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ABSTRACT

With the increasing size and complexity of modern infrastructure networks rises the
challenge of devising efficient and accurate methods for the reliability analysis of these
systems. Special care must be taken in order to include any possible interdependencies
between networks and to properly treat all uncertainties. This work presents a new
approach for the reliability analysis of complex interconnected networks through Monte
Carlo Simulation and survival signature. Application of the survival signature is key
in overcoming limitations imposed by classical analysis techniques and facilitating the
inclusion of competing failure modes. The (inter)dependencies are modelled using
vine copulas while the uncertainties are handled by applying probability-boxes and
imprecise copulas. The proposed method is tested on a complex scenario based on the
IEEE reliability test system, proving it’s effectiveness and highlighting the ability to
model complicated scenarios subject to a variety of dependent failure mechanisms.

INTRODUCTION

Reliability analysis of complex networks is an important task in the field of risk
analysis. This importance is a result of the ever increasing size and complexity of
modern critical infrastructure. At the same time, society is becoming increasingly
reliant on the availability of these critical infrastructures such as water supply networks,
electrical distribution networks or the internet. A breakdown of any of these systems
can have a drastic impact on people’s lives, as evident from the aftermath of recent
natural disasters [1]. As a result, efficient and accurate methods for the reliability of
these complex systems are required. However, history has shown that it is not sufficient
to analyse these networks as individual units because the systems are often subject to
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complex interdependencies between one another. That is, failure in one network can
potentially cascade into another network [2, 3]. For example, failures in a power grid
due to natural disasters will drastically effect the communication network which in turn
will inhibit the coordination of emergency personnel [4]. Therefore, it is of paramount
importance to include and accurately model these interdependencies when analysing
the reliability of networks.

Behrensdorf, Brandt, Broggi, and Beer [5] presented a novel approach to the numer-
ical reliability analysis of interdependent networks based on Monte Carlo simulation and
survival signature. The survival signature has the capability to fully separate the struc-
ture of a network from its probabilistic characteristics, allowing for efficient simulation
while modelling dependencies in a probabilistic way [6]. Due to these characteristics
it has constantly increased in popularity since its development, with new simulations
techniques based on the signature being constantly developed (see for example [7]).
In the previous the modelling of interdependencies between networks was limited to
simple deterministic unidirectional causal links where failure of one component would
result in the immediate failure of all dependent components. However, this approach
lacks flexibility and does not allow to accurately capture the complex interdependencies
between real world networks. As a result, a new methodology to model these inter-
dependencies is required. Copulas have been successfully used to model dependence
in enterprise risk management, finance, insurance, and environmental studies [8—11].
Modelling dependencies with copulas is especially powerful as multivariate copulas
allow to separate modelling of the marginal distributions from modelling the depen-
dence structure [12]. Though the popularity of copulas for engineering applications has
increased in the recent years [13, 14], literature is still scarce.

This work extends the previously developed method to allow for complex dependen-
cies between nodes and networks as well as competing failure modes using multivariate
copulas. This work is focused on using appropriate copulas to represent realistic depen-
dency structures between different networks. The goal is to find a single dependency
structure containing the complete dependency information. For this reason, different
types of multivariate copulas such as hierarchical Archimedean copulas and vine copulas
are investigated. The copula models are usually inferred from data or expert knowledge,
both of which are subject to two types of uncertainty, namely aleatory and epistemic
uncertainty. Aleatory uncertainty represents the natural randomness in process while
epistemic uncertainty results from vagueness or lack of information [15]. Dealing with
these uncertainties by imprecise reliability analysis results in bounds on the obtained
survival function.

The remainder of this paper is outlined as follows. First, the basic notations and
required definitions of copulas including measures of dependence is presented, followed
by a discussion of copula construction methods. Then, the approach to modelling
dependencies is presented. Next, the numerical method used to compute the network
reliability is introduced. After discussion methods to handle uncertainties in the analysis,
the proposed method is applied to a complex numerical example. Finally, the paper
closes with some concluding remarks and an outlook into future works.
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COPULAS

This chapter introduces the basic theory on copulas as well as how they can be used
to model dependencies in high dimensions. An overview of different parametric copula
families is given. Additionally, measurements of dependence are introduced. For a
comprehensive discussion of copulas, see for example [16] or [12].

