
ABSTRACT 

In this paper, we present the design and analysis of the 
baseline recognition system used for ETSI Aurora large 
vocabulary (ALV) evaluation. The experimental paradigm 
is presented along with the results from a number of 
experiments designed to minimize the computational 
requirements for the system. The ALV baseline system 
achieved a WER of 14.0% on the standard 5K Wall Street 
Journal task, and required 4 xRT for training and 15 xRT 
for decoding (on an 800 MHz Pentium processor). It is 
shown that increasing the sampling frequency from 8 kHz 
to 16 kHz improves performance significantly only for the 
noisy test conditions. Utterance detection resulted in 
significant improvements only on the noisy conditions for 
the mismatched training conditions. Use of the DSR 
standard VQ-based compression algorithm did not result in 
a significant degradation. The model mismatch and 
microphone mismatch resulted in a relative increase in 
WER by 300% and 200%, respectively.  

1.  INTRODUCTION 

Mobile computing devices lack sufficient computing 
resources to perform large vocabulary continuous speech 
recognition (LVCSR). Client/server architectures are one 
potential solution to this bottleneck. Mobile devices have 
sufficient computing resources to handle a few components 
of the recognition system, such as feature extraction. A 
popular architecture for such applications is the 
Client/Server Distributed Speech Recognition  (DSR) 
architecture [1], shown in Figure 1. The main advantage of 
this approach is the ability to extract features on mobile 
terminal devices that can exploit sophisticated noise 
enhancement techniques to improve the overall recognition 
performance. 

The goal of the ETSI ALV evaluation was to measure 
the relative performance of different front ends on a large 
vocabulary system using sub-word models to supplement 
the performance calibration on small vocabulary using 
word models [1]. A noisy version of the WSJ0 database 

was chosen as the large vocabulary task [2,3]. The baseline 
recognizer used for the ALV was developed by ISIP [4]. 
This paper presents design issues associated with the 
evaluation database and the baseline recognition system. 
An extensive analysis of the performance of the ETSI 
WI007 front end is also presented. Six focus test conditions 
were calibrated: sampling frequency reduction, utterance 
detection, feature vector compression, model mismatch, 
microphone variation, and additive noise. 

2.  EXPERIMENTAL DESIGN 

The 5K-word task for the WSJ0 Corpus was selected for 
the ALV evaluation because it represents a well-established 
LVCSR benchmark and constitutes a good trade-off 
between computational resources and complexity. The 
Nov’92 NIST evaluation set was used as the evaluation 
data set. Because the original WSJ data was collected at 
16 kHz, an 8 kHz down sampled version was created. 
Processed versions of the data were created to simulate 
both filtered and additive noise conditions. A filtered 
version of the SI-84 training set for the Sennheiser 
microphone was used to construct the first training set, 
denoted as Training Set 1 (TS1). 

For the second training set, the filtered SI-84 
utterances were divided into two subsets: half recorded 
with the Sennheiser microphone and half recorded with a 
second microphone. No noise was added to one-fourth (893 
utterances) of each of these subsets. To the remaining 
three-fourths (2,676 utterances) of each of these subsets, 
six different noise types (car, babble, restaurant, street, 
airport, and train) were added at randomly selected SNRs 
between 10 and 20 dB. The goal was an equal distribution 

 
 
 
 
 
 
 
 
 
 
 

Figure 1:   The Aurora standard for a DSR architecture.
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of noise types and Signal to Noise Ratios. Thus, one clean 
set (893 utterances) and 6 noisy subsets (446 utterances 
each) were obtained for each of the two microphone 
conditions to systematically test the microphone and noise 
conditions. Each of the filtered versions of the evaluation 
set recorded with the Sennheiser microphone and second 
microphone. were selected to form two of the 14 evaluation 
sets (sets no. 1 and 7 respectively). The remaining 12 
subsets were defined by adding each of the 6 noise types at 
randomly chosen Signal to Noise Ratios between 5 and 
15 dB for each of the two microphone types. 

All baseline experiments employed state-tied cross-
word speaker-independent triphone acoustic models with 
four Gaussian mixtures per state. A single-pass Viterbi 
beam search-based decoder was used along with a standard 
5K lexicon and bigram language model. The 
pronunciations in the lexicon were extracted from the 
publicly available CMU dictionary (v0.6) [5] with some 
local additions. 

The baseline system used in the evaluation was 
modeled after a 16-mixture WSJ0 system with a WER of 
8.3%. Table 1 shows a comparison of this system to the 
state-of-the-art for a variety of published systems [4]. It 
was decided that adaptation or proprietary lexicons would 
not be used in this evaluation, which accounts for a large 
part of the variation in performance shown in Table 1. 

The ETSI WI007 front end [1] was chosen as baseline 
front end for the ALV evaluation. This front end is based 
on the standard mel frequency-scaled cepstral 
coefficients (MFCCs) and includes a lossy vector 
quantization compression algorithm that reduces the 
transmission bit rate to 4800 b/s. 

