dynamic controllability A strategy exists to choose how to instantiate each token, which, at any given point
in time, can keep the execution in a valid instance of the plan, based only on past events.

Such concepts have been formalized by Cialdea Mayer et al. [19] for flexible plans, but ideas and
terminology come from further back to the contributions on simple temporal networks with uncertainty
(STNU) [50], which face very similar problems. In this paper, we are mostly concerned with dynamic
controllability, as it represents the most reactive scenario, where the controller can react in real-time to what
happens around it in order to achieve its goals or guarantee its safety requirements.

In the following, we briefly remind how dynamically controllable flexible plans can be formally defined.
Recall that the set of tokens of all the timelines of a plan is denoted by tokens(π). We extend this notation by
distinguishing among the set of tokens of all the timelines of a flexible plan Π, denoted by tokens(Π), the set of
uncontrollable tokens of Π, denoted by tokensU (Π), and the set of controllable ones, denoted by tokensC(Π).

Definition 15 (Situations and relevant situations). Let P = (SVC ,SVE , S,O), with O = (πE ,RE), be
a timeline-based planning problem with uncertainty, and let Π=(π,R) be a flexible plan. A situation for Π
is a map ω : tokensU (Π)→ N assigning a duration to each uncontrollable token of Π. A situation ω is said
to be relevant if any instance of Π in ω(Π) satisfies the constraints of RE .

A situation represents the choices of the environment for the duration of uncontrollable tokens, both of
controlled and external variables. Given a flexible plan Π = (π,R), we denote by ω(Π) the set of instances of
Π where the duration of uncontrollable tokens corresponds to what dictated by ω. Relevant situations are
those where the external variables actually follow the behaviour described by the observation O. Since the
controller is allowed to assume that this happens, only relevant situations are considered.

Let us denote by ΩΠ the set of relevant situations for Π. If situations represent the decisions of the
environment about the duration of uncontrollable tokens, then scheduling functions define the controller’s
counterpart, deciding how to execute the whole plan.

8

Definition 16 (Scheduling function). Given a timeline-based planning problem P = (SVC ,SVE , S,O)
and a flexible plan Π = (π,R) for P , a scheduling function for Π is a map θ : tokens(Π)→ N, that assigns an
end time to each token in Π, such that the resulting scheduled plan θ(Π) is an instance of Π.

Let TΠ be the set of scheduling functions for Π. An execution strategy for P is a map ς : ΩΠ → TΠ such
that, given θ = ς(ω) for any ω ∈ ΩΠ, if τ is an uncontrollable token of θ(Π), then duration(τ) = ω(τ).

We are now ready to formally define the different concepts of controllability introduced above. We start
from the two simplest ones.

Definition 17 (Weak and strong controllability). Let Π be a flexible plan. Then, we say that Π is:

1. weakly controllable if there exists an execution strategy ς for Π;

2. strongly controllable if there is an execution strategy ς for Π such that ς(ω) = ς(ω′) for all ω, ω′ ∈ ΩΠ.

Given a scheduling function θ, let θ<t be a function mapping any token τ such that θ(τ) < t to its
duration. Such a function can be viewed as a description of the evolution of the system up to time t, ignoring
any token that does not end before it. By exploiting it, we can define dynamic execution strategies, and
dynamically controllable flexible plans, i.e., plans that admit such strategies.

Definition 18 (Dynamic controllability). Let Π be a flexible plan, ς be an execution strategy for Π,
ω, ω′ ∈ ΩΠ be two relevant situations, and τ ∈ tokensC(Π) be a controllable token in Π. Moreover, let
ς(ω) = θ, ς(ω′) = θ′, and t = θ(τ). Then,

1. ς is a dynamic execution strategy if θ<t = θ′<t implies θ(τ) = θ′(τ);

2. Π is dynamically controllable if it has a dynamic execution strategy.

3. Limitations of the current approach

In this section, we point out some limitations of the current approach to uncertainty in timeline-based
planning, based on flexible plans, that we described in the previous section. The whole discussion revolves
around the notion of nondeterminism. The design of most timeline-based planning systems, and, in particular,
of the formal framework by Cialdea Mayer et al. [19], has been intentionally tailored to the handling
of temporal uncertainty, i.e., uncertainty about when things will happen, disregarding general forms of
nondeterminism, i.e., uncertainty about what will happen. According to the definitions given in Section 2.2,
indeed, flexible plans are intrinsically sequential objects, that cannot represent any choice about how the
execution of the plan can proceed if not regarding the timing of events (once more, this has been an intentional
design choice of these systems).

In the meantime, the action-based planning community studied how to handle general nondeterminism
quite extensively in the past years, following different approaches such as, for instance, reactive planning
systems [4], deductive planning [45], model checking [20], and, especially, fully observable nondeterministic
planning (FOND planning) [7, 37, 38, 42]. However, these approaches to nondeterministic action-based
planning do not support flexible plans and temporal uncertainty, and do not account for controllability
issues. Recently, SMT-based techniques have been exploited to deal with uncontrollable durations in strong
temporal planning [22], but dynamic controllability issues are not addressed.

It seems therefore that the two worlds have evolved in different and incomparable ways. On the one hand,
timeline-based planning supports temporal uncertainty, but it does not consider general nondeterminism; on
the other hand, action-based planning deals with general nondeterminism, but it does not explicitly support
temporal uncertainty.

As a matter of fact, it is worth observing that the explicit focus of timeline-based planning on temporal
uncertainty does not mean that handling general nondeterminism is not needed in the common application
scenarios of these systems. However, the history of timeline-based planning, with its roots in scheduling
and control theory, naturally led over time to this formulation. As explained in Section 2.2, the external

9

variables in timeline-based planning problems with uncertainty are used to express known facts about what
will happen, rather than components of a fully-fledged external entity running alongside the planned system.
To this end, planning problems include a flexible plan, the observation, describing the behaviour of external
variables up to the given temporal flexibility. The definition of the various forms of controllability then
assumes that the behaviour of the environment follows what is stated by the observation. This is perfectly
fine in some scenarios, such as the satellite control example. In other ones, however, the approach can be
limiting. As an example, in collaborative robotics domains where the PLATINUm planning system was
designed to be deployed [47], the controlled system has to cooperate with human agents, and thus a true
reactive behaviour is required and strong assumptions about the environment choices are not possible. To
cope with application domains of this nature, many timeline-based systems employ a feedback loop between
the planning and execution phases, which includes a failure manager that senses when the execution is
deviating from the assumed observation, and triggers a re-planning phase if necessary, devising a new flexible
plan and a dynamic execution strategy that can be used to resume execution. Unfortunately, the re-planning
phase can be expensive to perform on-the-fly, limiting the real-time reactivity of the system.

Even ignoring the above issue, the relationships between temporal uncertainty, nondeterminism, and
timeline-based planning languages turn out to be more complex than anticipated. As a matter of fact,
even explicitly focusing on temporal uncertainty, timeline-based planning languages are still able to express
scenarios where handling nondeterminism in a more general way is required. Consider, for instance, a
timeline-based planning problem with uncertainty P = (SVC ,SVE , S,O), with a single controlled state
variable x ∈ SVC , with Vx = {v1, v2, v3}, SVE = ∅, and S consisting of the following rules:

a[x = v1]→ ∃b[x = v2] . end(a) ≤[] start(b) ∧ start(a) ≤[] end(a)

∨ ∃c[x = v3] . end(a) ≤[] start(c) ∧ start(a) ≤[] end(a)

> → ∃a[x = v1] . start(a) = 0

Suppose that Dx(vi) = [1, 10] for all vi ∈ Vx, and that tokens where x = v1 are uncontrollable, i.e.,
γx(v1) = u, while γx(v2) = γx(v3) = c. The rules require the controller to start the execution with a token
where x = v1, followed by a token where either x = v2 or x = v3 depending on the duration of the first token.
This scenario is, intuitively, trivial to control. The system must execute x = v1 as a first token due to the second
rule. Then, the environment controls its duration, and the system simply has to wait for the token to end, and
then execute either x = v2 or x = v3 depending on how long the first token lasted. However, there are no flex-
ible plans that represent this simple strategy, since each given plan must fix the value of every token in advance.
To guarantee the satisfaction of the rules, the value to assign to x on the second token must be chosen during
the execution, but this is not possible because of the sequential nature of flexible plans. In this case, therefore,
the problem would be considered as unsolvable, even if the goals stated by the rules seem simple to achieve.

The above simple scenario shows that the inherently sequential nature of flexible plans does not allow
one to express the need for a choice to be made during execution other than regarding the timings of
events. However, the syntax of the language supports the modelling of scenarios where making qualitative
choices depending on the environment nondeterministic behaviour is needed. Note that this is a different
situation to that of deterministic action-based languages such as PDDL. In these languages, nondeterminism
is not supported and simply cannot enter the picture. To allow one to model nondeterministic behaviours,
PDDL has to be extended with syntactic elements useful for the purpose, like, e.g., the anyof keyword for
nondeterministic effects. In this case, instead, the basic syntax of the language is sufficient to express such
scenarios, but their possible solutions cannot be represented. We may say that dynamically controllable
flexible plans do not provide a complete semantics for timeline-based planning with uncertainty. One may
suppose that this expressive power comes from disjunctions in synchronisation rules, which come into play
the above example, but results such as the encoding of action-based temporal planning given by Gigante [30]
show how their presence is essential even to express simple deterministic scenarios, and thus the gap cannot
be filled by removing them.

It can be easily seen that scenarios like the above one would immediately arise when trying to encode any
kind of nondeterministic action-based problem such as fully observable nondeterministic (FOND) planning
problems. Hence, it is impossible to extend the aforementioned encoding of action-based temporal planning

10

to nondeterministic planning. The notable observation, however, is that a syntactic representation of a FOND
planning problem as a timeline-based planning problem would be perfectly feasible, similarly to the encoding
for classical planning given in [30], but such an encoding would lack a proper semantics, corresponding to
FOND policies, to express the solutions to the problem.

In this paper, we propose and systematically study an extension to timeline-based planning problems
with uncertainty, called timeline-based games, which addresses both the issues outlined above by treating
temporal uncertainty and general nondeterminism in a uniform way.

Timeline-based games are two-player turn-based perfect-information games where the players play by
executing the start and end endpoints of tokens, building a set of timelines. The first player, representing
the controller, wins the game if it can build a solution plan for a given timeline-based planning problem,
independently from the behaviour of the second player, which represents the environment.