Copulas (from the Latin for ‘bond’ or ‘tie’) are functions that couple multivariate
distribution functions to their one-dimensional marginal distributions functions and
as such allow to separate modelling of the dependence structure from modelling the
univariate marginals [16]. The foundation of the theory of copulas lies in what is known
as Sklar’s theorem [17]. It states, that any multivariate distribution H can always be
separated into its marginal distributions F; and a copula function C. The theorem is
valid in all dimensions d > 2.

Theorem 2.1 (Sklar’s theorem) Let H be an d-dimensional distribution function with

margins Fy, . .., F,. There exists an d-dimensional copula C such that for all x in R?
H(x) = C(Fi(x1), ..., Fa(xa)). (1)
If the marginals Fy, ..., Fg are continuous, then C is unique; otherwise, C is unique

on Range(F|) X --- X Range(F;). Conversely, if C is a d-copula and Fy, ..., Fy
are distribution functions, then the function H defined by Eq. 1 is an d-dimensional
distribution function with margins Fy, ..., Fy.

Probabilistically, if C is a joint cumulative distribution function of a d-dimensional
random vector on the unit cube [0, 1]¢ with uniform marginals, then C : [0, 114 -
[0, 1] is a copula. It is noteworthy, that copulas are invariant under strictly increasing
transformations, as stated by Theorem 2.2 [16].

Theorem 2.2 Ford > 2 let Xy, ..., Xy be random variables with continuous distribu-
tion functions Fy, ..., Fy, joint distribution function H and copula C. Let fi,..., fa
be strictly increasing functions from R to R. Then fi(Xy),..., fa(X4) are random
variables with continuous distribution functions and copula C. Thus, C is invariant
under strictly increasing transformation of Xy, . . ., Xg.

As such, any property of the joint distribution function that is invariant under strictly
increasing transformation is in fact a property of the copula. As a result, this means,
one can study dependence between random variables by studying the copula [8]. There
exist multiple copula families with different dependence structures of which some of
the most popular are presented in the following.

The Gaussian Copula

The d-dimensional Gaussian copula with positive definite correlation Matrix R €
[-1,1]9%¢ is defined by

Cr(ur, ... ug) = Pg(@ ' (uy), ..., 0 (ug)), 2)

where ®,(;R) is the d-variate cumulative distribution of a N;(0, R) random vector
and ®~! denotes the inverse of the univariate standard Gaussian cumulative distribution
function [12].
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Table 1. Most popular Archimedean copulas with generators, generator inverses, and
parameter domains.

Name Generator oy (1) Generator Inverse 9051 (1) Parameter 6
i 1—6(1- ~

Ali-Mikhall-Haglog (==1)) e 6e[-1,1)

Clayton La? -1 (1+61)~11° 6 € [-1,)\{0}

Frank —log(% —% log(1 +exp(—1)(exp(—60) — 1)) 6 € R\{0}

Gumbel (—1log(1))? exp(—1'/%) 0e[l,00)

Independence  —log(?) exp(—t)

Joe —log(1=(1=-0)% 1-=(1-exp(=1))"? 6 € [1,c0)

Archimedean Copulas

Archimedean copulas are an important class of copulas. Their popularity stems
from a variety of reasons: they are easily constructed, the class holds a great number of
different families and the copulas posses many excellent properties [16]. Additionally,
the bivariate Archimedean copulas can be used in multivariate construction methods
based on pairs of bivariate copulas [12]. A d-dimensional copula C, is classified as
Archimedean if it admits to the representation

Co(ur, ..., uq) = (¢ (ur) + -+ ¢ (uq)), 3)

where the function ¢ : [0, 00] — [0, 1] is called the generator of C,, ¢~ ! denotes its
inverse and uy,...,uy € [0,1] [18]. Table 1 shows some of the most popular one-
parameter (governing the strength of dependence) Archimedean copula families with
their generators, inverses and parameter domains.

