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Overview

=  Description of the model

=  FEnIiCS

=  Code verification
= Method of exact solutions
= Benchmarking

= Performance testing

n Conclusion



Electric discharge modeling

= Governing equations = Boundary conditions:
— Poisson’s equation — Poisson’s equation:
|72¢ _ z quNg « Dirichlet boundary condition
= € «  Neumann boundary condition

, , « Robin boundary condition (e.g. on dielectrics for DBD modeling)
— Balance equations for particle

number densities — Particle balance equations [1,2]:
o * For heavy particles
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— Electron energy balance equation ro-n=" (IbeEnel +3venene ) — ¥ 2 max(l; -, 0)
[ aa“;e +V-Q,=—eE-T,+5, } — Electron energy balance equation [2]:
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where Q, = n,b,V¢ — V(D,n,)
[1] G. J. M. Hagelaar et al., Phys. Rev. E 62 (2000) 1452
[2] Becker et al., J. Phys. D: Appl. Phys. 46 (2013) 355203



FROM IDEA TO PROTOTYP A

INPS e

Unified form language FEniCS form compiler. Flnite element
(UFL) used for choosing (FEC) translates Automatic Tabulator
finite element spaces mathematical description (FIAT) generates arbitrary
and for symbolic of variational forms into a instances of Lagrange
expresion of variational code for finite element elements on lines,
forms of PDE assembly triangles and tetrahedra

MSHR ParMETIS PETSc SLEPC

MPI OpenMP  vtkploter matplotlib

[1] A. Logg et al. Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin 2012
[2] https:.//fenicsproject.org



Verification of the FEnICS code

» Three examples of time-dependent, two-dimensional modeling

= Method of exact solutions

— Modeling of the electron number
density profile in time of flight (TOF) experiment

= Benchmarking

— Modeling of an axisymmetric positive streamer in air
— Modeling of a low pressure glow discharge in argon

» Forall cases linear Lagrange (triangular) elements are used

» The mesh size depends on application requirements (finer for streamer, while coarser for glow discharge
modeling)

= Backward differentiation formula (BDF) of the order of 2 is used for time discretization

=  Adaptive time stepping control is done using proportional—-integral—derivative (PID) controller



Time of flight experiment in air at 760 Torr and 300 K

Planar electrodes in a square domain of 1 mm radius and
gap distance

Constant electric field is assumed, so only particle
balance equation for the electrons is solved

For this particular field, attachment is negligible

The modeling is done in a time range between 3 and 6 ns

ong
at

+V T, =5,

E" = constant




Method of Exact Solutions — Time of flight experiment

Since electric field is constant, only particle
balance equation for the electrons is solved

Ne

ot

+V T = (a —m)n.ve

The analytic solution of this equation is 2D
Gaussian profile [1, 2]

_(z—vt)?4r?
n, = (4nDt)~3/2e™ 4Dt

+(a—m)vt

The mesh consists of approx. 100 000
elements

Time step was constant At = 1071% s

[1] Yu. P. Raizer, Gas discharge physics, Springer, Berlin 1991
[2] H. A. Blevin et al., Aust. J. Phys., 37 (1984) 593
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Benchmarking — Modeling of an axisymmetric positive streamer in air

Powered electrode

= Positive streamer in air at 760 Torr and 300 K z=d
2 e(ni ne)
Vip =
= Planar electrodes in a square domain of 1.25 cm €0
radius and gap distance % +V7-I,=S
= Background electric field is 15 kV/cm, which is o _ ¢
below breakdown field ot

n . o r’+(z=20)”
= |nitial Gaussian seed is introduced near the nio(r,z) = Nye o2

powered electrode to locally enhance the field
and start the streamer

Neo(r,2z) = 1013 m™3

Grounded electrode

[1] B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 09500



Benchmarking — Modeling of an axisymmetric positive streamer in air

Positive streamer in air at 760 Torr and 300 K

Planar electrodes in a square domain of 1.25 cm
radius and gap distance

Background electric field is 15 kV/cm, which is
below breakdown field

Initial Gaussian seed is introduced near the
powered electrode to locally enhance the field
and start the streamer

[1] B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 09500
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Benchmarking — Modeling of an axisymmetric positive streamer in air

Positive streamer in air at 760 Torr and 300 K

Planar electrodes in a square domain of 1.25 cm
radius and gap distance

Background electric field is 15 kV/cm, which is
below breakdown field

Initial Gaussian seed is introduced near the
powered electrode to locally enhance the field
and start the streamer

[1] B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 09500

z=d

Powered electrode

Grounded electrode
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Benchmarking — Modeling of an axisymmetric positive streamer in air

Poisson’s equation and particle balance
equation for electrons and ions are solved

yrgp_ el =e)
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ot

The mesh consisted of 500 000 elements
(approximately equal as in COMSOL)

Mesh was refined towards the axis and
streamer region

Time step was constant At = 5x 107 1% s
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[1] B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 09500
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Poisson’s equation and particle balance
equation for electrons and ions are solved
e(n; —ne)

72¢ = —
¢ o

+V-T, =

The mesh consisted of 500 000 elements
(approximately equal as in COMSOL)

Mesh was refined towards the axis and
streamer region

Time step was constant At = 5x 107 1% s
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[1] B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 09500
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Glow discharge in argon at 1 Torr and 300 K

Planar electrodes in a square domain of 1 cm radius and
gap distance

Voltage U, = —250V is applied to the cathode

[1] Becker M M et al., Comput. Phys. Commun. 180 (2009) 1230
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Benchmarking — Modeling of a low pressure glow discharge in argon

Poisson particle balance equation
and electron energy balance
equation are solved
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Numerical model takes into account
four particle species: Ar, Ar*, Ar*
and electrons

Approx. 20 000 elements were used

Adaptive time step was used
(Atmax = 107° s)
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Performance testing

= Speed-up factor is calculated by running streamer benchmark code on a different number of cores
= |n all the cases MPI was used, since OMP did not have any influence on the performance
= Single-node calculations: similar speed-up as in parallel performance comparison.

» Two-node calculations: speed-up is worse than for single-node case due to limited speed of data transfer
between the nodes (1Gbit/s-Ethernet).

= Better multi-node performance is expected with InfiniBand connection between compute nodes (to be tested).
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Conclusion

Code for electrical discharge modeling at various conditions is developed in FEnICS
The code is verified using method of exact solutions and benchmarking

Performance was tested by running the streamer benchmark code in parallel on a computer
cluster

Relatively good speed-up is observed on a single node, comparable to COMSOL Multiphysics
performance

Speed-up obtained by using two cluster nodes is not satisfying due to connection speed
between nodes, but can be improved using InfiniBand
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Outlook

Modeling single
filament dielectric
barrier discharge at
atmospheric pressure

Adapt the model for
two or more
subdomains

Adapt model for
arbitrary number of
particle species
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Outlook
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