In the next section, we first define the structure of timeline-based games, and then we show that they
can capture the semantics of timeline-based planning problems with uncertainty, in the sense that for any
such problem there is a game where the controller has a winning strategy if and only if the problem admits
a dynamically controllable flexible plan. Moreover, we demonstrate that they strictly subsume the approach
based on flexible plans, by showing how the problematic example given above can be modelled by means
of a timeline-based game that admits a winning strategy for the controller. Finally, we address the problem
of finding a winning strategy for such games, showing that the problem of deciding whether the controller
has a winning strategy for a given timeline-based planning game is 2EXPTIME-complete (Section 5). The
decision procedure heavily exploits the machinery of matching records defined by Gigante [30].

4. Timeline-based games

This section introduces the timeline-based games, our game-theoretic approach to the handling of
uncertainty in timeline-based planning. We first describe their general structure, including the winning
condition, and then go in detail on how they relate to dynamically controllable flexible plans and the issues
brought up in the previous section.

Intuitively, a timeline-based game is a turn-based, two-player game played by the controller, Charlie, and
the environment, Eve. By playing the game, the players progressively build the timelines of a scheduled plan
(see Definition 3). At each round, each player makes a move deciding which tokens to start and/or to end
and at which time. Both players are constrained by a set D of domain rules, which describe the basic rules
governing the world. Domain rules replace the observation carried over by timeline-based planning problems
with uncertainty (Definition 13), but generalise them allowing one to freely model the interaction between
the system and the environment. Note that domain rules are not intended to be Eve’s (nor Charlie’s) goals,
but, rather, a set of background facts about how the world works that can be assumed to hold at any time.
Since no player can violate D, the strategy of each player may safely assume the validity of such rules. In
addition, Charlie is responsible for satisfying a set S of system rules, which describe the rules governing
the controlled system, including its goals. Charlie wins if, assuming Eve behaves according to the domain
rules, he manages to construct a plan satisfying the system rules. In contrast, Eve wins if, while satisfying
the domain rules, she prevents Charlie from winning, either by forcing him to violate some system rule, or
by indefinitely postponing the fulfilment of his goals.

4.1. Partial plans

Players play the game by building a set of timelines, that is, a plan, in turns. Hence, we need to find a
way to describe the partial result of this turn-based plan-building activity, that we call partial plans, which
are incomplete plans under construction.

We start with the concept of event sequence, a different representation of a plan, easier to manipulate from
a formal standpoint. Representing plans as event sequences is at the core of recent complexity results about
timeline-based planning problems [30, 32]. In particular, we follow here the exposition given by Gigante [30].

In event sequences, instead of focusing on the single timelines as building blocks, plans are flattened over
a single sequence of events that mark the start/end of tokens.

11

Definition 19 (Event sequence). Let SV be a set of state variables, and let ASV be the set of all the
terms, called actions, of the form start(x, v) or end(x, v), where x ∈ SV and v ∈ Vx.

An event sequence over SV is a sequence µ = 〈µ1, . . . , µn〉 of pairs µi = (Ai, δi), called events, where
Ai ⊆ ASV is a non-empty set of actions, and δi ∈ N+, such that, for any x ∈ SV:

1. for all 1 ≤ i ≤ n, if start(x, v) ∈ Ai for some v ∈ Vx, then there are no start(x, v′) in any µj before the
closest µk with k > i, if any exists at all, such that end(x, v) ∈ Ak;

2. for all 1 ≤ i ≤ n, if end(x, v) ∈ Ai for some v ∈ Vx, then there are no end(x, v′) in any µj after the
closest µk with k < i, if any exists at all, such that start(x, v) ∈ Ak;

3. for all 1 ≤ i < n, if end(x, v) ∈ Ai for some v ∈ Vx, then start(x, v′) ∈ Ai for some v′ ∈ Vx.

4. for all 1 < i ≤ n, if start(x, v) ∈ Ai for some v ∈ Vx, then end(x, v′) ∈ Ai for some v′ ∈ Vx.

Intuitively, an event µi = (Ai, δi) consists of a set Ai of actions describing the start or the end of some
tokens, happening δi time steps after the previous one. Event sequences collect events to describe a whole plan.

By Definition 19, a started token is not required to end before the end of the sequence, and a token can
end without the corresponding starting action to ever have appeared before. In this case, the event sequence
is said open for the variable x whose start/end event is missing. In event sequences where this does not
happen, called closed event sequences, both the endpoints of all tokens are specified.

Definition 20 (Open and closed event sequences). An event sequence µ = 〈µ1, . . . , µn〉 is closed on
the right (left) for a variable x if for each 1 ≤ i ≤ n, if start(x, v) ∈ Ai (end(x, v) ∈ Ai), then there is j > i
(j < i) such that end(x, v) ∈ Aj (start(x, v) ∈ Aj). Otherwise, µ is open on the right (left) for x.

An event sequence is simply open or closed (to the right or to the left) if it is respectively open or
closed (to the right or to the left) for any variable x. Note that the empty event sequence is closed on both
sides for any variable. Moreover, on closed event sequences, the first event only contains start(x, v) actions
and the last event only contains end(x, v) actions, and one for each variable x. Given an event sequence
µ = 〈µ1, . . . , µn〉 over a set of state variables SV, where µi = (Ai, δi), we define δ(µ) =

∑
1<i≤n δi, that is,

δ(µ) is the time passed between the start and the end of the sequence (its duration). The amount of time
spanning a subsequence, written as δi,j when µ is clear from context, is then δ(µ[

)=
∑
i<k≤j δk.

As a consequence of their definition, closed sequences can be directly mapped to plans.

Definition 21 (Correspondence between event sequences and plans). Let µ = 〈µ1, . . . , µn〉 be a
closed event sequence. Then, πµ is the plan where, for each x ∈ SV, πµ(x) = 〈τ1, . . . , τk〉 is a timeline such
that start(x, v) ∈ Ai (end(x, v) ∈ Ai) if and only if there is a τj such that val(τj) = v and start-time(τj) = δ1,i
(end-time(τj) = δ1,i).

In our context, we can assume w.l.o.g. that the rules in S and D do not use pointwise atoms [30]. In this
way, we can forget about any absolute time reference and reason only in terms of distance between events.
In mapping an event sequence to the plan it represents, the value of δ1 of the first event µ1 = (A1, δ1) is
ignored, since it would represent the time passed after a non-existent previous event. By fixing an arbitrary
value for δ1, the converse mapping from plans to event sequences can also be defined. Hence, we denote by
µπ the event sequence such that πµπ = π. By admitting open event sequences, we can represent plans that
are under construction, which was our original need.

Definition 22 (Partial plan). Let SV be a set of state variables. A partial plan over SV is an event
sequence µ over SV, closed on the left.

Partial plans can be either open or closed on the right depending on the particular moment of the game,
but they are always closed on the left. Since there is no ambiguity, we will simply say open or closed to
mean open or closed on the right.

12

4.2. The game arena

Let us start by defining the key notion of timeline-based games.

Definition 23 (Timeline-based game). A timeline-based game is a tuple G = (SVC ,SVE ,S,D), where
SVC and SVE are the sets of, respectively, the controlled and the external variables, and S and D are two sets
of synchronisation rules, respectively called system and domain rules, involving variables from SVC and SVE .

A partial plan for G is a partial plan over the state variables SVC ∪SVE . Let ΠG be the set of all possible
partial plans for G, or simply Π when there is no ambiguity. It is worth stressing again that the plan being
built by the players, represented by the partial plan, is a scheduled plan, not a flexible one. The uncertainty
is moved to the ignorance about what the next moves of Eve will be at each step. Recall that δ(µ) denotes
the duration of µ, that is, the distance in time between the last and the first events of the sequence, hence
in our settings it can be interpreted as the time elapsed from the start of the game.

Since ε is a closed event sequence and δ(ε) = 0, the empty partial plan ε is a good starting point for the
game. Players incrementally build a partial plan, starting from ε, by playing actions that specify which tokens
to start and/or end, producing an event that extends the event sequence, or complementing the already existing
last event of the sequence. Recall from Definition 19 that actions are terms of the form start(x, v) or end(x, v),
where x ∈ SV and v ∈ Vx, and that the set of possible actions over SV is denoted as ASV, here just A for
simplicity. Actions of the former kind are called starting actions, and those of the latter kind are called ending
actions. Then, we partition all the available actions into those that are playable by either of the two players.

Definition 24 (Partition of player actions). The set A of available actions over the set of state variables
SV = SVC∪SVE is partitioned into the set AC of Charlie’s actions, and the set AE of Eve’s actions, defined as:

AC = {start(x, v) | x ∈ SVC , v ∈ Vx}︸ ︷︷ ︸
start tokens on Charlie’s timelines

∪ {end(x, v) | x ∈ SV, v ∈ Vx, γx(v) = c}︸ ︷︷ ︸
end controllable tokens

AE = {start(x, v) | x ∈ SVE , v ∈ Vx}︸ ︷︷ ︸
start tokens on Eve’s timelines

∪ {end(x, v) | x ∈ SV, v ∈ Vx, γx(v) = u}︸ ︷︷ ︸
end uncontrollable tokens

Hence, players can start tokens for the variables that they own, and end the tokens that hold values
that they control. It is worth noting that, in contrast to the original definition of timeline-based planning
problems with uncertainty (Definition 13), Definition 24 admits cases where x ∈ SVE and γx(v) = c for
some v ∈ Vx, that is, cases where Charlie may control the duration of a variable that belongs to Eve. This
situation is symmetrical to the more common one where Eve controls the duration of a variable that belongs
to Charlie (i.e., uncontrollable tokens), and we have no need to impose any asymmetry.

Actions are combined into moves that can start/end multiple tokens at once.

Definition 25 (Moves). A move mC for Charlie is a term of the form wait(δC) or play(AC), where δC ∈ N
and ∅ 6= AC ⊆ AC is either a set of starting actions or a set of ending actions.

A move mE for Eve is a term of the form play(AE) or play(δE , AE), where δE ∈ N and AE ⊆ AE is
either a set of starting actions or a set of ending actions.

Two different aspects of the mechanics of the game influence the above definitions.
First, moves such as play(AC) and play(δE , AE) can play either start(x, v) actions only or end(x, v)

actions only. A move of the former kind is called a starting move, while a move of the latter kind is called
an ending move. Note that empty moves play(δE ,∅) can be considered both starting or ending moves.
Moreover, we consider wait moves as ending moves. In some sense, starting and ending moves have to be
alternated during the game.