Dependence

The study of dependence among random variables requires some form of depen-
dence measurement. Typically, ‘correlation’ is used to describe different forms of
dependence. However, in its technical meaning as the linear correlation coefficient p it
is not ‘scale-invariant’ and as such does not remain unchanged under strictly increasing
transformation [8]. Therefore, the more modern term ‘association’ is used instead of
correlation. Two well known scale-invariant measures of association are the population
versions of Kendall’s tau and Spearman’s rho. In this work, Kendall’s tau is applied in
all cases.

Kendall’s tau is a measure of association based on concordance. A pair of random
variables is concordant if ‘large’ values of one are associated with ‘large’ values of the
other and the same holds for ‘small’ values. Formally, two observations (x;, y;) and
(xj,y;) from a vector (X,Y) are concordant if x; < x; and y; < y;, or discordant if
x; > xjandy; > y;. Alternatively, concordance can be expressed as (x;—x;)(y;—y;) > 0
and discordance as (x; —x;)(y; —y;) <O0.

Let (X, Y) denote a vector of continuous random variables and { (x;, y;), . . . , (Xu, Yn) }
a sample of n observations from said vector. With ¢ as the number of concordant pairs
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Fig. 1. Samples drawn from different bivariate copulas where the parameters have been
chosen so that Kendall’s tau equals 0.5.

and d the number of discordant pairs among all possible (’;) pairs of observations (x;, y;)
and (x;,y;), Kendall’s tau for the sample is defined as

c—d n
t:C+d:(c—d)/(2). @)

The value t may also be interpreted as the probability of concordance minus the proba-
bility of discordance for a random pair of observations (x;, y;) and (x;, y;) chosen from
the sample. In turn, this can be applied to define the population version of Kendall’s
tau for random variables X and Y

(X,Y) =P[(X-X)(Y -Y) > 0] - P[(X - X)(Y -Y) < 0], (5)

where (X,Y) is an independent pair with the same distributions as (X, Y) [8]. Figure 1
shows four example scatter plots of samples generated from different bivariate copulas
with the respective parameters chosen such that Kendall’s tau equals 0.5, highlighting
the individual dependence structure.

COPULA CONSTRUCTION METHODS
Modelling dependencies inside and between networks requires a flexible dependence
structure. Using one distinct copula family to sample failure times for all components
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Fig. 2. Structure of a 6-dimensional hierarchical Archimedean copula

in one or multiple networks is never precise enough. Therefore, the ability to combine
different copula families in one structure is of utmost importance. This section presents
two copula construction methods capable of this. These methods possess different
modelling capabilities and strengths. For a discussion of additional methods and further
details, see [12].

Hierarchical Archimedean Copulas

Hierarchical (alternatively: nested) Archimedean copulas are a class of copulas
where groups of variables are connected by Archimedean copulas and these groups
themselves are then coupled with another copula from one of the Archimedean families.
This nesting structure may be repeated up to an arbitrary number of nesting levels.
Figure 2 shows a visual representation of a hierarchical Archimedean copula with six
variables in four groups as a dendrogram. Formally, hierarchical Archimedean copulas
are defined by

Cyo(Co, (w1, sura)s. -, Co, (Uga, .oty d,)) (6)

where further nesting levels are defined recursively [18]. However, not all arbitrary
combinations of J + 1 generators lead to Eq. 6 defining a valid copula.

The dependence in every group in this structure is governed by one parameter and
variables that are close to each other (e.g, in the same group) share the same depen-
dence [12]. This reduces the modelling flexibility substantially. An implementation
of hierarchical Archimedean copulas can be found in the package nacopula for the
statistical programming language R [19].

