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ABSTRACT 

With the publication of high-quality genome-scale metabolic models for several 

organisms, the Systems Biology community has developed a number of algorithms for their 

analysis making use of ever growing –omics data. In particular, the reconstruction of the first 

genome-scale human metabolic model, Recon1, promoted the development of Context-

Specific Model (CS-Model) reconstruction methods. This family of algorithms aims to 

identify the set of metabolic reactions that are active in a cell in a given condition using 

omics data, such as gene expression levels. Different CS-Model reconstruction algorithms 

have their own strengths and weaknesses depending on the problem under study and omics 

data available. However, after careful inspection, we found that all of these algorithms share 

common issues in the way GPR rules and gene expression data are treated. The first issue is 

related with how gapfilling reactions are managed after the reconstruction is conducted. The 

second issue concerns the molecular context, which is used to build the CS-model but 

neglected for posterior analyses. To evaluate the effect of these issues, we reconstructed ~400 

CS-Models of cancer cell lines and conducted gene essentiality analysis, using CRISPR–Cas9 

essentiality data for validation purposes. Altogether, our results illustrate the importance of 

correcting the errors introduced during the GPR translation in many of the published 

metabolic reconstructions.  
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With the publication of high-quality genome-scale metabolic models (GSMs) for 

several organisms, the Systems Biology community has developed a plethora of algorithms 

for their analysis making use of ever-growing omics data (Heirendt et al., 2019). In particular, 

in human metabolism, the reconstruction of the first genome-scale model RECON1 (Duarte 

et al., 2007) promoted the development of Context-Specific Model (CS-Model) 

reconstruction methods (Opdam et al., 2017). This family of algorithms aims to identify the 

catalogue of metabolic reactions involved in a cell in a given condition using omics data, 

commonly gene expression levels. CS-Models are particularly suitable for studying metabolic 

differences between human tissues and are widely used in the area of human health (Uhlen et 

al., 2016), with applications including the prediction of metabolic vulnerabilities in cancer 

(Agren et al., 2014) and the inference of biomarkers in Alzheimer and diabetes (Geng and 

Nielsen, 2017), among others. Currently, we have dozens of these CS-Models available in 

different public repositories, usually stored under the Systems Biology Markup Language 

standard (Hucka et al., 2003).  

An essential component of CS-Model reconstruction algorithms are Gene-Protein-

Reaction (GPR) rules, which include the information about how genes relate to protein 

complexes and isozymes as well as the reactions they catalyze. GPR rules are expressed in 

the form of logical equations and allow us to define active/inactive reactions by mapping 

expression data onto them. This set of reaction states is used by reconstruction algorithms to 

extract the final CS-Model, which involves the reactions mapped as active plus a small set of 

inactive reactions automatically added to fill gaps in the network (gap-filling reactions). The 

relevance of GPR rules for CS-Model reconstruction algorithms can be more clearly observed 

in the Supplementary Information, where a general workflow is depicted. 

Different CS-Model reconstruction algorithms have their own strengths and 

weaknesses depending on the problem under study and omics data available. In this direction, 

Opdam and collaborators performed an extensive benchmark of CS-Model algorithms and 

found that none particular method outperforms the others (Opdam et al., 2017). However, 

after careful inspection, we found that all of these algorithms share a common “bug” in the 

way GPR rules and gene expression data are treated when reconstructing CS-Models. 

The first issue we encountered is related to how gap-filling reactions are 

managed in the reconstruction process. Model extraction algorithms may add reactions 

classified as inactive to fill gaps in the CS-Model. Figure 1A represents a toy model with four 

reactions: two categorized as active, {1, 4}, and two as inactive, {2, 3}. In this example, the 

CS-model includes the active reactions and the reaction 2 for gap filling. Importantly, the 
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decision to include the gap-filling reaction 2 implies to update our assumption about the state 

of genes involved in such reaction, which in this case means to update the state of gene B to 

active. In addition, if the state of gene B is updated, this change must be propagated through 

the CS-model. Following the example in Figure 1A, propagating the change on the state of 

gene B implies that reaction 3 becomes active and thus it should be included in the 

consolidated CS-Model. We found that this consolidation step is not performed by the 

published CS-Model reconstruction algorithms, and that neglecting the GPR consolidation 

step will worsen the model predictions by overestimating the effect of gene knockouts. 