Second, the two players can play the two different sets of moves defined above, hence we denote as MC

the set of moves playable by Charlie, and as ME the set of moves playable by Eve. Charlie can choose to
play some actions to start/end a set of tokens, by playing a play(AC) move, or to do nothing and wait a
certain amount of time by playing a wait(δC) move. Charlie plays first at each round, as will be formally
stated later, and Eve can reply to Charlie’s move by playing a play(AE) move in response to a play(AC)

13

move by Charlie, and a play(δE , AE) move in response to a wait(δC) move by Charlie. If Charlie plays a
play(AC) move, the given actions are applied immediately, for some specific sense defined later, and Eve
replies by specifying what happens to her variables at the same time point. Instead, if Charlie plays a
wait(δC) move to wait some amount of time δC , there is no reason why Eve should be forced to wait the
same amount of time without doing nothing, so she can play a play(δE , AE) move, specifying an amount of
time δE ≤ δC , so that actions in AE will be applied accordingly, interrupting the wait of Charlie who can
then timely reply to Eve’s actions. This is formalised by the following notion of round.

Definition 26 (Round). A round ρ is a pair (mC ,mE) ∈MC ×ME of moves such that:

1. mC and mE are either both starting or both ending moves;

2. either ρ = (play(AC),play(AE)), or ρ = (wait(δC),play(δE , AE)), with δE ≤ δC ;

A starting (ending) round is one made of starting (ending) moves. Note that since Charlie cannot play
empty moves and wait moves are considered ending moves, each round is unambiguously either a starting or
an ending round. We can now define how a round is applied to the current partial plan to obtain the new one.

Definition 27 (Outcome of rounds). Let µ = 〈µ1, . . . , µn〉 be a partial plan, with µn = (An, δn), let
ρ = (mC ,mE) be a round, let δE and δC be the time increments of the moves, with δC = δE = 1 for play(A)
moves, and let AE and AC be the set of actions of the two moves (AC is empty if mC is a wait move).

The outcome of ρ on µ is the event sequence ρ(µ) defined as follows:

1. if ρ is a starting round, then ρ(µ) = µ<nµ
′
n, where µ′n = (An ∪AC ∪AE , δn);

2. if ρ is an ending round, then ρ(µ) = µµ′, where µ′ = (AC ∪AE , δE);

We say that ρ is applicable to µ if:

a) the above construction is well-defined, i.e., ρ(µ) is a valid event sequence by Definition 19;

b) ρ is an ending round if and only if µ is open for all variables.

We say that a single move by either player is applicable to µ if there is a move for the other player such
that the resulting round is applicable to µ.

Together, Definitions 26 and 27 define the mechanics of the game, that can now be fully clarified. The game
starts from the empty partial plan ε, and players play in turn, composing a round from the move of each one,
which is applied to the current partial plan to obtain the new one. Let µ be the current partial plan. At each
step of the game, both players can either stop the execution of a set of tokens, by playing an ending round, or
start the execution of a set of others, by playing a starting round (Item 1 of Definition 26). This does not mean
that at each time point in the constructed plan only one of the two things can happen, but that the ending and
starting actions of each events are contributed separately in two phases. When a starting round is played, its
actions are added to the last event of the round (since no time amount needs to be specified, starting rounds can
only consist of play(A) moves). In contrast, when an ending round is played, the corresponding actions form
an event that is appended to µ, obtaining that δ(ρ(µ)) > δ(µ). Then, the next round, which must be a starting
round by Item b) of Definition 27, can start the new tokens following the ones that were just closed. Note that
Items a) and b) of Definition 27 together ensure that a) the played actions make sense with regards to the
current partial plan being built (such as the fact that a token can be closed only if it was open etc., see Defini-
tion 19), and b) that time cannot stall, by forcing starting rounds to be immediately followed by ending ones.

4.3. The winning condition

It is now time to define the notion of strategy for each player, and of winning strategy for Charlie.

Definition 28 (Strategies). A strategy for Charlie is a function σC : Π → MC that maps any given
partial plan µ to a move mC applicable to µ. A strategy for Eve is a function σE : Π×MC →ME that
maps a partial plan µ and a move mC ∈MC applicable to µ, to a mE such that ρ = (mC ,mE) is applicable
to µ.

14

A sequence ρ = 〈ρ0, . . . , ρn〉 of rounds is called a play of the game. A play is said to be played
according to some strategy σC for Charlie, if, starting from the initial partial plan µ0 = ε, it holds that
ρi = (σC(Πi−1),mi

E), for some mi
E , for all 0 < i ≤ n, and to be played according to some strategy σE for

Eve if ρi = (miC , σE(Πi−1,m
i
C)), for all 0 < i ≤ n. It can be seen that for any pair of strategies (σC , σE) and

any n ≥ 0, there is a unique run ρn(σC , σE) of length n played according both to σC and σE .
Note that, according to our definition of strategy, Charlie can base his decisions only on the previous rounds

of the game, not including Eve’s move at the current round. However, Charlie can still react immediately, in
some sense, to decide which token to start after an uncontrollable one closed by Eve, because of the alternation
between starting and ending rounds. Hence Charlie can choose the starting actions of an event depending
on the ending actions of that same event, but the contrary is not true: after Eve closes a token, Charlie has
to wait at least one time step to react to that move with an ending action. This design choice is crucial to
replicate and capture the semantics of dynamically controllable flexible plans, as will be detailed in Section 4.4.

As for the winning condition, we have to formalise the intuition given at the beginning of the section,
regarding the role of domain rules and system rules. Charlie wins if, assuming domain rules are respected,
he manages to satisfy the system rules no matter how Eve plays.

Let G = (SVC ,SVE ,S,D) be a planning game. To evaluate the satisfaction of the two sets of rules
over the current partial plan, we proceed as follows. First, we define from G two timeline-based planning
problems (as for Definition 9), PD = (SV,D) and PS = (SV,S). Then, given a partial plan µ, we consider the
scheduled plan πµ′ corresponding to an event sequence µ′ obtained by closing µ at time δ(µ), i.e., completing
the last event of µ in such a way to close any open token. Then, we say that a partial plan µ, and the play ρ
such that µ = ρ(ε), are admissible, if πµ′ |= PD, i.e., if the partial plan satisfies the domain rules, and are
successful if πµ′ |= PS , i.e., if the partial plan satisfies the system rules.

Definition 29 (Admissible strategy for Eve). A strategy σE for Eve is admissible if for each strategy
σC for Charlie, there is k ≥ 0 such that the play ρk(σC , σE) is admissible.

Definition 30 (Winning strategy for Charlie). Let σC be a strategy for Charlie. We say that σC is a
winning strategy for Charlie if for any admissible strategy σE for Eve, there exists n ≥ 0 such that the play
ρn(σC , σE) is successful.

We say that Charlie wins the game G if he has a winning strategy, while Eve wins the game if a winning
strategy does not exist.

As an example, consider a timeline-based game G = (SVC ,SVE ,S,D) with two variables x ∈ SVC and
y ∈ SVE , Vx = Vy = {go, stop}, unit duration, and the sets of rules defined as follows:

S = {
a[x = stop]→ ∃b[y = stop] . end(b) = start(a)}> → ∃a[x = stop] . >

D =
{

> → ∃a[y = stop] . >
}

Here, Charlie’s ultimate goal is to realise x = stop, but this can only happen after Eve realised y = stop.
This is guaranteed to happen, since we consider only admissible strategies. Hence, the winning strategy for
Charlie only chooses x = go until Eve chooses y = stop, and then wins by executing x = stop. If D was instead
empty, a winning strategy would not exist since a strategy that never chooses y = stop would be admissible.
This would therefore be a case where Charlie loses because Eve can indefinitely postpone his victory.

This is a simple example of a kind of problems and solutions that are not approachable with flexible
plans. The next section will formalize and prove the greater generality of this approach. As pointed out
in Section 3, the inherent sequentiality of flexible plans poses some limitations in interactive application
scenarios, where a feeback loop involving a re-planning phase is often needed. In contrast, in timeline-based
games, the interaction between the environment and the controlled system can be modeled in a rich and
expressive way, by means of the domain rules. Note that domain rules can mention both controlled and
external variables, allowing for the specification of complex dynamics and interactions. A winning strategy
for such a game is then able to cope with the maximum generality to any execution of such a specification,

15

without the need of any sort of re-planning (hence without the need to implement the planner itself as part
of the executive system). Of course, as in any model-based approach, the modelling task is crucial, as a
badly modeled game would result into a strategy unable to really react to the environment when executed in
the real world. However, this is rather a problem of knowledge engineering and domain modeling: as far as
the world is correctly modelled, the game-theoretic approach avoids the need of a run-time feedback loop
involving any kind of re-planning phase.

Moreover, the high complexity of the strategy existence problem, proved in the next section, does not
confute by itself any of the above claims: the search for a winning strategy and the synthesis of a controller
implementing such a strategy are done off-line, while during the execution a blind execution of the strategy
suffices. The costly re-planning phases, in contrast, takes place during execution, impairing the applicability
of the approach to real-time scenarios.

4.4. Timeline-based games and flexible plans

Let us compare now the concept of dynamic controllability of flexible plans, as defined in [19], with the
existence of winning strategies for timeline-based planning games.

The first step is to back the claim of the greater generality of the latter with respect to the former. We
prove that, given a flexible solution plan for a timeline-based planning problem with uncertainty, we can
reduce the problem of the dynamic controllability of the plan to the existence of a winning strategy for
a particular game. To this aim, we need a way to represent as a game any given planning problem with
uncertainty together with its flexible plan. Intuitively, this can be done by encoding the observations O into
suitable domain rules. The game associated with a problem therefore mimics the exact setting described by
it. What follows shows how such a game is built and which relationship exists between its winning strategies
and dynamically controllable flexible plans for the original problem.

Theorem 1 (Winning strategies vs. dynamic controllability). Let P be a timeline-based planning problem with
uncertainty, and suppose that P admits a flexible solution plan Π. Then, a timeline-based game GP,Π can be
built, in polynomial time, such that Π is dynamically controllable iff Charlie has a winning strategy for GP,Π.

