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Annotated translation of H. A. Lorentz, Abhandlungen über Theoretische Physik, “vol. 1” (1907),
chapter 14, secs. 12 & 13 (originally in French), and chapter 16, sec. 18 (originally in German), cited
in DeWitte, “Equivalence of Huygens’ principle and Fermat’s principle in ray geometry”, American
Journal of Physics, 27: 293–301, 387 (1959).

Editor’s preface

Adriaan J. deWitte, in footnote 2 of his 1959 paper “Equivalence of Huygens’ principle and Fermat’s
principle in ray geometry” [1], cites two passages from “volume 1” (the only volume that ever appeared)
of Lorentz’s Abhandlungen über Theoretische Physik [5] of 1907, namely §§12 & 13 of chapter 14, and
§18 of chapter 16.

Chapter 14 was previously published in 1887 as “De l’influence du mouvement de la terre sur les
phénomènes lumineux” [4]. This was itself a slightly edited French translation of the Dutch original [3],
“Over den invloed, dien de beweging der aarde op de lichtverschijnselen uitoefent” (“On the influence of
the earth’s movement on the phenomena of light”), submitted and published in 1886. Chapter 16, with
the German title “Die Fortpflanzung von Wellen und Strahlen in einem beliebigen nicht absorbierenden
Medium” (“The propagation of waves and rays in an arbitrary nonabsorbent medium”), was dated 1906
and apparently not previously published.

DeWitte acknowledges Lorentz’s priority but adds: “The present argument, although in essence the
same, is believed to be more cogent and more general.” Indeed, the older part of Lorentz’s treatment
is totally immersed in aether theory, treats all media as homogeneous and (tacitly) isotropic, and allows
for anisotropic effects solely through dragging of waves by the aether (which moves in the lab frame),
and for inhomogeneous effects solely by admitting that the aether flow might be non-uniform. In this
unnatural framework, the ray path as defined by Huygens’ construction is shown to be the path of least
time. The newer part, although purged of the aether, devotes much space to rectilinear propagation in
homogeneous (not necessarily isotropic) media, and then only briefly generalizes the rectilinear path to
the path of least time, referring to the earlier chapter for the connection with Huygens’ construction.
Fermat’s principle is not named, and the path of interest is that of least time, not merely stationary time.
DeWitte, in contrast, gives a thoroughly modern treatment for general media, showing that Huygens’
construction (which he calls Huygens’ “principle”) and Fermat’s principle lead to the same differential
equation of the ray path, and that in the latter case the converse is also true [1, p.298].

DeWitte undersells himself in that his treatment uses calculus of variations, whereas Lorentz’s is
geometric. But, for that very reason, Lorentz’s approach is more accessible—or would be, if one could
see through the discussion of moving aether. Even the discredited aether draws attention to a fact that
DeWitte passes over, namely that the equivalence of Huygens’ construction and Fermat’s principle holds
in the presence of moving media; the equivalence depends on the meaning of the construction, and not
on the reasons why the secondary waves propagate as they do. (As a bonus, in §13 of ch. 14, Lorentz
added his own proof that under Fresnel’s aether-drag hypothesis, the ordinary laws of refraction and
reflection are, to first order, insensitive to the aether wind.) Moreover, DeWitte presents his proof for
two dimensions and baldly asserts that it can be “extended without too much difficulty” to three.
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Hence it is appropriate to offer an English translation of Lorentz’s original argument—the more so
because of its historical interest, and because, as DeWitte laments in the same footnote, “The matter
seems to have escaped treatment in textbooks.”

In the present translation, for consistency with chapter 16, page numbers and figure numbers for
chapter 14 match the 1907 edition [5]. Otherwise the text of chapter 14 was initially taken from the 1887
French edition [4], which had by far the best OCR scan of the three sources, and then compared with the
Dutch edition as seemed necessary. Footnotes are mine unless otherwise attributed. Editorial remarks
are sometimes footnoted, and sometimes inlined in square brackets [thus].

∗ ∗ ∗

Chapter 14 (p. 341): On the influence of the earth’s movement on the
phenomena of light

...

Section 12 (p.357)

Huygens’ principle allows us, in the same manner as in §4,1 to investigate how the vibrations propagate
from a plane wave or in any other case, in a space for which we admit the hypotheses of §8 [essentially
Fresnel’s aether-drag hypothesis, expressed in a reference frame fixed with respect to the lab, and without
deciding whether opaque bodies obstruct the flow of aether]. We will suppose this space occupied by a
homogeneous ponderable material, so that the entrainment coefficient κ [i.e., 1−k , where k is Fresnel’s
drag coefficient] will have everywhere the same value.2 For propagation in celestial space, or in the air
if we want to neglect atmospheric refraction, it will suffice to set κ = 1.
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Fig. 25.