Pair Copula Construction
The goal of pair copula constructions (PCCs) is to build high-dimensional copulas
from combinations of bivariate copulas and as such use the extensive theory on bivariate
copulas to overcome limitations in the available literature on multivariate copulas [18].
Consider a vector of d random variables X = (X, .. ., Xz) with joint density function
denoted by fi.4(x1,...,x4). The density can then be represented as a factorization of
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conditional densities:

fra(xt, ..., xq) = fi(x1) - fon (xalxr) - f32,0 (x3lx2, x1) + -+ fan:a-n(xalxi, ..., xq-1)

(N
In the next step Sklar’s theorem is applied to the conditional densities effectively splitting
a multivariate density into bivariate copula densities and densities of univariate margins.
Differentiating Eq. 1 with respect to a distribution with joint density f(xi,...,xs),
marginals f; and marginal cdfs F;, j = 1,...,d leads to

fra(xi,....xq) = cr.a(Fi(x1), ..., Fa(xq)) - fi(xy) -+ fa(xa), (8)

where c1.4(+) is the d-variate copula density. The bivariate case with pair-copula density
c12(+,-) simplifies to

fi2(x1,x2) = c12(F1(x1), F2(x2)) - fi(x1) - fa(x2), )]

which yields
fip(x1lx2) = cra(F1(x1), F2(x2)) - fi(x1). (10)

Equation 10 can be applied stepwise to Eq. 7 to fully decompose the multivariate density
into bivariate copula densities and densities of univariate marginals. Note, that not all
multivariate copulas can be modelled with this pair copula construction method.

Vine Copulas

Vines are a graphical representation of valid pair copula decompositions as sets
of trees. Basic graph theory is used to define vines [18]. A regular vine (R-Vine)
V =(Ty,...,T;—1) is defined as a tree sequence on d elements where:

1. Tjis atree with Nodes N1 ={1,...,d} and edges E|.
2. For j > 2,T;is atree with nodes N; = E;_; and edges E;.
3. Forj=2,...,d—-1and {a, b} it must hold that |a N b| = 1.

The so called proximity property (3) states that, if an edge exists in T, j > 2 connecting
a and b, in turn a and b must share a common node in 7;_;. Figure 3 shows a regular
vine representation of a 5-dimensional copula. There exist a multitude of d-dimensional
R-vines. However, two sub-classes called C- and D-Vines are used almost exclusively.
A regular vine V is called a C-Vine if in each tree T; there is one node that holds
n € N; such that |[{e € E;|n € e}| < d — 1. This condition states, that in each tree
one node has the maximum degree (is connected to all other nodes). Alternatively, a
D-Vine is characterised by each node n € N; satisfying |{e € E;|n € e}| < 2. Thus,
any node may only have a maximum of two connections. Figure 4 shows the graphical
structures of a five-dimensional C- and D-vine. Sampling of vine copulas is a non-
trivial task. A regular vine on 7 variables possesses 2"~ ! implied sampling orders [18].
Therefore, C- and D-Vines, where sampling is easier, are applied in all examples of
this work with sampling from the vines being performed by the MATLAB toolbox
VineCopulaMatlab [20].
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Fig. 3. Graphical illustration of a four-dimensional copula as a regular vine.

Q—O 7 O_Q 7

Fig. 4. C-Vine (left) and D-Vine (right) in five dimensions.
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MODELLING DEPENDENCIES

Recalling from the introduction, the goal of this paper is to model complex de-
pendencies between components of one system as well as interdependencies between
components of different systems using copulas. For that reason, the previous section in-
troduced some of the most popular copula families and different methods of constructing
high dimensional copulas. This section deals with selecting appropriate copula families
for different kinds of failures and investigating the usefulness of the copula construction
methods in regards to the reliability analysis of complex networks.

Ideally, the dependency structures and therefore the copulas should be inferred from
the measured component failure times of the dependent networks. However, as this
data is rarely available for complex systems and the aim of this work is to prove the
suitability of copulas in this framework, this is left for future work. Instead, a qualitative
approach to the modelling of different kinds of failures is chosen. Examples of how
to model two distinct classes of failures are given in the subsequent sections. These
qualitative estimates could potentially serve as a basis for deducing the copula structure
by Bayesian inference.