Proof. Let P = (SVC ,SVE , S,O) be a timeline-based planning problem with uncertainty and let Π = (π,R)
be a flexible solution plan for P . We can build an equivalent timeline-based game GP,Π = (SVC ,SVE ,S,D),
by keeping SVC and SVE unchanged, and suitably encoding the observation O and the flexible plan Π into,
respectively, the set of domain rules D and of system rules S. In this way, Eve’s behaviour will be constrained
to follow what is dictated by the observation, replicating the semantics of timeline-based planning problems
with uncertainty, and the behaviour of Charlie will follow by construction what is stated by the flexible plan.

To proceed, let SVE = {x1, . . . , xn}, O = (πE ,RE), and τ i = πE(xi) = 〈τ i1, . . . , τ iki〉, for some ki and all
xi ∈ SVE , with τ ij = (xi, v

i
j , [e

i
j , E

i
j], [d

i
j , D

i
j]). Finally, let RE = {α1, . . . , αm}. The set D can encode the

whole observation by a single trigger-less rule stating that: (1) the tokens τ ij are required to exist, (2) their
(a) position in the sequence, and (b) the end time and duration flexibility ranges correspond to the plan, and
(3) the atoms in R = {α1, . . . , α|R|} are satisfied.

Such a rule can be written as follows:

> → ∃τ1
1 [x1 = v1

1], . . . ,∃τnkn [xn = vnkn] . (1)

∧
∧

1≤i≤n
1≤j<ki

end(τ ij) = start(τ ij+1) (2a)

∧
∧

1≤i≤n
1≤j≤ki

eij ≤ end(τ ij) ≤ Eij ∧ dij ≤ duration(τ ij) ≤ Di
j ∧
∧

1≤i≤m

αi (2b,3)

Adding the above rule to the set D of domain rules ensures that any admissible play of the game follows
the observation O. In a completely similar way, we can encode the flexible plan Π into a rule to add to the
system rules S. Note that, by definition of flexible plan, following the plan satisfying R is sufficient to satisfy

16

the set S of problem rules, which thus can be discarded and replaced by the single rule that encodes the plan.
Now, we prove that Charlie has a winning strategy for GP,Π if and only if Π is dynamically controllable.

(−→). Suppose that there exists a dynamic execution strategy ς for Π. We show how to obtain a winning
strategy σ for GP,Π by combining the flexible plan with the dynamic execution strategy. The strategy σ
is built as follows. Let µ be an event sequence.

1. If µ is not open for all variables, then players have to produce a starting round. Hence, σ(µ) = play(AC),
where AC contains an action start(x, v) for any variable x that is open in µ, and v ∈ Vx is chosen
following the flexible plan Π, as enforced by the system rules S, which uniquely determine the sequence
of tokens on the timeline of each x ∈ SVC .

2. If µ = 〈µ1, . . . , µn〉 is open for all variables, then players have to produce an ending round. To decide
the end time of the currently open tokens, we can mimic the dynamic execution strategy ς. Execution
strategies map relevant situations (Definition 15) to scheduling functions (Definition 16). Situations
describe the duration of all the uncontrollable tokens in the plan, and thus we cannot directly construct
a situation from the current partial plan, since only the duration of tokens ended before δ(µ) is known.
However, a relevant situation ω can be obtained by choosing the duration of missing tokens arbitrarily,
as long as the result projects an instance of the observation O. The winning strategy we are looking
for can assume that Charlie is playing against an admissible Eve strategy, and hence the existence
of such a relevant situation is guaranteed. Then, the resulting scheduling function θ = ς(ω) can be
used to decide the next move. Among all the flexible tokens in Π whose instance is currently open in
µ, let 〈τ1 = (x1, v1, [e1, E1], [d1, D1]), . . . , τk = (xk, vk, [ek, Ek], [dk, Dk])〉 be those such that t = θ(τi) is
minimum. Then, if t = δ(µ)+1, the strategy plays the end of those tokens, i.e., σ(µ) = play(AC), where
AC = end(x1, v1), . . . , end(xk, vk). Otherwise, it is not yet time to end them, and thus σ(µ) = wait(tδ),
with tδ = t− δ(µ). Note that the arbitrary completion of the situation ω for future tokens was only
a formal obligation: since ς is a dynamic execution strategy (Definition 18), the consequent choice only
depended on the tokens ended before δ(µ), anyway.

(←−). We now show that if a winning strategy σC for GP,Π exists, then there exists a dynamic execution
strategy ς for Π, defined as follows. Let ω be a relevant situation. An admissible strategy σE for Eve is
induced by ω as follows. For variables x ∈ SVE , the strategy σE starts tokens in the order specified by O,
and ends them with the timings specified by ω. Since ω is relevant, we are sure that a valid instance of O
is obtained, hence σE is admissible, as it satisfies the domain rule in D, that encodes O. Then, for variables
y ∈ SVC , if Charlie builds an instance of Π, then σE ends the uncontrollable tokens of the plan according to
ω, behaving arbitrarily otherwise. Note that D does not involve any variable in SVC , and thus the behavior
of the strategy on those variable does not affect its admissibility. Now, since σC is a winning strategy, and
σE is admissible, there is a natural number k such that the play ρk of k rounds played according to σC and
σE produces an event sequence µ = ρk(ε) that satisfies D and S. Since S faithfully encodes the flexible plan
Π, the plan πµ induced by µ is an instance of Π. Hence, we can define ς(ω) as the scheduling function θ
such that, for each token τ in Π which ends at time tτ in πµ, θ(τ) = tτ . Since πµ is an instance of Π, θ is a
scheduling function for Π. Moreover, θ is based on µ, which is the result of playing the strategy σC . By how
the game is defined, at each ending round, σC has only access to the previous history of the game up to the
previous time step. Hence, let τ be a token and t = θ(τ). The decision by θ of ending τ at time t only depends
on the prefix of µ happening before t, and thus, given any other situation ω′, with θ′ = ς(ω′), if θ<t = θ<t, we
have that θ′(τ) = t as well, by construction. This confirms that ς is a dynamic execution strategy for Π.

Theorem 1 shows that given a flexible solution plan Π, we can decide its dynamic controllability by
looking for a winning strategy for the game GP,Π. More generally, given the timeline-based planning problem
with uncertainty P = (SVC ,SVE , S,O), we can similarly build a game GP = (SVC ,SVE ,S,D) such that the
existence of a dynamically controllable flexible plan for P implies the existence of a winning strategy for GP .
This is done by encoding the observation O into the set of domain rules D exactly as done in Theorem 1,
but setting S = S, without constraining the game to any specific plan. Then, if a plan exists, and it is
dynamically controllable, it can be checked that a winning strategy for GP must exist as well.

17

Corollary 1 (Generality of timeline-based games). Let P be a timeline-based planning problem with
uncertainty. Then, a timeline-based game GP can be built, in polynomial time, such that if P admits a
dynamically controllable flexible solution plan, then Charlie has a winning strategy for GP .

The converse is not true, however, because winning strategies for timeline-based games are strictly more
expressive than flexible plans. Hence, there can be some problems P that do not have any dynamically
controllable flexible plan, but such that there is a winning strategy for GP . This is the case with the example
problem discussed in Section 3, which has an easy winning strategy when seen as a game, while it has no
dynamically controllable flexible plan. We can encode the example problem P with the game GP , in which the
shown synchronisation rules are included as system rules, and the set of domain rules is empty (since there are
no external variables and thus the observation is empty as well). The winning strategy is simple: after playing
start(x, v1) at the beginning, Charlie only has to wait for Eve to play end(x, v1), and then play start(x, v2)
or start(x, v3) according to the current timestamp. Therefore, one can prove the following theorem.

Theorem 2. A timeline-based planning problem with uncertainty P exists such that there are no dynamically
controllable flexible plans for P , but Charlie has a winning strategy for the associated planning game GP .

5. Complexity of finding winning strategies

In previous sections, we introduced and formally defined the notion of timeline-based game, and showed
how the existence of a winning strategy for such a game subsumes the existence of a dynamically controllable
flexible plan for the equivalent timeline-based planning problem with uncertainty. In this section, we show
that deciding whether such a strategy exists is a 2EXPTIME-complete problem.

5.1. Finite representation of game plays

From the definitions given in Section 4 and, in particular, the definitions of strategies for the two players
(Definition 28), it can be seen that a timeline-based game provides an implicit representation for a potentially
infinite state space consisting of all possible partial plans Π. To solve the game, we first reduce the game to
a finite game. The key observation here is that, although each synchronisation rule can potentially speak
about events arbitrarily far in the past and in the future, a finite representation of the history of the game
is possible. The same issue has been met already in the study of the computational complexity of the
plan existence problem for timeline-based planning problems [30, 32], leading to the development of a few
conceptual tools that we are going to reuse here: a graph-theoretic representation of synchronisation rules,
called the rule graphs, and a data structure, called matching records, that, by using rule graphs, can finitely
represent an infinite set of similar partial plans.

What follows briefly recaps a minimal set of definitions that make it possible to understand how these
concepts can be leveraged to obtain a finite state space for timeline-based games. The exposition is borrowed
from [30], where many additional details can be found.

Definition 31 (Rule graphs). Let E ≡ ∃a1[x1 = v1] . . . ak[xk = vk] . C be one of the existential statements
of a synchronisation rule R ≡ a0[x0 = v0]→ E1 ∨ . . . ∨ Em.

Then, the rule graph of E is an edge-labelled graph GE = (V,E, β) where:

1. the set of nodes V is made of terms (as per Definition 4) such that:

(a) start(a) ∈ V or end(a) ∈ V if and only if a ∈ {a0, . . . , ak}, for any a ∈ N ;

(b) if the term T is used in C, then T ∈ V ;

2. E ⊆ V ×V is the edge relation such that, for each pair of nodes T, T ′ ∈ V , there is an edge (T, T ′) ∈ E
if and only if C contains an atom of the form T ≤[] T

′, or T = start(ai) and T ′ = end(ai) for some
0 ≤ i ≤ k;

3. β : E → N× N+∞ is the edge-labelling function, such that for each e ∈ E, if e is associated with the
atom T ≤[] T

′ in C, then β(e) = (l, u).

