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Abstract. We consider the problem of discriminating macromolecular structures in an electron 

microscope, through a specific beam shaping technique. Our approach is based on maximizing the 

which-molecule information extracted from the state of each electron. To this aim, the optimal 

observables are derived within the framework of quantum state discrimination, which allows one to 

fully account from the quantum character of the probe. We simulate the implementation of such 

optimal observable on a generalized orbital angular momentum (OAM) sorter, and benchmark its 

performance against the best known real-space approach. 

 

The quest for extreme sensitivities in the investigation of atomic and molecular systems naturally 

leads to the use of single particles as quantum probes. The state of such probes is expected to 

display a strong dependence on the system under investigation, and thus to allow an efficient 

inference on the system of interest. However, the use of single-particle probes also implies inherent 

limitations, resulting from fundamental quantum features, such as decoherence and the 

measurement back action. Decoherence tends to smear out the information encoded in the particle 

state, while the measurement back-action limits the amount of information on the state of a quantum 

system that can actually be extracted, and results in the impossibility of discriminating two non-

orthogonal states. A full account of these quantum aspects is thus required in order to identify the 

optimal measurement strategy. 

 

In electron microscopy the quantum probe is represented by the electron. The measurement process 

implies the “collapse” of its wave function, which reduces to a point (pixel) on a detector. A full 

image of the sample is obtained by using a large number of electrons, whose distribution on the 

detector represents the measurement statistics
1,2

. However, the number of electrons used in the 

imaging of systems such as proteins should be restricted, in order to limit radiation damage. This 

has fueled the development of novel techniques, such as cryo-microscopy and single particle 

analysis
3
. On the other hand, these techniques require the imaging of many supposedly identical 

proteins, while the accurate imaging of a single protein remains largely prohibitive. The recent 

introduction of beam shaping techniques
4,5

 has changed the way in which electron microscopy can 

be afforded, and the concept of imaging itself. In particular, through the use of appropriate 

electrostatic elements
6,7,8

 or holograms
9
, it is possible to analyze the wave function in different 

bases, and thus to implement the measurement of different observables. The most considerable and 

already demonstrated case is that of the orbital angular momentum (OAM) sorter
10

, which is 

inspired by optics
11

. The large flexibility that this approach allows in the choice of the measured 

observable represents a key resource for maximizing, in a system-specific fashion, the amount of 

information that can be extracted from the electron wave function, thus reducing the number of 

probes that are required to achieve a given degree of confidence in the final inference. 

 

In the present manuscript, we consider the problem of identifying a protein by means of an OAM 

sorter. In order to fully exploit the potentialities of this approach, on the one hand, we refine the 

sorting by including additional electro-optical elements, which implement a correlated measurement 

of the radial and angular degrees of freedom. On the other hand, we fully account for the quantum 

nature of the probe (electron), by investigating the problem within the framework of quantum state 



discrimination. This allows us to derive the optimal measurement strategy, both in the ideal case of 

a full knowledge on the alternative protein states and coherent electron dynamics, and in the more 

general case where the state of the molecule is partially unknown and/or the electron dynamics is 

affected by decoherence. In particular, we show that the OAM sorter with an additional projection 

element implements the optimal measurement strategy in the representative cases of decoherence in 

the angular degrees of freedom or of a complete lack of knowledge on the protein orientation.  

 

The prototypical problem we consider can be schematically summarized as follows. There are two 

hypotheses, hereafter labeled “0” and “1”, concerning different features of the physical system of 

interest. In particular, we consider the case where the system is a protein, each hypothesis Ik (with 

k=0,1) specifies its identity Xk and orientation, and is assigned an a priori probability pk (for 

example given by the dilution of the two proteins or by the likelihood of a model). Each electron 

that is used as a quantum probe interacts with the molecule, and is left either in the state |𝜓0⟩ or in 

|𝜓1⟩, depending on which of the two hypotheses applies. A measurement is eventually performed in 

order to identify the electron state, and thus to infer the correct Ik.  

 

The above problem can be formalized within the general framework of quantum state 

discrimination
12,13

. For the sake of the following discussion, it's convenient to expand the two 

alternative electron states in terms of the normalized projections |𝑚, 𝜒𝑘,𝑚⟩ on the eigenspaces of 

the angular momentum Lz (z is the electron-propagation direction): 

 

|𝜓𝑘⟩ = ∑ √𝑞𝑘,𝑚𝑒𝑖𝛼𝑘,𝑚|𝑚, 𝜒𝑘,𝑚⟩
𝑚

,     (1) 

 

where 0≤qm≤1 is the probability associated to each value m of Lz and 𝜒𝑘,𝑚 represents the radial 

component of the state.  