There was a strong interest in reducing the 
computational requirements to conduct the evaluation. We 
followed a three-step approach to reduce the overall 
computation time without significantly compromising the 
quality of the evaluation: 

• reduce the size of the test set by 50%; 
• adjust beam pruning to reduce decoding time 6x; 
• use only 4 mixtures per state. 

The impact of these changes on performance, shown below 
in Table 2, is described extensively in [4]. 

3.  ANALYSIS 

The analysis of the ETSI front end on six focus conditions 

is described below. All experiments were analyzed using 
the MAPSSWE significance test with a significance level 
equal to 0.1%. 

3.1.  Sampling Frequency Reduction 

First we explored the influence of sampling frequency 
reduction. For Training Set 1 (TS1), degradations due to a 
reduction in sampling frequency from 16 kHz to 8 kHz did 
not follow any trend. However, as shown in Figure 2, for 
Training Set 2 (TS2), significant degradations in 
performance were observed on the Sennheiser conditions 
(Test Sets 3-7). Statistically significant test conditions are 
indicated in bold. 

The overall frequency response of the two microphone 
conditions is shown in Figure 3. The Sennheiser condition, 
as expected, preserves high frequency information better 
than the second microphone condition, resulting in slightly 
better performance at a 16 kHz sampling frequency. 
Surprisingly, a similar degradation due to sampling 
frequency reduction is not observed on matched conditions 
(training on TS1 and decoding on Test Set 1), which use 
the Sennheiser microphone. In this case, the additional 
information provided by high frequencies (between 4 kHz 
and 8 kHz) does not contribute to any additional 
improvement in performance. The spectral information 
provided by low frequencies (below 4 kHz) is sufficient to 
reach the upper bound on performance. 

Site Acoustic 
Model 

Language 
Model WER 

ISIP xwrd/gi Bigram 8.3% 
CU [6] xwrd/gi Bigram 6.9% 
LT [7] xwrd/gi Bigram 6.8% 
CU [6] xwrd/gi Bigram 6.6% 
UT [8] xwrd/gi Bigram 6.4% 

Table 1: A comparison of performance reported in the 
literature on theWSJ0 SI-84/Nov’92 evaluation task. 

Factor WER Relative 
Degradation 

Baseline system (ISIP) 8.3% N/A 
Terminal Filtering (ISIP) 8.4% 1% 
ETSI front end 9.6% 14% 
Beam adj. (15xRT) 11.8% 23% 
Reduce 16 to 4 mixtures 14.1% 20% 
50% reduction of eval set 14.9% 6% 
Endpointing silences 14.0% -6% 

Table 2: Relative degradation in WER due to the three-
step approach used to reduce computational 
requirement. 

 
Figure 2: A comparison of the WER for 16 kHz and 
8 kHz sample frequencies on TS2.  
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3.2.  Utterance Detection 

Utterance detection has been used in previous Aurora 
evaluations to decouple noise cancellation strategies from 
feature extraction during speech intervals. Utterance 
detection resulted in a significant improvement in 
performance on Test Sets 2-14 when the system was trained 
on TS1 (clean training set). Two sample test conditions in 
Table 3 show that the reduction in insertion errors is 
primarily responsible for the improvement in performance. 
In this case, the “silence” model is not a good match to the 
background noise for the noisy conditions because it hasn’t 
been exposed to that noise during training. Without 
endpointing, the noisy silences were interpreted as speech 
data, resulting in a higher insertion error rate. 

In contrast, for TS2, a significant improvement in 
performance was detected only for Test Set 8 (a reduction 
in the number of deletions was primarily responsible for 
this improvement). Because the training conditions 
contained ample samples of the noise conditions, the non-
speech segments were modeled adequately by the silence 
model. Hence, the insertion error rate did not increase 
significantly on the noisy test conditions. 

3.3.  Compression 

No significant degradation in performance due to split 
vector (VQ) compression was detected for TS1 for both 
sample frequencies. Because there is no significant 
degradation for Test Set 1, which is a matched condition, 
we might draw a conclusion that the split VQ algorithm 

will not degrade the performance of the system. 
However, there was a significant degradation in 

performance for five noisy conditions (3, 8, 9, 10, 12) at 
16 kHz sampling frequency and two noisy conditions (7, 
11) at 8 kHz sampling frequency on TS2. We have not 
found a consistent explanation as to why these particular 
noise conditions were adversely affected, but we believe it 
warrants a closer study of the behavior of compression 
algorithm for noisy data. 

3.4.  Model Mismatch 

The best performance was observed on matched 
condition (TS1 and Test Set 1), when all the utterances 
were recorded with a Sennheiser microphone, as shown in 
Figure 4. Because training is based on a maximum 
likelihood parameter estimation process, high performance 
can only be achieved when the test conditions to generate 
feature vectors are similar to training conditions in terms of 
means, variances, etc. 