18

Intuitively, the rule graph GE for an existential statement E has a node for each term that appears in E ,
including both endpoints of each mentioned token, and an edge for each temporal constraint imposed between
any two nodes. An edge e is said to be unbounded, if β(e) = (l,+∞) for some l ∈ N, and bounded otherwise.
Note that the nodes representing the token a0 quantified in the trigger of the rule are included in the rule
graph of all the existential statements of the rule. Given a rule graph G = (V,E) and an event sequence
µ = 〈µ1, . . . , µn〉, a matching function γ : V → [1, . . . , n] can be used to match the nodes of G to the events
of µ. If a matching function γ exists such that all the temporal constraints are satisfied (with satisfaction
defined in the standard way), written µ, γ |= G, then we say that G matches over µ, written µ |= G. If
start(a0) appears in µi (a rule containing E would be triggered by µi), we write µ, γ |=i G if γ(start(a0)) = i,
and µ |=i G if there exists such a γ. In general, we can rephrase the satisfaction of synchronization rules in
terms of matching of rule graphs.

We can thus reason about the satisfaction of the synchronization rules of the game in terms of matching
of the rule graphs of their existential statements. A few useful observations can be made about rule graphs.
Given a rule graph GE = (V,E, β), a subgraph of G is a graph G′ = (V ′, E′, β′) such that V ′ ⊆ V , E′ ⊆ E,
and β′ = β|E′ . A subgraph of a rule graph can be seen itself as the rule graph of a simpler existential
statement. A particularly important kind of subgraphs are the bounded components: subgraphs that are
connected by bounded edges. Given a bounded component B of G, we can compute the maximum distance
of any two events involved in the matching of B on any event sequence.

Proposition 1. Let B be a bounded component of a rule graph G = (V,E, β), let γ be a matching function,
and let µ = 〈µ1, . . . , µn〉 be an event sequence such that G, γ |= µ. Then, a positive quantity, denoted by
window(B), can be computed such that:

1. for any T, T ′ ∈ V , with γ(T) = i and γ(T ′) = j, it holds that δ(µ[

)≤ window(B);

2. window(B) ∈ O(2|G|), where |G| is the size of the representation of G.

A reasonable upper bound to window(B) can be given by the sum of all the upper bounds of the bounded
edges of B. A much tighter bound can be computed as shown in [30]. Here, were are interested in highlighting
that window(B) is at most exponential in the size of G, since we consider numeric coefficients to be expressed
in binary notation. Then, we can extend the concept to a generic set S of synchronization rules, by defining
window(S) as the sum of window(B) for all the bounded components B of all the rule graphs of every rule
in S. Note that window(S) ∈ O(2|S|), where |S| is the size of S (defined in the natural way).

The definition of window(S) allows us recall a basic property of event sequences.

Proposition 2 (Bounded distance in event sequences [30]). Let S be a set of synchronization rules over
a set of state variables SV, and let µ = 〈µ1, . . . , µn〉 be an event sequence satisfying S. Then, there exists
another event sequence µ′ = 〈µ′1, . . . , µ′m〉, satisfying S, such that δ′i ≤ window(S) for all i ≥ 0.

Intuitively, the distance between two events of an event sequence does not need to exceed window(S)
because no rule in the set has any way to discriminate two consecutive events so far in time.

The above-introduced concepts allow us to define the notion of matching record. Intuitively, given a set of
synchronisation rules S and any event sequence µ, the matching record [µ] of µ is a structure of bounded
size that allows us to effectively test whether µ satisfies any of the rules in S. Furthermore, given an event µ,
it is possible to effectively build the matching record [µµ] starting from [µ].

Definition 32 (Matching record). Let S be a set of synchronization rules over a set SV of state variables,
and let µ = 〈µ1, . . . , µn〉 be an event sequence over SV, closed to the left, such that δ(µ) ≥ 2 window(S).

The matching record of µ is a tuple [µ] = (ω,Γ,∆), where:

1. ω is the shortest suffix µ≥h of µ that can be split into two subsequences spanning at least window(S)
time steps, i.e., ω = ω−ω+, where ω− = µ[

,ω + = µ≥h+
, and both δ(ω−) ≥ window(S) and δ(ω+) ≥ window(S);

19

2. Γ is a function that maps any existential statement E of any R ∈ S and 1 ≤ k ≤ |ω−| to the maximal
subgraph Γ(E , k) of GE such that:

(a) µ≤h+k, γ |= Γ(E , k) for some matching function γ,

(b) Γ(E , k) does not contain the trigger node start(a0),

(c) any edge going out of Γ(E , k) is unbounded ;

3. ∆ is a function that maps an existential statement E of any R ∈ S and 1 ≤ k ≤ |ω+| to the maximal
subgraph ∆(E , k) of GE such that:

(a) for each position t in µ<h+
where R is triggered, µ≤h++k |=t ∆(E , k),

(b) any edge going in or out from ∆(E , k) is unbounded.

If, instead, µ is empty, made of only one event, or δ(µ) < 2 window(S), then [µ] = µ.

A detailed account of the above definition can be found in [30]. Here, we will briefly summarize the role
of the components of a matching record [µ] = (ω,Γ,∆). The first component is a suffix ω of the actual event
sequence µ, which is considered as composed of two parts, ω− and ω+, each spanning at least a window(S)
amount of time. ω records the recent history of the sequence in an exact way. The rest of the sequence
does not need to be stored completely, as the essential information about it is represented by Γ and ∆. In
particular, Γ records which parts of the rule triggered inside ω− match over µ, including those that matched
in the past, before the recent history recorded by ω. For each newly triggered rule, Γ is queried to know
which parts of the rule matched in the distant past. Then, ∆, records the parts that matched in each instance
of the rule triggered in the whole µ. The missing parts will need to be satisfied in the future in order to fulfill
the rule. In both cases, the subgraphs recorded are required to only have unbounded outgoing edges, or, in
other words, to be only made of whole bounded components. Since ω− and ω+ span at least window(S), this
ensures that quantitative constraints can be fully matched inside ω when building Γ and ∆.

The above definition is relatively abstract, but matching records can be nonethelesss computationally
manipulated in useful way, as formally stated by the next proposition.

Proposition 3 (Matching records (see Gigante [30], Chapter 4)). Let S be a set of synchronization rules
over a set SV of state variables, and let µ be an event sequence over SV. The following statements hold:

1. the size of [µ] is at most exponential in the size of S;

2. given [µ] and R ∈ S, whether µ |= R can be decided in exponential time;

3. given [µ] and an event µ, whether µµ would be a valid event sequence can be checked in polynomial time;

4. given [µ] and an event µ, the matching record [µµ] can be effectively built in exponential time.

5.2. Deciding the existence of winning strategies

We can use matching records to reduce the state space of our games to a finite size, that is, given a
timeline-based game, we can build a structure representing a finite-state equivalent game. In particular, we
can build a turn-based synchronous game structure, as introduced by Alur et al. [2].

Definition 33 (Turn-based synchronous game structure). A turn-based synchronous game structure
is a tuple S = 〈P, Q,Σ, ν, λ,R〉, where P = {1, . . . , k} is the set of players, Q is the finite set of states, Σ
is the finite set of propositions, ν : Q → 2Σ specifies the set ν(q) of propositions true at any state q ∈ Q;
λ : Q→ P is a function telling which player owns any given state, and R ⊆ Q×Q is the transition relation.

20

Turn-based synchronous game structures, simply called game structures hereinafter, represent games where
players play in turn, not concurrently, since each state q ∈ Q is owned by the player λ(q), who plays when the
game reaches one of its states. A path of the game is an infinite sequence of states q = 〈q0, q1, . . .〉 such that
(qi, qi+1) ∈ R for all i ≥ 0. Given a player a ∈ P, a strategy for a is a function fa : Q+ → Q that maps any
non-empty finite prefix q = 〈q0, . . . , qn〉 of a path (the history of the game play), where λ(qn) = a, to the next
state fa(qn) chosen among the successors of qn. A play such that qi+1 = fa(qi) for any qi such that λ(qi) = a
is said to be played according to the strategy fa. Given a set of players A ⊆ P , and a set of strategies FA, one
for each a ∈ A, the sequence q is played according to FA if it is played according to all the strategies in FA.

Let G = (SVC ,SVE ,S,D) be a timeline-based game. If Π is the set of all the possible event sequences
over S ∪D, let [Π] be the set of all the matching records over Π. Note that, by Proposition 3, [Π] is a finite
set. Hence, we can use [Π] to build the state space of a game structure representing G.

Definition 34 (Game structure of a timeline-based game). Let G = (SVC ,SVE ,S,D) be a timeline-
based game. The turn-based asynchronous game structure SG = 〈P, Q,Σ, ν, λ,R〉 associated with G is defined
as follows:

1. the set of players is P = {1, 2}, where player 1 represents Charlie and player 2 represents Eve;

2. Q ⊆ [Π]∪ ([Π]×MC) is the set of states, partitioned into the set Q1 = [Π] and the set Q2 ⊆ [Π]×MC

of pairs ([µ],mC), where [µ] is a matching record and mC is a move for Charlie applicable to [µ];

3. Σ = {d,w} is a set of two propositions;

4. the valuation ν is such that for all q ∈ Q2, ν(q) = ∅, and for all [µ] ∈ Q1, d ∈ ν([µ]) iff µ |= PD and
w ∈ ν([µ]) iff µ |= PS ;

5. λ(q) = 1 if q ∈ Q1 and λ(q) = 2 if q ∈ Q2;

6. the transition relation is bipartite, relating only states from Q1 to Q2 or vice versa, and is defined as:

(a) ([µ], ([µ′],mC)) ∈ R if and only if [µ] = [µ′];

(b) (([µ],mC), [µ′]) ∈ R if and only if there is a move mE for Eve such that the round ρ = (mC ,mE)
is applicable to µ, and [ρ(µ)] = [µ′].

Lemma 1 (Construction of the associated game structure). Let G = (SVC ,SVE ,S,D) be a timeline-based
game. The associated game structure SG can be built in doubly exponential time, and its size is doubly
exponential in the size of G.

Proof. The size and construction complexity of the game structure SG associated with a game G directly
follows from the properties of matching records stated in Proposition 3. In particular, since each matching
record built on top of S ∪ D has exponential size in (the size of) S ∪ D (Item 1 of Proposition 3), there is
at most a doubly exponential number of possible matching records. By Item 2 of Definition 34, for each
matching record [µ], there is a doubly exponential number of states in SG corresponding to the possible moves
by Charlie applicable to µ, because of the time amounts δC in wait(δ) moves (recall that, by Proposition 2,
we can restrict w.l.o.g. to δ ≤ window(S ∪ D)). Hence, SG contains a doubly exponential (hence, most
notably, finite) number of states. Now, each state can be labelled either with the w or d propositions (or
both) in exponential time, by Item 2 of Proposition 3, and the successor [µµ] of each node ([µ],mC) can be
obtained in exponential time as well because of Items 3 and 4 of Proposition 3. Hence, SG can be built in
doubly exponential time.