Common Cause of Failure
Common cause of failure is the event that two or more components fail simulta-

neously due to shared defects [21]. These weaknesses can include but are not limited
to [22]:

* Manufacturing defects
* Errors by the maintenance or operator personal
* Shared environmental conditions

This work concentrates on the first weakness, manufacturing defects, especially those
manifesting in early component life. The Clayton copula can be used to describe
dependence between marginals where there is strong lower tail dependence. Lower
(or upper) tail dependence is concept expressing higher dependence in the lower-left
(upper-right) quadrant of [0, 1] 2 This property of the Clayton copula is clearly evident
from Fig. 1b where the samples in the lower-left quadrant are grouped closer together.

Consider a very simple system of two parallel components. The component failure
times are assumed to be exponentially distributed with 4 = 1.5 and are sampled from
a bivariate Clayton copula with 8 chosen such that Kendall’s tau equals 0.3. Figure 5
shows a plot of the resulting reliability against the reliability in the independent case.
The plot clearly shows how the lower tail dependence translates to the reliability of the
system. Initially, the reliability is significantly reduced compared to the independent
case. At later points in time, as the dependence weakens, this difference decreases.
Contrarily, a copula exhibiting strong upper tail dependence might be used to model
common cause failures at high component age.

Interdependencies

The treatment of interdependencies is not as simple as for common cause of failures.
To understand the difficulties it is important to understand the two meanings dependence
has in this case. When working with copulas, dependence is a measure of correlation
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Fig. 5. Reliability of a parallel system subject to common cause of failure.

or concordance and as is the nature of copulas, dependence is modelled independently
of the marginals. As such, dependence in a statistical sense does not imply causality.
However, this is exactly what interdependencies represent. If one component fails there
is a chance that a dependent component will fail as well.

Consider two dependent components whose failure times are distributed with marginal
distributions F; and F, and copula C, where F| # F,. If failure times are sampled for
both components from a fully dependent copula and apply the marginals using the
inverse transformation method, the failure times for the first component will still be
distributed according to F| and the failures times for the second component will be
distributed with F,. Even though perfect dependence is assumed, the components will
not fail together. Since the copula approach separates the modelling of the dependence
structure from modelling of the marginals, this causality can be included in the latter.
In this case, a simple aggregation of the marginals is performed using the resulting
strength of dependence (Kendall’s tau) as a factor as shown in Eq. 11

Upy=(1-1) F'(uy) + 7 Fy ' (uy) (11)

Construction of the dependence structure

After selecting appropriate copula families to model the desired failure modes,
the overall dependence structure for the network has to be selected. Three approaches
exist based on the methods introduced in the previous section. The most straightforward
approach is the application of multiple independent copulas to define dependence among
groups of components. However, this does not allow for components to be connected to
multiple other components by different copula families as one random variable can not
be part of two independent copulas and as such is only suitable for simple scenarios. The
two more advanced techniques for constructing high dimensional copulas presented are
hierarchical Archimedean copulas and vine copulas. While HAC’s offer more flexibility
in terms of modelling the dependencies, they are still far more restrictive than vine
copulas. This is largely due to their nested structure as compared to the graph based
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nature of vine copulas. Additionally, building a graph based dependence structure has
obvious synergies with the reliability analysis of networks. For this reason, vine copulas
are selected to build the overall dependence structure.

RELIABILITY ANALYSIS

This section recaps the numerical methodology used to compute the network reli-
ability first introduced in [5]. It is based on the survival signature, an extension of the
system signature, and Monte Carlo simulation.

Survival Signature

The survival signature is a novel tool for the quantification of system and network
reliability based on the system signature [6, 23]. Both signatures allow for a separation
of the system structure from its probabilistic characteristics such as component failure
times. However, the system signature has a severe limitation in that it is only defined
for systems made up of a single component type, which does not apply to complex
networks. The survival signature addresses this drawback by generalizing the signature
to systems with an arbitrary number of component types.