For all other conditions involving TS1, the recognition 
performance degraded significantly. Because there are 
consistent differences in SNR, background noise, or 
microphone between the training and testing conditions, 
there were significant degradations in performance. 
Adaptation schemes might have remedied this problem. 
Systems trained on TS2 performed significantly better than 
those trained on TS1 across all noise conditions. These 
trends were consistent for both sample frequencies and both 
compression conditions. 

3.5.  Microphone Variation 

In general, the Sennheiser microphone performed 
significantly better than the second microphone condition, 
as shown in Table 4. The first cell in this table corresponds 
to TS1, which consists of clean utterances recorded with a 
Sennheiser microphone, and Test Set 1, which consists of 
similar data. The second cell in the first row represents a 
mismatched condition in which the test set was recorded on 
a different microphone. There was a significant increase in 
WER, from 16.2% to 37.4%. The same argument of model 
mismatch discussed in the previous section can be extended 
to explain this degradation. The same trend is observed on 
the car noise condition (Test Sets 2 and 9). 

TS2 has half of the utterances recorded on the same 
microphone and the other half on any one of the 18 
microphone types. With Baum-Welch training, a maximum 
likelihood based parameter estimation method, models 
trained on TS2 quickly converge towards the Sennheiser 
microphone in terms of their means and covariances. 
Hence, both the clean (Test Set 1) and car (Test Set 8) 
conditions for the second microphone result in significant 
degradation in performance, as shown in the second row of 
Table 4. Also note that the last three cells in the second 
row, which correspond to various noise conditions, show 
less degradation in performance than the corresponding 
conditions in the first row. There is obviously value in 

W/O Endpointing With Endpointing Set Sub. Del. Ins. Sub. Del. Ins. 
2 41.4 3.6 20.1 40.0 3.6 13.0 
9 54.4 12.3 15.1 49.1 15.1 10.1 

Table 3. The primary reason for a reduction in WER on 
TS1 for utterance detection is shown to be a result of a 
reduction in the insertion error rate. The results are shown 
as percentages. 

Figure 3: The Sennheiser close-talking microphone
preserves frequencies above 3.5 kHz better on the
average than the variety of microphones used on the
second channel. 
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exposing the models to noise during the training process. 

3.6.  Additive Noise 

Severe degradation is observed for all noise conditions and 
at both sample frequencies because no noise compensation 
or adaptive techniques were used for these evaluations. 
However, the severity of this degradation can be limited by 
exposing the models to noise conditions during the training 
process. In Figure 4 and Figure 5, we demonstrate that 
training the models on TS2, which contains samples of the 
noise conditions, reduces the severity of the degradation in 
the noisy conditions. A boldface label indicates statistically 
significant test conditions at a 0.1% significance level. An 
important point to note is that these degradations are still 
significant compared to the clean condition. Similar trends 
were observed when the feature vectors were 
compressed [4]. 

On TS1 and TS2, it is observed that performance on 
car noise conditions (Test Set 2) is better than for the other 
noise conditions (street traffic, train stations, babble, 
restaurants and airports). Because the car noise condition 
can be approximated as stationary noise, and the other 
noise conditions are heavily non-stationary, performance is 
significantly better. The simple silence model used can 
adapt to the background noise. 

4. SUMMARY 

In this paper, we have presented an LVCSR system that 
was developed for the ALV evaluation. This public domain 
system is based on the 5K WSJ0 task and achieved a 
performance of 14.0% WER. It runs at 4 xRT for training 
and 15 xRT for decoding on an 800 MHz Intel Pentium 
processor. 

We also presented an analysis of the results from the 
baseline front end experiments. It is shown that increasing 
the sampling frequency from 8 kHz to 16 kHz resulted in 
significant performance improvement only for the noisy 
test conditions. Utterance detection resulted in significant 
improvements only on the noisy conditions for the 
mismatched training conditions. The DSR standard VQ-
based compression algorithm did not result in a significant 
degradation in performance. A mismatch between training 
and testing conditions (model mismatch) resulted in a 300% 
relative increase in WER whereas the mismatches in 
microphones resulted in a 200% relative increase in WER. 
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Trainin
g Set 

Set 1 
(Senn. 
Mic.) 

Set 8 
(Sec. 
Mic.) 

Set 2 
(Senn. 
Mic.) 

Set 9 
(Sec. 
Mic.) 

1 16.2% 37.4% 49.6% 59.7% 
2 18.4% 29.7% 24.9% 37.3% 

Table 4. On TS1, performance drops due to a mismatch 
in microphones for the second microphone conditions. 
Performance on TS2 is slightly better for the noise 
conditions.  

Figure 4:  A comparison of the WER for six noise 
conditions at 8 kHz on TS1. 

 
Figure 5:  A comparison of the WER for six noise 
conditions at 8 kHz on TS2. 
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