 

The association of a pure electron state with each of the two hypotheses is based on the assumption 

that the electron dynamics is coherent and that the protein state is perfectly defined within each Ik. If 

instead the state of the protein is partially unknown and/or the electron is affected by decoherence 

(e.g., due to inelastic scattering) , the state vectors |𝜓𝑘⟩ have to be replaced by density operators ρk. 

In particular, if the molecule orientation around the z axis is completely undefined, as is usually the 

case, or if the electron decoherence destroys the phase coherence between different eigenstates of Lz, 

the density operators take the form
14

 

 

𝜌𝑘 = ∑ 𝑞𝑘,𝑚|𝑚, 𝜒𝑘,𝑚⟩⟨𝑚, 𝜒𝑘,𝑚|,    (2)
𝑚

 

 

where all the information that was contained in the phases αk,m has been erased. 

 

The discrimination between the two electron states is performed on the basis of the 

measurement outcome. In particular, one identifies two outcomes whose occurrence makes more 

likely either one hypothesis or the other. Formally, each outcome is associated to a probability (i.e. 

nonnegative and Hermitian) operator Пk, whose expectation value gives the probability that the k-th 

outcome occurs. The probability of identifying the correct hypothesis on the basis of a single-

electron measurement is thus given by
13,14

 

 

𝑝 = 𝑝0tr(𝜌0𝛱0) + 𝑝1tr(𝜌1𝛱1),     (3) 
 

where the first (second) term represents the probability that the first (second) hypothesis is true and 

that the measurement provides the corresponding outcome k=0 (k=1). The equation also applies to 

the case of pure electron states, with 𝜌𝑘 = |𝜓𝑘⟩⟨𝜓𝑘 |. The probability p is the figure of merit we 



refer to in the following, and can be maximized by a suitable choice of the measurement. There is, 

however, a fundamental limitation related to the quantum nature of the probe: if the two electron 

states and are not orthogonal, as is generally the case, there is no quantum measurement that can 

perfectly discriminate them. In fact, in the case of two pure states, the probability p cannot exceed 

the Helstrom bound
Errore. Il segnalibro non è definito.,Errore. Il segnalibro non è definito.

 

 

𝑝𝑚𝑎𝑥
𝜓

=
1

2
+

1

2
[1 − 4𝑝0𝑝1|⟨𝜓0|𝜓1⟩|2]

1
2⁄ ,     (4) 

 

which ranges from ½ to 1 as the overlap between the two states varies from 1 to 0. In passing from 

the |𝜓𝑘⟩  to their dephased counterparts ρk, the two electron states tend to become less 

distinguishable and the probability p of discriminating between the two hypotheses thus tends to 

decrease. The upper bound is now given by
14

: 

 

𝑝𝑚𝑎𝑥
𝜌

=
1

2
+

1

2
∑ [(𝑝0𝑞0,𝑚+𝑝1𝑞1,𝑚)

2
− 4𝑝0𝑝1𝑞0,𝑚𝑞1,𝑚|⟨𝜒0,𝑚|𝜒1,𝑚⟩|

2
]

1
2⁄

,     (5)
𝑚

 

 

which reduces to the Helstrom bound if both the |𝜓𝑘⟩ belong to the same eigenspace of Lz. The 

above limits can be achieved by identifying and implementing the quantum measurement that is 

optimal, given the hypotheses Ik (and thus the electron states ρk) and the a priori probabilities pk.  

 

For a given measurement, the probability p of identifying the correct hypothesis can be 

maximized by assigning each outcome to one of the two hypotheses, according to a maximum 

likelihood criterion. This also applies to the case of measurements with more than two possible 

outcomes. In particular, we consider the case 

 

𝑝𝑂𝐴𝑀
𝜌

= 𝑝𝑂𝐴𝑀
𝜓

= ∑ max{𝑝0𝑞0,𝑚⟨𝜒0,𝑚|𝜋0,𝑚|𝜒0,𝑚⟩, 𝑝1𝑞1,𝑚⟨𝜒1,𝑚|𝜋1,𝑚|𝜒1,𝑚⟩}
𝑚

≡ 𝑝OAM     (6) 