In order to formally tie to SG the existence of winning strategies for G, we introduce a logical formulation
of Definition 28 in terms of alternating-time temporal logic (ATL) or, more precisely, its extension ATL∗.
Introduced by Alur et al. [2], ATL and ATL∗ are strategic logics that are interpreted over concurrent game
structures, of which turn-based synchronous structures are a special case. Given a set P = 1, . . . , k of players

21

and a finite set Σ of propositions, the syntax of ATL∗ is given in terms of state formulas and path formulas,
defined as follows:

φ := p | ¬φ1 | φ1 ∨ φ2 | 〈〈A〉〉ψ state formulas

ψ := φ | ¬ψ | ψ1 ∨ ψ2 | Xψ1 | ψ1 Uψ2 path formulas

ATL∗ formulas are all the state formulas defined above. Given a game structure S = 〈P, Q,Σ, ν, λ,R〉 and a
state q ∈ Q, the formula 〈〈A〉〉ψ holds over S and q, written S, q |= 〈〈A〉〉ψ, if there exists a set of strategies FA,
one for each a ∈ A, such that S, q |= ψ for all paths q = 〈q, q′, . . .〉 starting from q played according to FA.
The other connectives and temporal operators are defined as expected. See Alur et al. [2] for the complete
semantics of the logic.

Lemma 2 (ATL∗ formulation of winning strategies). Let G = (SVC ,SVE ,S,D) be a timeline-based game,
and let SG be its associated game structure. Then, Charlie has a winning strategy for G iff it holds that:1

SG, [ε] |= 〈〈1〉〉(Fd→ Fw)

Proof (−→). First, we prove that if Charlie has a winning strategy for G, then the given formula holds
on the [ε] state of S. Let σC : Π → MC be such a strategy. A strategy for Player 1 of SG is a function
σ1 : Q+ → Q. Let q = (q0, . . . , qn) be a path in SG where q0 = [ε]. Suppose λ(qn) = 1, i.e., it is Player 1’s
turn to play. Given the particular transition relation of SG, this means that n is even. By construction, states
in even positions 〈q0, q2, q4, . . .〉 are a sequence of matching records 〈[µ0], [µ2], . . .〉, whereas for the odd ones,
〈q1, q3, q5, . . .〉, we have qi = ([µi−1],mC), where mC is a move for Charlie applicable to µi−1. Vice versa,
states in odd positions are related to even ones by moves for Eve. Hence, from the path we can reconstruct
the actual event sequence µn built by the full play of the game. Suppose Charlie has a winning strategy σC
for G, and let mC = σC(µn). We can define a strategy σ1 for Player 1 in SG as σ1(q) = mC .

Now, let w = 〈w0, w1, . . .〉 be a path played according to the strategy σ1 defined above and some strategy
σ2 for Player 2. We show that w |= Fd→ Fw. Suppose Fd holds. This means that there is k ≥ 0 such that
S,wk |= d. Note that k is even, since, by definition, only states in Q1 are labelled, hence let wk = [µk].
Then, by construction, it follows that domain rules are satisfied by µk, hence σ2 corresponds to an admissible
strategy for Eve in the game G. Since σC is a winning strategy, we know that any play played according to it
and any admissible strategy leads to a k′ such that the rules in S are satisfied by µk′ , and consequently w′k
is labelled by w, meaning that w satisfied Fw. We can conclude that all paths starting from [ε] and played
according to σ1 satisfy Fd→ Fw, hence S, [ε] |= 〈〈1〉〉(Fd→ Fw).

(←−). Conversely, let us show that if the formula holds on SG, then a winning strategy for Charlie
exists on G. If 〈〈1〉〉(Fd → Fw) holds on [ε], there exists a strategy σ1 for Player 1 such that for all paths
q = 〈q0, q1, . . .〉 played according to σ1, it holds that S, q |= Fd→ Fw. From σ1, we can define a corresponding
strategy σC for Charlie similarly to the converse operation defined above: for each µ, a path w is defined
that reconstructs µ, and then σC(µ) = σ1(w). Then, we can see that σC is a winning strategy: a play played
according to an admissible strategy σE for Eve would correspond to a path u = 〈u0, . . .〉, with u0 = [ε], such
that S, uk |= d for some k ≥ 0, which means that the domain rules are satisfied at the k-th round of the play
of G. Since the path w is played according to σ1, i.e., the play is played according to σC , there is a k′ where
S, uk′ |= w (because Fd→ Fw holds), which means in turn that system rules are satisfied as well at the k′

game round. Hence, σC is a winning strategy.

Everything is now in place to prove the complexity of finding a winning strategy for a given game.

Theorem 3 (Complexity of finding winning strategies). Whether a timeline-based game G admits a winning
strategy for Charlie can be decided in doubly exponential time.

1The formula as shown in [33] contained an error, stemming from interpreting ATL∗ strategy quantifiers in the style of
Strategy Logic.

22

Proof. Let G be a timeline-based game. Thanks to Lemma 2, we can verify whether G admits a winning
strategy for Charlie by building the corresponding turn-based synchronous game structure SG and checking
whether S, [ε] |= 〈〈1〉〉(Fd→ Fw). It is known from Alur et al. [2] that model checking an ATL∗ formula on a
concurrent game structure has polynomial time complexity in terms of the size of the structure, for formulas
of bounded size. This is our case, since the formula that we need to check is fixed, and always the same for
any G. Hence, as the structure can be built in doubly exponential time (Lemma 1), such is the complexity of
checking whether G admits a winning strategy for Charlie.

The ATL∗ formula used by Theorem 3 is fixed and very simple, and most of the complexity of the
procedure comes from the construction of the game structure. However, having framed the problem in logical
terms gives us much flexibility in how to extend the current setting to more complex or expressive variants,
or to different winning conditions. Exploring this potential is left as future work.

5.3. Finding whether winning strategies exist is 2EXPTIME-complete

We will now prove that deciding whether a winning strategy exists for Charlie in a given timeline-based
game is 2EXPTIME-hard (hence 2EXPTIME-complete, as well). The proof is based on a reduction from a
particular kind of tiling games, introduced by Chlebus [18] as a 2-player variant of common tiling problems.
These kind of problems have been used for a long time as a source of reductions to study the computational
complexity of many problems in logic and combinatorics [34, 35, 36, 43, 49, 51].

Definition 35 (Tiling structures and tilings). A tiling structure is a tuple T =(T, t0, t∗, H, V, n), where
T is a set of elements called tiles, t0 ∈ T is the initial tile, t∗ ∈ T is the final tile, H,V ⊆ T × T are the
horizontal and vertical adjacency relations, and n ∈ N+ is a positive number, encoded in binary.

A k-tiling of the tiling structure T , for k > 1, is a function f : [n]× [k]→ T , mapping any position (x, y)
of the rectangle of size n× k to a tile f(x, y) ∈ T such that:

1. f(0, 0) = t0;

2. f(n, k) = t∗;

3. for all x ∈ [n− 1] and y ∈ [n], f(x, y) H f(x+ 1, y);

4. for all x ∈ [n] and y ∈ [k − 1], f(x, y) V f(x, y + 1).

The exponential rectangle tiling problem is the problem of deciding, given a tiling structure T , if there
exists a k-tiling for T for some k > 1. The problem is known to be EXPSPACE-complete [49]. The exponential
rectangle tiling game, is a 2-player variant of the problem, where a player, the Constructor , tries to build a
k-tiling for a given tiling structure, and the opposite player, the Saboteur , tries to prevent it to happen. The
two players play in turn, starting from Constructor , choosing one tile at the time, starting from the one in
position (0, 0), filling one row after the other. A strategy for Constructor is a function σ : T ∗ → T , that given
the sequence of tiles positioned up to the current time, gives the next tile to play. Given a tiling structure T , a
winning strategy lets Constructor build a k-tiling, for some k > 1, no matter which tiles are chosen by Saboteur .

Given a tiling structure T , the problem of deciding whether Constructor has a winning strategy can be
seen to be 2EXPTIME-complete: Chlebus [18] proves that the problem is EXPTIME-complete if n is encoded
in unary, while here it is encoded in binary. Following the same proof with this difference, we can obtain
the 2EXPTIME-completeness result. We can now prove how to reduce tiling games to timeline-based games.

Theorem 4 (Deciding the existence of winning strategies is 2EXPTIME-hard). Let G = (SVC ,SVE ,S,D) be a
timeline-based game. The problem of deciding whether Charlie has a winning strategy for G is 2EXPTIME-hard.

Proof. As anticipated, the proof goes by reduction from exponential rectangle tiling games. We prove
that, given any tiling structure T = (T, t0, t

∗, H, V, n), we can build in polynomial time a corresponding
timeline-based game G = (SVC ,SVE ,S,D) such that Charlie has a winning strategy for G if and only if
Constructor has a winning strategy in the tiling game over T . The timeline-based game encoding needs the

23

implementation of a binary counter, repeatedly counting from 0 to n. The bits of the counter are represented
by a number of variables c1, . . . , cm ∈ SVE , where m = dlog2(n)e. The binary variables are uncontrollable,
i.e., γ(ci) = u for all 1 ≤ i ≤ m, have all domain Vci = {0, 1}, and have trivial transition function and unit
duration, i.e., Tci(0) = Tci(1) = {0, 1} and Dci(0) = Dci(1) = (1, 1) for all 1 ≤ i ≤ m. It can be seen that,
with a polynomial number of synchronisation rules of polynomial size, it is possible to force these variables to
encode the correct behaviour of the counter. Such rules are placed in D, so that the evolution of the counter
is completely handled by Eve. Other rules can look at them to query the current value.

Then, the rectangle to be tiled is represented by two variables x ∈ SVC and y ∈ SVE , defined as follows.
For x = (Vx, Tx, Dx, γx) ∈ SVC , the domain is defined as Vx = {teven, todd | t ∈ T}, i.e., an even and odd
version of each tile t ∈ T . The transition function forces a strict alternation between even and odd values,
i.e., Tx(teven) = {t′odd | t′ ∈ T} and Tx(todd) = {t′even | t′ ∈ T} for each t ∈ T . Any token for x is controllable
and is forced to be of unit duration, i.e., Dx(v) = (1, 1) and γ(x) = c for each v ∈ Vx. In contrast, the
domain of y contains a single value for each tile, with the addition of a special symbol ⊥, i.e., Vy = T ∪ {⊥},
and any token for y is uncontrollable and forced to last two units of time, i.e., Dy(v) = (2, 2) and γy(v) = u
for all v ∈ Vy. The transition function is trivial, defined as Ty(v) = Vy for all v ∈ Vy.