 
Figure 1. Identified errors in context-specific metabolic model reconstruction. (A) Illustration of the 
consequences of not managing the gap-filling reactions properly. (B) Illustration of the consequences 
of not taking the molecular context into account. (C) The distribution of CERES essentiality scores 
(Meyers et al., 2017) for recovered essential (orange) and non-essential (blue) genes. The recovered 
essential genes are those genes which are predicted non-essential by standard GIMME (Becker and 
Palsson, 2008) but essential when the errors in (A) and (B) are amended. The recovered non-essential 
genes are those genes which are predicted essential by standard GIMME (Becker and Palsson, 2008) 
but non-essential when the errors in (A) and (B) are amended. Red and green coloring refers to 
inactive and active genes, respectively. The green arrows correspond to active reactions, the red 
arrow refers to an inactive reaction which has been selected as gap-filling and the gray arrow 
corresponds to an inactive reaction which has not been selected as gap-filling. 

The second and more striking issue is that the molecular context used to 

reconstruct the CS-model is usually not included as part of the CS-model. If the 

expression confidences used to infer the reaction states (active/inactive) are left aside after 

the reaction mapping, part of the information used to reconstruct the CS-Model is lost and, 

therefore, the model formulation will be incomplete. In the example of Figure 1B, the enolase 

reaction was set as active based on its expression scores and GPR rule. However, if the GPR 

of enolase is evaluated without the expression scores, it is not possible to guess which genes 

are supporting the enolase activity. Moreover, without the information about gene expression, 

the default hypothesis will be that all the genes included in the CS-Model are active. Thus, 

analyzing a CS-Model without considering the context can affect the predictions (see Figure 

1B). Specifically, we found that this inconsistent treatment of the CS-Model leads to 

down-estimating the effect of gene knockouts.  
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In order to evaluate the effect of this flaw, we reconstructed ~400 CS-Models for cell 

lines from the Cancer Cell Line Encyclopedia (Barretina et al., 2012) and conducted a gene 

essentiality analysis. The CS-Models were reconstructed using Gene Expression Barcode to 

classify genes as active/inactive (McCall et al., 2014), Recon3D as the reference model 

(Brunk et al., 2018) and GIMME as the extraction algorithm (Becker and Palsson, 2008). We 

amended the output of GIMME to account for the issues discussed above, using a simple and 

effective approach, which is fully detailed in the Supplementary Information. Summarizing 

the results over all the cell lines, our approach found 3160 essential genes not predicted 

by standard GIMME and discarded 1061 essential genes predicted by standard 

GIMME (Supplementary Data). These results clearly indicate that ignoring the molecular 

context has drastic effects on the in-silico predictions.   

To validate these results, for each cell line we gathered CRISPR–Cas9 essentiality 

data from DepMap (Tsherniak et al., 2017) corrected using CERES essentiality score 

(Meyers et al., 2017). Figure 1C shows the CERES scores’ distributions for the 

aforementioned 3160 non-essential genes becoming essential (orange curve) and 1061 

essential genes becoming non-essential when GIMME considered context (blue curve). As 

expected, the first group is significantly enriched in DepMap essential genes (one tailed 

Mann-Whitney test p-value= 9.96·10-41), demonstrating the practical importance of the 

correct treatment of GPR rules and molecular context. 

 Altogether, our results illustrate the importance of the errors introduced during the 

GPR translation in many of the published metabolic reconstructions.  To overcome this issue, 

we advocate for a strict control of the specific molecular context during the translation of the 

GPR rules to CSMs. To that end, the existing CSM reconstruction algorithms and storage 

standards should be modified to be GPR consistent and provide the molecular context. 

Here, we showed the positive results in the performance of GIMME when this limitation was 

corrected and similar results are expected with other algorithms. 
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