 

where πk,m are the probability operators corresponding to the two possible outcomes of a radial 

observable, within each eigenspace of Lz. Given the dependence on m of the πk,m, this corresponds 

to a correlated measurement of the radial and angular degrees of freedom. As pointed out in the first 

equality, the discrimination probability is unaffected by the loss of phase coherence between the 

different angular momentum components |𝑚, 𝜒𝑘,𝑚⟩. The above measurement strategy can always 

be made optimal (𝑝𝑂𝐴𝑀 = 𝑝𝑚𝑎𝑥
𝜌

) by identifying π0,m and π1,m respectively with the projector on the 

positive or on the negative eigenstate of σ𝑚 ≡ ∑ (−1)𝑗𝑝𝑗𝑞𝑗,𝑚|𝜒𝑗,𝑚⟩⟨𝜒𝑗,𝑚|𝑗=0,1 . The optimal 

projectors increasingly differ from those on |𝜓0⟩ and |𝜓1⟩, for increasing overlap between the two 

electron states. In the following, we shall discuss the implementation of the optimal approach by 

means of the OAM sorter. 

 

So far we have considered the limiting case where the discrimination between the 

hypotheses I0 and I1 is performed on the basis of a single-electron measurement. The probability of 

identifying the correct hypothesis can be increased by repeating such measurement N times, one on 

each of the electrons that has interacted with the molecule. In this case, the possible outcomes of the 

overall measurement can be identified with the different number of times n0 in which the outcome 0 

occurs. These outcomes follow a binomial distribution, with a success probabilities 𝑠0 or (1 − 𝑠1), 

depending on whether I0 and I1 applies, where 𝑠𝑘 ≡ tr(𝜌𝑘𝛱𝑘). The expression of the probability for 

the N-electron case is thus given by
14

: 

 

𝑃(𝑁) = ∑ (
𝑁

𝑛0
)

𝑁

𝑛0=0

max{𝑝0𝑠0
𝑛0(1 − 𝑠0)𝑁−𝑛0 , 𝑝1𝑠1

𝑛1(1 − 𝑠1)𝑁−𝑛1}.     (7) 



 

From the above expression one can derive the minimum number of electrons Nmin(x) that are 

required in order to exceed a given threshold x for the probability P(N). 

 

The discrimination strategy that we consider in the following is based on the use of the 

OAM sorter with an additional phase plate element (Fig. 1). Here, each electron of the beam is 

prepared in a plane-wave state, before interacting with the protein under investigation. Such 

interaction perturbs the electron state, in a way that depends on the protein identity and state. 

Suitably engineered phase elements then direct states corresponding to different values of Lz to 

different regions of the detector, thus implementing a measurement of the orbital angular 

momentum. As an important refinement of the measurement strategy, additional phase elements are 

introduced, which further sort each angular momentum component on the basis of the radial state. 

The generalized OAM sorter thus implements the correlated measurement of the angular and radial 

degrees of freedom we refer to above (see Eq. (6) and related discussion). 

 

The electron wave function, and in particular its transverse (x,y) component ψk, is affected by the 

interaction with the protein. After such interaction, ψk can be written as
15

: 

 

𝜓𝑘(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) exp[𝑖𝜎𝑉(𝑥, 𝑦)] 𝜓𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑦).     (8) 

 

Here, ψprobe is the electron wave function before the interaction with the protein Xk, which in the 

plane-wave case is given by a constant, and σ = 2πm0γλ/h2 (being m0 the electron rest mass, γ 

the relativistic factor, λ the wavelength, and h the Plank constant). The protein modulates the phase 

and, to a minor extent, the amplitude of the electron wave function. Since the proteins are made of 

light element, the phase modulation is typically small (𝜎𝑉 ≪ 𝜋). The overlap between the electron 

states |𝜓0⟩ and |𝜓1⟩, corresponding to the presence of the two alternative proteins X0 and X1, is 

thus quite large and, as a result, the theoretical maximum for the discrimination probability given by 

the Helstrom bound is close to 1/2 .  

 

We apply the above approach to three test protein models. Two of these, hereafter labelled Pa and 