With these variables and suitable synchronisation rules, we can simulate the tiling game. Tiles chosen by
Charlie (in the role of Constructor) are directly put on his timelines. Tiles chosen by Eve (in the role of
Saboteur) are put on her timeline, and then replicated by Charlie, in order to turn the timeline for x into
a row-major representation of the current partially tiled rectangular area. The separation between even
and odd values in the domain of x is needed to tell Charlie whether in the current turn it is time to freely
choose the next tile, or to blindly replicate Eve’s choice. As remarked in Section 4, Charlie needs at least
one time step of delay to replicate Eve’s moves, while Eve can reply immediately. For this reason, Eve’s
tokens last two time steps, so that Charlie has time to see Eve’s choice and replicate. Tokens on the two
timelines remains aligned: Eve’s tokens span over the last Charlie choice and Eve’s move replica. Now, we
show the domain and system rules that can enforce such a dynamics, starting with the basic construction of
the grid. The first token of Charlie’s timeline must be t0even, to enforce the base case of the tiling, and the
fact that the token starting at time 0 is, in fact, marked as even:

> → a[x = t0even] . start(a) = 0 (in S)

Then, Charlie is instructed to blindly replicate Eve’s choice with an odd token after every even one, unless
the current tile is t∗ and the counter says this is the end of the row, in which case Charlie have won:

a[x = teven]→
∨
t′∈T
∃b[y = t′]c[x = t′odd] . start(a) = start(b) ∧ end(a) = start(c) (in S, for t 6= t∗ ∈ T)

a[x = t∗even]→
∨
t′∈T
∃b[y = t′]c[x = t′odd] . start(a) = start(b) ∧ end(a) = start(c) (in S)

∨ ∃b1[c1 = n1] . . . bm[cm = nm] . b0 = a ∧ . . . ∧ bm = a (where 〈n1, . . . , nm〉 = n)

Let us shorthand the second disjunct of the above rule simply as c = n, and as c = 0 the similar disjunct
that requires all ci to be zero. Then, we have to enforce the adjacency conditions for the tiling, which must
be obeyed by both players. For Charlie, this can be done as follows, for the horizontal relation:

a[x = teven]→ c = n ∨
∨
t′∈T
tHt′

∃b[x = t′odd] . end(a) = start(b) (in S, and with even/odd swapped)

a[x = teven]→ c = 0 ∨
∨
t′∈T
t′Ht

∃b[x = t′odd] . end(b) = start(a) (in S, and with even/odd swapped)

and for the vertical relation:

a[x = teven]→
∨
t′∈T
tV t′

∃b[x = t′even] . end(a) ≤[] start(b) (in S)

24

∨ ∃g[x = t∗even] bi[ci = ni]︸ ︷︷ ︸
1≤i≤m

. g = b1 ∧ . . . ∧ g = bm ∧ a ≤[] g

a[x = teven]→ start(a) ≤ n ∨
∨
t′∈T
t′V t

start(a) ≤ n ∨ ∃b[x = t′even] . end(b) ≤[] start(a) (in S)

Note how in the rules above, the last column and the last row are detected using, respectively, the value of
the counter and the presence of the final tile.

For Eve, the rules that enforce the adjacency relations are similar, but with two differences. First of all,
the rules are triggered by tokens on the y variable, which implies that they do not check the consistency of
Charlie’s choices. This is because a wrong choice by Charlie has to make it lose, not to make the run not
admissible. The second difference is that, by means of additional disjuncts, Eve is admitted to play a token
with value y = ⊥ in place of any other tile. This value, however, is allowed only when no other viable choice
is available, by means of a rule such as:

a[y = ⊥]→
∨
t′∈T

not t′ V t

∃b[x = t′even] . b is above a in the tiling (in D)

∨
∨
t′∈T

not t′ H t

∃b[x = t′] . b is on the left of a in the tiling (in D)

All the rules encoding the behaviour of Eve are written in such a way that they do not hold after ⊥ is played.
Since ⊥ 6∈ Vx, when Eve plays it, Charlie cannot replicate her move, hence violating his rules and losing the
game. In this way, the inability of Eve to progress in the tiling is turned into a lost game by Charlie instead
of an inadmissible run, accordingly to the semantics of the tiling game. Finally, we can state the final goal of
Charlie, namely, that of placing the final tile as the top tile of the current row:

> → ∃g[x = t∗even] bi[ci = ni]︸ ︷︷ ︸
1≤i≤m

. g = b1 ∧ . . . ∧ g = bm (in S)

∨ ∃g[x = t∗odd] bi[ci = ni]︸ ︷︷ ︸
1≤i≤m

. g = b1 ∧ . . . ∧ g = bm (in S)

It can be easily checked that the number and size of all the rules described above is polynomial in the size of
the tiling problem, and that a winning strategy for Charlie effectively corresponds to a winning strategy for
Constructor , hence concluding the proof.

6. Conclusions and future work

In this paper, we introduced uncertainty in the recent body of work devoted to the investigation of formal
properties of timeline-based planning problems [23, 30, 31, 32]. Rather than studying the complexity of
the problem of finding dynamically controllable flexible plans – a research direction which will be worth
exploring anyway – we took a more proactive approach, analysing some issues of the current approach based
on flexible plans, and proposing a more general game-theoretic formulation of the problem.

We generalised timeline-based planning problems with uncertainty by defining a novel concept of timeline-
based game, where the controller tries to execute some tasks as dictated by a timeline-based model, independ-
ently of the choices of the environment. In comparing this approach to the state-of-the-art one, we showed
that the existence of winning strategies for timeline-based games is strictly more general than the existence
of dynamically controllable flexible plans: the latter implies the former, but there are some problems that,
when stated as games, have easy winning strategies but do not admit dynamically controllable flexible plans.
Then, we analysed the computational complexity of checking whether a winning strategy exists for a given
timeline-based planning game, proving that the problem is 2EXPTIME-complete.

25

This work opens the way for further interesting developments. First of all, the problem of how to efficiently
synthesize a controller implementing a winning strategy for a given game is still open, with a look as well at
the quality of the synthesized strategy. Work in this direction may exploit existing machinery from the field
of reactive synthesis of logical specifications, by means of the logical encoding of timeline-based problems
given by Della Monica et al. [23].

Then, timeline-based games may be extended to multi-agent scenarios, where multiple players are involved,
each with its own objectives and constraints, all playing in the surrounding environment. Strategies may
be synthesized for single players or for coalitions, sharing some objectives while pursuing also individual
goals. This setting could be further extended to distributed games, where players do not share a single clock,
and communicate via message passing. Variants with partial observability are also an interesting direction.
Having framed the problem in terms of model checking of ATL∗ formulas will allow us to extend our work
to other settings while exploring the full potential of such logics and of the framework of concurrent game
structures.

Finally, extending the modelling language to cope with much-needed features such as representation and
handling of resources might be fundamental to handle complex real-world scenarios. On the other hand, given
the high computational complexity of solving the games, the pursuit of easier fragments, such as with bounded
durations or bounded horizon of the game, is an important step towards the application of this approach.

Acknowledgements

We thank Nicolas Markey for his help in improving our complexity analysis, leading to a tight upper bound.
Thanks also to reviewers for their useful remarks.

Nicola Gigante and Angelo Montanari have been supported by the PRID project ENCASE - Efforts in
the uNderstanding of Complex interActing SystEms, and by the INdAM GNCS project Formal Methods for
Combined Verification. Andrea Orlandini is partially supported by the European Commission and ShareWork
project (H2020 - Factories of the Future G.A. nr. 820807). http://www.sharework-project.eu

Bibliography

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843, 1983. doi:
10.1145/182.358434.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM, 49(5):672–713, 2002.
doi: 10.1145/585265.585270.

[3] T. Bedrax-Weiss, C. McGann, A. Bachmann, W. Edgington, and M. Iatauro. Europa2: User and contributor guide.
Technical report, NASA Ames Research Center, 2005.

[4] M. Beetz and D. McDermott. Improving robot plans during their execution. In Proc. of the International Conference on
Artificial Intelligence Planning Systems (AIPS), 1994.

[5] S. Bernardini and D. E. Smith. Developing domain-independent search control for europa2. In Proceedings of the ICAPS
2007 Workshop on Heuristics for Domain-Independent Planning, 2007.

[6] S. Bernardini and D. E. Smith. Translating pddl2.2. into a constraint-based variable/value language. In Proceedings of the
ICAPS 2008 Workshop on Heuristics for Domain-Independent Planning, 2008.

[7] A. Camacho, E. Triantafillou, C. Muise, J. A. Baier, and S. A. McIlraith. Non-deterministic planning with temporally
extended goals: LTL over finite and infinite traces. In Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017.

[8] A. Cesta and A. Oddi. Ddl.1: A formal description of a constraint representation language for physical domains. In
M. Ghallab and A. Milani, editors, New directions in AI planning. IOS Press, 1996.

[9] A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and N. Policella. Software companion: The mexar2 support to space mission
planners. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of the 17th European Conference on
Artificial Intelligence, volume 141 of Frontiers in Artificial Intelligence and Applications, pages 622–626. IOS Press, 2006.

[10] A. Cesta, G. Cortellessa, M. Denis, A. Donati, S. Fratini, A. Oddi, N. Policella, E. Rabenau, and J. Schulster. Mexar2: AI
solves mission planner problems. IEEE Intelligent Systems, 22(4):12–19, 2007. doi: 10.1109/MIS.2007.75.

[11] A. Cesta, S. Fratini, and F. Pecora. Unifying planning and scheduling as timelines in a component-based perspective.
Archives of Control Science, 18(2):231–271, 2008. ISSN 1230-2384.

[12] A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci. Analyzing flexible timeline-based plans. In H. Coelho, R. Studer,
and M. Wooldridge, editors, Proceedings of the 19th European Conference on Artificial Intelligence, volume 215 of Frontiers
in Artificial Intelligence and Applications, pages 471–476. IOS Press, 2010. doi: 10.3233/978-1-60750-606-5-471.