Consider a system with m components. The state vectoris definedasx = (xy,...,Xp),
where x; = 1 indicates a component in working condition, while x; = 0 indicates a com-
ponent in a failed state. As such, the state vector represents the state of the individual
components. The state of the full system is obtained by applying the structure function
@(x) to the state vector. As before, ¢(x) = 1 indicates a working system and ¢(x) = 0
indicates that the system has failed. The structure function is defined based on the
problem at hand. In this work, the structure function is assumed to return 1 if a path
from any start node to any end node exists for the current network state. Calculating
the survival signature for / out of m components working then becomes a combinatorial
problem defined as

-1
o(l) = (”;) ES (12)

X€ES;
The survival signature is easily extended to systems with multiple component types.
Consider a system with K component types, m; components per type k(k = 1,...,K)
and /; out of m; components per type in a working state, the survival signature becomes

(1)

k=1

CD(Z],...,Z]() =

X Z ¢(x) (13)

As an example, consider a system with two component types and three components
per type as illustrated in Fig. 6. Here, node 1 is selected to be the start node and nodes
5 and 6 represent the end nodes. The full survival signature for the network is show in
Table 2.

While algorithms to calculate the survival signature have already been available for
a number of years [24, 25], efficient computation of the signature for systems with large
numbers of components and types still poses a numerical challenge. A new approach
attempting to reduce the high computational demand of the survival signature using
graph theory and Monte Carlo approximation can be found in [26].
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Fig. 6. Network with six components equally divided into two component types.

Table 2. Survival signature of the network shown in Fig. 6.

Lo @(nb) [h b ®h)
0 O 0 2 0 0
0 O 0 2 1 0
0 O 0 2 2 4/9
0 O 0 2 3 6/9
1 0 0 3.0 1
1 1 0 3 1 1
1 2 1/9 3 2 1
1 3 3/9 3 3 1

Survival Function
Based on the survival signature, the survival function is defined as

mi mp K
P(Ty>1)=> ... % &,.. .,lK)P( (et = zk}) (14)
Ix=0

1,=0 k=1

This function gives the probability that a network is still working at time #, in
other words the reliability of the system. The equation clearly shows the separation
of structural information (survival signature on the left) and probabilistic information
about component failures (right). This is beneficial as it allows to analyze the network
once ahead of the reliability analysis instead of having to re-evaluate the structure every
step of the way as with traditional techniques such as fault tree analysis. Additionally,
this makes it possible to efficiently run multiple failure scenarios against a network.

Simulation
Component failure times are sampled from the vine copula, after selecting the
number of desired samples N,,. and a sufficiently small time step, and transformed
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to their respective marginals. Next, for all combinations [y, ..., [x from the survival
signature and all time steps ¢ the number of samples representing the exact same
combination (amount of components still working at time #) are counted as Ny, ;. (?).
Then, the probabilistic part of the survival function is approximated by

K
Pl it = 0] = ets 15)

In a final step, the partial reliabilities for all combinations are multiplied by their
probability ®(/y,...,[g), introducing the structural information into the reliability,
and then summed yielding the full reliability of the network. This means that no
computations must be performed for combinations where the probability in the survival
signature is zero, further increasing the efficiency of the simulation. This fact is
especially useful in higher dimensions where large parts of the survival signature are
negligible. A pseudo-algorithm illustrating how to obtain the survival function of the
system based on the survival signature and the failure times sampled from the vine
copula is given in Algorithm 1. The analytically and numerically computed survival
functions for the network shown in Fig. 6 assuming independent exponential failure
distributions for the components with 4; = 0.8 and 1, = 1.6 are presented in Fig. 7.

Algorithm 1 Monte Carlo simulation for network reliability

Input:
®  survival signature
t rqi1 component failure times sampled from the vine copula
Viime VECtor of time steps
N, number of Monte Carlo samples
Output:
P Reliability of the network
function NETWORKRELIABILITY(D, ? £ 4i1, Viimes Nine)
for each /y,...,Ix in S;, ;. do: > Loop over all combinations of the survival
signature
if ®(/q,...,lx) > 0 then:
for each ¢ in vy, do:
Nworking < sum(tgqi > t) > Find components working at time ¢

Ni,...ix < sum(Nyorking =11, .., k) > Count matching
combinations
Poartiat (I, ... lk) < Niy, i [ Nime - @1, ..., Ik)
end for
end if
end for

P« sum(P pariiar) > Sum partial reliabilites yielding the full system reliability
end function
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Fig. 7. Survival function for the network in Fig. 6.