Pb, refer to the EspB protein of Mycobacterium Tuberculosis and are characterized by a 7 –fold 

symmetry. In particular, Pa is based on computational modelling
16

 and is more loosely packed 

compared to Pb, which is derived from experimental data
17

. The third protein model is similar to the 

Pa but has a 6-fold symmetry. Experimentally, the discrimination between the last protein model 

and the previous two represents a very important case, since normally these proteins are hardly 

distinguishable. Besides, it corresponds to opposite qualitatively different discrimination with 

respect to that between Pa and Pb, because the difference between the protein structures is mainly in 

the azimuthal – rather than in the radial – direction. The effect on the electron wave function of the 

interaction with a protein is visualized in Fig. 2 for the case of Pb. In particular, the interaction 

induces a phase modulation in the xy plane, which is displayed in Cartesian (a) and log-polar 

coordinates (b). With the OAM sorter, the electron wave function is decomposed into different 

contributions, corresponding to different values of m of Lz (c). The cylindrical lens finally diffracts 

the radial degree of freedom, while leaving the OAM channels separated (d). For a given protein, 

the phase element is adapted in order to match and conjugate the dependence of the phase on the 

radial degree of freedom, and this is done independently for each value of m. The result is a “phase 

flattened” wave function
18

, that diffracts nearly exactly to a point. In these conditions, the radial 

diffraction produces a very sparse representation of the electron wave function for a single target 

protein. (Ideally, this corresponds to setting 𝜋0,𝑚 = |𝜒0,𝑚⟩⟨𝜒0,𝑚|, i.e. to identifying the probability 

operators with the projectors on the electron state components.) We note that these images refer to 

the case of pure electron states. If these are affected by decoherence or by an undefined protein 

orientation, the angular dependence of the phase modulation displayed in the upper panels is 

entirely blurred away, whereby the phase modulation at each point is replaced by the corresponding 



angular average. Instead, the patterns obtained by means of the OAM sorter and displayed in the 

lower panels are unaffected by dephasing 
14

. 

The simulation of the protein discrimination procedure, based on the use of the optimal observable, 

is reported in Fig. 3 for the case of Pa and Pb. The simulations refer to the case of limited doses (2 

and 0.2 e/Å
2
) and are performed by double extraction Montecarlo methods. As expected, the 

optimal observables don’t give rise to a complete localized in the radial basis [panels (a,b,d,e)], 

because in this case the probability operators πk,m project on a basis that is diagonal with respect to 

that formed by |𝜒0,𝑚⟩ and |𝜒1,𝑚⟩. This is particularly true for the m=0 subspace (c,f), where the 

largest component of the electron wave functions is concentrated. In the m≠0 subspaces, the radial 

components are often nearly orthogonal (some are even forbidden by the different symmetries), and 

the optimal observables are approximately given by 𝜋𝑘,𝑚 = |𝜒𝑘,𝑚⟩⟨𝜒𝑘,𝑚|. As a general comment, 

we note that our method produces a sparse distribution of the detected electrons (i.e. most 

population is concentrated in a few pixels) and is therefore less affected by noise as compared to 

approaches where this is not the case.  

 

In order to benchmark and quantitatively compare the sorter-based discrimination strategies, 

we compute the relevant probabilities (Table 1). We start by quantifying the which-protein 

information encoded in the electron state (columns 2-4). As anticipated above, the overlap 

|⟨𝜓0|𝜓1⟩| between the electron wave functions corresponding to the two hypotheses is close to 1 

for all pairs of proteins. Correspondingly, a single-electron probe allows a maximal discrimination 

probability (𝑝𝑚𝑎𝑥
𝜓

) that is a few cents above the “blind-guess” value of ½, and is slightly reduced 

(𝑝𝑚𝑎𝑥
𝜌

) by dephasing.  

We then quantify the suitability of the different measurements to access such which-protein 

information, by means of the corresponding probabilities p (columns 5-6). For the imaging in real 

space (RS), we also considered an ideal Zernike phase plate
19

,
20

 that introduces a π/2 phase shift at 

the center of the diffracted image. We note that such phase shift has never been exactly realized in 

practice, so that the reported values should be regarded as upper bounds for the imaging in real 

space approach. Even in such ideal case, the obtained values of the discrimination probabilities for 

the state ( 𝑝𝑅𝑆
𝜌

) fall below the corresponding theoretical maxima. The optimal observables 

implemented through the OAM sorter allow for the achievement of discrimination probabilities 

(𝑝OAM) that are comparable and in most cases significantly larger than the those achieved with the 

ideal Zernike phase plate,. The small difference between 𝑝OAM and the theoretical maximum 𝑝𝑚𝑎𝑥
𝜌

 

(which should in principle be zero) is possibly due to imperfections in the phase-flattening based 

implementation of the optimal projectors πk,m.  