[13] A. Cesta, L. M. Tosatti, A. Orlandini, N. Pedrocchi, S. Pellegrinelli, T. Tolio, and A. Umbrico. Planning and execution
with robot trajectory generation in industrial human-robot collaboration. In S. M. Anzalone, A. Farinelli, A. Finzi, and
F. Mastrogiovanni, editors, Proceedings of the 4th Italian Workshop on Artificial Intelligence and Robotics, volume 2054 of
CEUR Workshop Proceedings, pages 47–52. CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-2054/paper8.pdf.

26

http://ceur-ws.org/Vol-2054/paper8.pdf

[14] A. Cesta, G. Cortellessa, A. Orlandini, and A. Umbrico. A cognitive architecture for autonom-
ous assistive robots. ERCIM News, 2018(114), 2018. URL https://ercim-news.ercim.eu/en114/special/

a-cognitive-architecture-for-autonomous-assistive-robots.
[15] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett,

G. Stebbins, and D. Tran. Aspen - automating space mission operations using automated planning and scheduling. In
Proceedings of the International Conference on Space Operations, 2000.

[16] S. A. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castaño, A. Davies, R. Lee, D. Mandl, S. Frye, B. Trout,
J. Hengemihle, J. D’Agostino, S. Shulman, S. G. Ungar, T. Brakke, D. Boyer, J. V. Gaasbeck, R. Greeley, T. Doggett, V. R.
Baker, J. M. Dohm, and F. Ip. The EO-1 autonomous science agent. In 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 420–427. IEEE Computer Society, 2004. doi: 10.1109/AAMAS.2004.10022.

[17] S. A. Chien, G. Rabideau, D. Tran, M. Troesch, J. Doubleday, F. Nespoli, M. P. Ayucar, M. C. Sitja, C. Vallat, B. Geiger,
N. Altobelli, M. Fernandez, F. Vallejo, R. Andres, and M. Kueppers. Activity-based scheduling of science campaigns for
the rosetta orbiter. In Q. Yang and M. Wooldridge, editors, Proceedings of the 24th International Joint Conference on
Artificial Intelligence, pages 4416–4422. AAAI Press, 2015. URL http://ijcai.org/Abstract/15/655.

[18] B. S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences, 32(3):374–392, 1986. doi: 10.1016/
0022-0000(86)90036-X.

[19] M. Cialdea Mayer, A. Orlandini, and A. Umbrico. Planning and execution with flexible timelines: a formal account. Acta
Informatica, 53(6-8):649–680, 2016. doi: 10.1007/s00236-015-0252-z.

[20] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence, 147(1):35 – 84, 2003.

[21] A. Cimatti, A. Micheli, and M. Roveri. Timelines with temporal uncertainty. In M. desJardins and M. L. Littman, editors,
Proceedings of the 27th AAAI Conference on Artificial Intelligence. AAAI Press, 2013. URL http://www.aaai.org/ocs/

index.php/AAAI/AAAI13/paper/view/6319.
[22] A. Cimatti, M. Do, A. Micheli, M. Roveri, and D. E. Smith. Strong temporal planning with uncontrollable durations.

Artificial Intelligence, 256:1 – 34, 2018.
[23] D. Della Monica, N. Gigante, A. Montanari, P. Sala, and G. Sciavicco. Bounded timed propositional temporal logic with

past captures timeline-based planning with bounded constraints. In C. Sierra, editor, Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pages 1008–1014, 2017. doi: 10.24963/ijcai.2017/140.

[24] D. Della Monica, N. Gigante, A. Montanari, and P. Sala. A novel automata-theoretic approach to timeline-based planning.
In M. Thielscher, F. Toni, and F. Wolter, editors, Proceedings of the 16th International Conference on Principles of
Knowledge Representation and Reasoning, pages 541–550. AAAI Press, 2018. URL https://aaai.org/ocs/index.php/KR/

KR18/paper/view/18024.
[25] European Space Agency. Apsi - advanced planning and scheduling initiative. URL https://essr.esa.int/project/

apsi-advanced-planning-and-scheduling-initiative.
[26] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial

Intelligence, 2(3/4):189–208, 1971. doi: 10.1016/0004-3702(71)90010-5.
[27] J. Frank. What is a timeline? In Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling,

pages 31–38, 2013.
[28] S. Fratini and L. Donati. Apsi timeline representation framework v. 3.0. Technical report, European Space Agency - ESOC,

2011.
[29] S. Fratini, A. Cesta, A. Orlandini, R. Rasconi, and R. De Benedictis. Apsi-based deliberation in goal oriented autonomous

controllers. In ASTRA 2011, volume 11. ESA, 2011.
[30] N. Gigante. Timeline-based Planning: Expressiveness and Complexity. PhD thesis, University of Udine, Italy, 2019.

Available on arXiv.
[31] N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Timelines are expressive enough to capture action-

based temporal planning. In C. E. Dyreson, M. R. Hansen, and L. Hunsberger, editors, Proceedings of the 23rd
International Symposium on Temporal Representation and Reasoning, pages 100–109. IEEE Computer Society, 2016. doi:
10.1109/TIME.2016.18.

[32] N. Gigante, A. Montanari, M. Cialdea Mayer, and A. Orlandini. Complexity of timeline-based planning. In L. Barbulescu,
J. Frank, Mausam, and S. F. Smith, editors, Proceedings of the 27th International Conference on Automated Planning and
Scheduling, pages 116–124. AAAI Press, 2017. URL https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758.

[33] N. Gigante, A. Montanari, M. Cialdea Mayer, A. Orlandini, and M. Reynolds. A game-theoretic approach to timeline-based
planning with uncertainty. In N. Alechina, K. Nørv̊ag, and W. Penczek, editors, Proceedings of the 25th International
Symposium on Temporal Representation and Reasoning, volume 120 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi: 10.4230/LIPIcs.TIME.2018.13.

[34] D. S. Johnson. A Catalog of Complexity Classes. In Handbook of Theoretical Computer Science, Volume A: Algorithms
and Complexity, pages 67–161. 1990.

[35] L. Levin. Universal sequential search problems. Problems in Information Transmission, 9:265–266, 1973.
[36] H. R. Lewis. Unsolvable Classes of Quantificational Formulas. Addison-Wesley, Reading, Mass., 1979. ISBN 0201040697.
[37] C. Muise, S. A. McIlraith, and J. C. Beck. Improved non-deterministic planning by exploiting state relevance. In Proc. of

the 22nd International Conference on Automated Planning and Scheduling, 2012.
[38] C. Muise, S. McIlraith, and V. Belle. Non-deterministic planning with conditional effects. In Proc. of the 24th International

Conference on Automated Planning and Scheduling, 2014.
[39] N. Muscettola. HSTS: Integrating Planning and Scheduling. In M. Zweben and M. S. Fox, editors, Intelligent Scheduling,

chapter 6, pages 169–212. Morgan Kaufmann, 1994.

27

https://ercim-news.ercim.eu/en114/special/a-cognitive-architecture-for-autonomous-assistive-robots
https://ercim-news.ercim.eu/en114/special/a-cognitive-architecture-for-autonomous-assistive-robots
http://ijcai.org/Abstract/15/655
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6319
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6319
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://essr.esa.int/project/apsi-advanced-planning-and-scheduling-initiative
https://essr.esa.int/project/apsi-advanced-planning-and-scheduling-initiative
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758

[40] N. Muscettola, S. F. Smith, A. Cesta, and D. D’Aloisi. Coordinating space telescope operations in an integrated planning
and scheduling architecture. IEEE Control Systems, 12:28–37, 1992.

[41] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote agent: To boldly go where no AI system has gone before.
Artificial Intelligence, 103(1-2):5–47, 1998. doi: 10.1016/S0004-3702(98)00068-X.

[42] F. Patrizi, N. Lipovetzky, and H. Geffner. Fair LTL synthesis for non-deterministic systems using strong cyclic planners. In
Proc. of the 23rd International Joint Conference on Artificial Intelligence, 2014.

[43] M. P. W. Savelsbergh and P. van Embde Boas. Bounded tiling, an alternative to satisfiability? In Proc. of the 2nd Frege
Conference, volume 20 of Mathematische Forschung, pages 354–363. Akademic Verlag, 1984.

[44] D. E. Smith, J. Frank, and A. K. Jónsson. Bridging the gap between planning and scheduling. The Knowledge Engineering
Review, 15(1):47–83, 2000.

[45] S. Steel. Action under uncertainty. Journal of Logic and Computation, 4(5):767–795, 1994.
[46] A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini. PLATINUm: A New Framework for Planning and Acting

in Human-Robot Collaborative Scenarios. In Proc. of the 16th International Conference of the Italian Association for
Artificial Intelligence, pages 498–512, 2017.

[47] A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini. Platinum: A new framework for planning and acting. In
F. Esposito, R. Basili, S. Ferilli, and F. A. Lisi, editors, Proceedings of the 16th International Conference of the Italian
Association for Artificial Intelligence, volume 10640 of Lecture Notes in Computer Science, pages 498–512. Springer, 2017.
doi: 10.1007/978-3-319-70169-1 37.

[48] A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini. Integrating resource management and timeline-based planning.
In M. de Weerdt, S. Koenig, G. Röger, and M. T. J. Spaan, editors, Proceedings of the 28th International Conference on
Automated Planning and Scheduling, pages 264–272. AAAI Press, 2018. URL https://aaai.org/ocs/index.php/ICAPS/

ICAPS18/paper/view/17773.
[49] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic, and Recursion Theory, volume 187

of Lecture Notes in Pure and Applied Mathematics, pages 331–363. Marcel Dekker Inc., 1997.
[50] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks: from consistency to controllabilities.

Journal of Experimental and Theoretical Artificial Intelligence, 11(1):23–45, 1999. doi: 10.1080/095281399146607.
[51] H. Wang. Proving theorems by pattern recognition I. Communications of the ACM, 3(4):220–234, 1960. doi: 10.1145/

367177.367224.

28

https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17773
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17773

	Introduction
	Timeline-based planning
	Timelines, plans, synchronization rules, and timeline-based planning problems
	Timeline-based planning with uncertainty
	Controllability of flexible plans

	Limitations of the current approach
	Timeline-based games
	Partial plans
	The game arena
	The winning condition
	Timeline-based games and flexible plans

	Complexity of finding winning strategies
	Finite representation of game plays
	Deciding the existence of winning strategies
	Finding whether winning strategies exist is 2EXPTIME-complete

	Conclusions and future work