Imprecise Reliability Analysis

Two types of uncertainties must be considered during the reliability analysis, namely,
aleatory and epistemic uncertainties. Aleatory uncertainty describes the natural ran-
domness inherent in a process such as component degradation and external forces
affecting the system (natural hazards, earthquakes, etc.), while epistemic uncertainty
represents the uncertainty due to vagueness in information or a lack thereof. The latter
is usually regarded as reducible through acquiring of additional data and information.

Aleatory uncertainty is naturally handled by the reliability analysis technique.
Through assuming failure time distributions for the component failures and sampling
these during Monte Carlo simulation, the randomness that the model is subject to is
included in the analysis. However, the selection appropriate failure time distributions
is typically based on either data or expert knowledge, neither of which yields perfect
results. In turn, this introduces epistemic uncertainty into the model. These epistemic
uncertainties can be tackled by using imprecise probability methods where instead of a
single model, a set of plausible models is applied. As a result, the uncertainty propa-
gates through the models and is ultimately reflected in the probability of failure, i.e. the
reliability of the network.

Consider two non-decreasing functions F and F mapping the real line R into [0, 1],
with F(x) < F(x) for all x € R. Let [F(x), F(x)] denote the set of non-decreasing
functions mapping R into [0, 1] such that F(x) < F(x) < F(x). When F and F circum-
scribe an imprecisely known probability distribution, [F, F] is called the probability
box or p-box of said probability distribution. As a result, if [F, F] is a p-box for a
random variable X whose distribution is known to be within the p-box, then F(x) and
F(x) are the upper and lower bounds on F(x), respectively [27]. An example of an
exponential p-box with parameters A € [1.2,2.2] is shown in Fig. 8. In this case, only
two CDFs need to be computed to fully define the p-box. However, for most families of
distributions, four or more CDFs must be evaluated [27].
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Fig. 8. Example of an exponential p-box with 1 € [1.2,2.2].

By feeding the bounds of the p-box into the reliability analysis, the epistemic
uncertainty propagates into the result. Thus, instead of one survival function, the result
is an upper and a lower bound [28]. Figure 9a shows an example of the upper and lower
bounds obtained by performing a reliability analysis of a simple system of two parallel
components of the same type, assuming the p-box shown in Fig. 8 for the failure time
distributions.

Similarly to a p-box, instead of considering just one precise copula, a set of copulas
can be considered to account for uncertainty in the dependencies. Pelessoni, Vicig,
Montes, and Miranda [29] generalized p-boxes to the bivariate case. If C and C are two
copulas such that C < C, then [C, C] forms an imprecise copula. Let [F X,fx] and
[Fy, Fy] be two univariate p-boxes for the random variables X and Y respectively, then
[F, F] defined by

F(x,y) = C(Ex(x), Fy(y)) (16)

and _ o _
F(x,y) = C(Fx(x), Fy(y)) (17)

is a bivariate p-box [30]. As with the p-box, defining an imprecise copula from an
interval on it’s parameters imposes bounds on the system reliability. Consider again
a simple system of two parallel components, in this case interlinked by an imprecise
Gaussian copula with p € [0.3,0.6]. The upper and lower bounds for the reliability are
presented in Fig. 9b.