The maximal suitability of the implemented observable to distinguish between the two 

alternative electron states results in a minimization of the number of particles that are required in 

order to achieve a threshold value x for the discrimination probability. The reported values of 𝑁(𝑥), 

all of the order of 10
2 
, correspond to doses of much less than 0.1e /Å

2
 (columns 7-9). This number 

is quite small and typically at least 50% better the case of the ideal Zernike phase plate. We 

calculated that when the phase introduced by the protein is increased by a factor 3, for example by 

introducing thicker proteins or through the recently introduced multi-pass approaches
21

, the 

advantage dose reduction allowed by the optimal observable is of even an order of magnitude. 

Moreover within this approach and with a typical affordable dose of few  e /Å
2
, something 

like 100 tests between different pairs of protein can be carried out simply by changing the phase of 

the final sorting element in a programmable way
22,23

. This implies a high degree of flexibility in the 

implementation of the OAM-based approach, and suggests the possibility to use adaptive learning 

in cases where the possible identities of the protein are not limited to two options, as assumed above. 

In conclusion, we have investigated the problem of discriminating two proteins by means of 

electron microscopy. The discrimination procedure has been investigated within the framework of 

quantum state discrimination, which allows us to fully account for the quantum nature of the 

electron. The discrimination probability based on the use of the angular momentum sorter is 



unaffected by a dephasing process resulting from the electron decoherence and/or from an 

uncertainty on the protein orientation. We have shown that the generalized OAM sorter, which 

implements a correlated measurement of the radial and angular degrees of freedom, can in principle 

realize an optimal discrimination strategy, and have provided a concrete example of such 

implementation with a benchmark on models of proteins with different radial and/or azimuthal 

phase distribution. This optimization represents a fundamental means for minimizing the number of 

probes (electrons) that are required for the protein identification, and thus for limiting the induced 

damage. 
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X0, X1 |⟨𝜓0|𝜓1⟩| 𝑝𝑚𝑎𝑥
𝜓

 𝑝𝑚𝑎𝑥
𝜌

 𝑝𝑅𝑆
𝜌

 𝑝OAM 𝑁𝜌𝑅𝑆(x) 𝑁𝑂𝐴𝑀(𝑥) Dose(1/Å
2
) 

Pa,Pb 0.987 0.582 0.580 0.531 0.541 346, 1040 224, 739 0.007,0.023 

Pa,Pc 0.981 0.598 0.596 0.540 0.564 257, 845 98, 323 0.003,0.010 

Pb,Pc 0.975 0.612 0.610 0.552 0.559 143, 468 108, 356 0.003,0.011 

Table 1 Discrimination probabilities based on the use of a single-electron probe and corresponding 

to different pairs of proteins (X0, X1). The probabilities with superscript 𝜓 and 𝜌 correspond 

respectively to the case of pure and mixed electron states; the subscripts max, RS, and OAM 

identify respectively the theoretical maxima, to measurements performed in real space (with an 

ideal Zernike phase plate) and with the OAM and optimal radial projector . In all the considered 

cases, the a priori probabilities are assumed equal ( 𝑝0 = 𝑝1 = 1/2 ). The values of  
𝑁𝜌𝑅𝑆  and 𝑁𝑂𝐴𝑀(𝑥) indicates the number of electron necessary to discriminate the proteins with 

threshold value x=0.9 and 0.99,using real space and optimized OAM sorter, The last column 

indicated the corresponding doses for 𝑁𝑂𝐴𝑀(𝑥). 

 

  



 

 

 

 
Fig 1. Schematic view of the generalized OAM sorter. With respect to the standard OAM sorter, a 

third phase element is added. The structure of such third element is adapted to the radial structure of 

the proteins to be recognized.  

 

 

 

 

 

 



  
Fig 2. Series of unitary transformation that the different electrostatic elements apply to the electron 

wave function in the case of the protein Pa. In particular, we show: the phase modulation of the 

electron wave function in (a) Cartesian and (b) log-polar coordinates; (c) the intensity of the 

diffraction to the OAM sorter in (c) the radial momentum space and (d) after optimal radial sorting. 

 

 

 

 

 

 

 



 
 

Fig 3. Discrimination between the proteins Pa and Pb (both characterized by a 7-fold rotational 

symmetry), where the third sorter element implements an optimal measurement. The upper and the 

lower panels correspond respectively to doses of 2 and 0.2 e
-
/ Å

2
. The proteins Pa (a,d) and Pb (b,e) 

give rise to different distributions of the detected electrons in the correlated angular-radial basis. (c,f) 

Statistics of the radial observable corresponding to the m=0 subspace, where the electron states are 

mainly concentrated. The black histogram below the plots represents the optimal projector for Pa: 

all electron falling on this black pixels are interpreted as indication of Pa.  
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