NUMERICAL EXAMPLE

The network structures for the following numerical example are taken from the IEEE
Reliability Test System (RTS) [31]. The system is effectively split into two sub-systems
(see Fig. 10 and Fig. 11) by removing the the transformers that link the low power to the
high power grid. Components in the networks are classified into five types. Component
types 1 and 5 are the non-generating nodes in networks 1 and 2 respectively. The

15 Behrensdorf, May 20, 2020



Survival Function P(T" > t)

Time ¢
(a) Probability-box

0 —h— A=12
Ny -e-p=03A=12
-@- p=06,1=1.2

Survival Function P(T" > t)
o
(S

Time ¢t

(b) Imprecise copula

Fig. 9. Bounds on the reliability resulting from applying a p-box (a) or an imprecise
Gaussian copula (b) to a simple system of two parallel components.

generating nodes are divided into three component types 2, 3 and 4. These represent
different types of generators such as nuclear, oil or coal power plants. Note that this
is no attempt at solving the IEEE RTS. The system is merely providing the network
topology.

In a first step to obtain the reliability, the required survival signatures for both
networks are calculated using the approach presented in [26]. Next, the vine copula that
is used for sampling the individual component failure times is assembled from bivariate
copulas. A common cause of failure is set among the groups of nodes of types 2, 3,
and 4 through imprecise bivariate Clayton copulas. Next, the transformers that were
removed to split the network in two, are reintroduced as interdependencies between
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Fig. 10. Structure of the first network taken from the IEEE RTS

the nodes 3 and 11, 9 and 24 as well as 10 and 12 using imprecise bivariate Gaussian
copulas. All one-dimensional marginal distributions are assumed to be exponentially
distributed. The parameters for the marginals and the copulas are presented in Tab. 3.

Finally, the reliability analysis is performed using the previously introduced Monte
Carlo simulation method. The upper and lower bounds of the reliability for network 1
is presented in Fig.12. For comparison, the plot also contains a deterministic reliability
analysis (all mean values) of network 1.

CONCLUSION

This paper presented a novel approach to the modelling of complex dependencies
in interdependent networks by leveraging multivariate copulas. Over the course of
this work the necessary theory on copulas, dependence measures and pair copula con-
struction techniques was discussed. Of the investigated structures vine copulas have
shown to be ideally suited to model higher dimensional dependencies with sufficient
flexibility. The capabilities of the proposed approach were highlighted using a scenario
based on the network topology of the IEEE Reliability Test System. The application
of vine copulas has proven to be able to represent a complicated model with multiple
competing failure modes. It was shown that imprecision can easily be included in the
reliability analysis. Nonetheless, the modelling flexibility of this method comes at a
price. Finding a suitable vine copula structure is not a trivial task and greatly suffers
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Fig. 11. Structure of the second network taken from the IEEE RTS

- @- Upper Bound
--@-- Lower Bound

Survival Function P(T > t)
o
ot

Fig. 12. Bounds on the reliability of network 1.
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Table 3. Failure rate ranges of the exponential marginal distributions and copula
parameters used in the numerical example.

Parameter Definition Parameter range
A Failure rate of component type 1 A1 € [0.8,1.2]
Ao Failure rate of component type 2 Ay € [1.4,1.5]
A3 Failure rate of component type 3 A3 € [1.6,1.9]
A4 Failure rate of component type 4 A4 € [2.0,2.3]
As Failure rate of component type 5 As € [1.8,2.2]
T Clayton copula parameters on component type 2 71 € [0.1,0.3]
) Clayton copula parameters on component type 3 m € [0.2,0.4]
T3 Clayton copula parameters on component type 4 3 € [0.1,0.3]
T4 Gaussian copula parameters between network 1 and 2 74 € [0.4,0.8]

from the curse of dimensionality.

In order to facilitate a transparent illustration of the approach, we have chosen a
relatively small system which still carries the key features of a realistic system. The
expansion to a large complex system would require a number of additional numerical
challenges to be solved. This is beyond the scope of this paper and therefore left
for future work. The challenges include deriving the vine copula model from data.
Gruber and Czado [32] presented a promising method for Bayesian model selection
and inference of vine copulas. The technique is the first to be able to jointly select the
vine tree structure and the copula families. Additionally, the modelling aspects of other
competing failure events such as external threats (e.g. earthquakes, tsunamis, terrorist
attacks) must be closely investigated.
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