First consider a movement of light expanding from a center A (Fig. 25), either because some pon-
derable matter at A emits the light itself, or because at this point the aether and, if there is any, the
ponderable matter receive vibrations from elsewhere. After an infinitesimal time, a disturbance from A

1 §4 applies Huygens’ construction to stellar aberration under Stokes’s version of the aether-drag hypothesis [6].
2 The entrainment coefficient is given by κ = 1

/
n2, where n is the refractive index. Fresnel’s drag coefficient k refers to

the dragging of waves in aether by ponderable matter, in a reference frame fixed w.r.t. the aether, whereas the entrainment
coefficient κ refers to the dragging of waves in ponderable matter by the aether, in a frame fixed w.r.t. that matter [5, pp. 355–6].
In all three sources (refs. [3]–[5]), it is hard to tell from the local font whether the symbol for the entrainment coefficient is κ
or x . But the context suggests κ , and comparison between the cited passages in [5] confirms that x is a different character.
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will have spread to the surface of an elementary wave s1 , like the one discussed in §10.3 From points
p, q , etc. of this wave, new elementary waves proceed during the next time element, and their envelope
s2 is the new position of the wave.4 Continuing in this manner, we find all the successive positions of
a wave which expands around A; let S and S′ be any two of these positions, located at an infinitesimal
distance from each other.

Each point B, wherever located, is eventually reached by the movement of light emanating from A,
and we may ask how much time it takes.

[In Fig. 25, A and B (in sans-serif type) are points. In the equations, A and B (in italic type) are
speeds.5 In the frame of Fig. 26 (the lab frame), if P′Q and PQ are the distances shown, then A= P′Q

/
dt

is the propagation speed in the given medium in the absence of motion of the aether, B = PQ
/
dt is the

propagation speed in the medium as affected by that motion, ρ is the speed of the aether in a vacuum,
κ is the entrainment coefficient of the medium, and κρ is the speed of the center of the elementary
wavefront in the medium. In the time dt , the center travels the distance PP′ = κρ dt .]
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Fig. 26.

To determine this time, in Fig. 26, we again consider the elementary wave which forms around P in
the time dt , as already proposed in Fig. 24.6 At any point Q of this wave, the disturbance arrives in the
same time as if it had propagated along the straight line PQ with the speed

B =
PQ
dt

.

Denoting by θ the angle that PQ makes with the direction of the speed ρ, i.e. with PP′, we have
[by the cosine rule]

P′Q 2
= PQ 2 − 2 ·PQ ·PP′· cos θ + PP′ 2

or, after division by dt 2,

A2 = B2 − 2Bκρ cos θ + κ2ρ2.

[This can be written
A2 =

(
B− κρ cos θ

)2
+ κ2ρ2 sin2 θ ,

whence

3One whose center is moving in the lab frame, in accordance with the entrainment coefficient.
4 In the redrawing of Fig. 25, all the elementary wavefronts are shown as having the same shape, for consistency with the

homogeneity of the medium.
5 The Dutch and French editions use italic type for both!
6 Fig. 24 (not reproduced here) differs from Fig. 26 by lacking the point Q and the adjacent sides of the triangle. The label

θ in Fig. 26 is an editorial addition.
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B − κρ cos θ
A

=

(
1− κ2ρ2

A2 sin2 θ
)1/2

≈ 1− κ2ρ2

2A2 sin2 θ for small ρ

A
.

—Editor.]
Hence, if we limit ourselves to the first power of ρ,

B = A+ κρ cos θ ; (5)

or if we want to take the second power into account,

B = A+ κρ cos θ − κ2ρ2

2A
sin2 θ . (6)

In the first paragraphs that follow, only expression (5) will be used. The speed given by this depends
on the direction of the element PQ , and moreover is different for elements in the same direction traced
from different points in space, if at these points ρ does not have the same direction and the same
magnitude.

Returning to Fig. 25, we should note that the points of two successive waves S and S′ are linked
pairwise so that one of these points, m , located on S , can be regarded as the center of vibration of the
elementary wave which at the second point n is tangent to S′. These pairs, such as m and n, or f and g ,
we shall call conjugate points. For all the straight lines that join the conjugate points of S and S′, the
time needed for the light to traverse them with the speed B is the same,7 and this time is that in which
the wave is transported from S to S′. For any straight line mh, drawn between S and S′, which on
the contrary does not join two conjugate points, the time that the light would take to traverse it with
speed B will be longer than that just mentioned. Indeed mh will cut the surface of the elementary wave
emanating from m at some point e, inside S′, and the time in question for me will already be the same
as for mn.

Now suppose that a large number of lines connect [points] A and B [Fig. 25]. Among these will be
one that will cut in conjugate points all the waves located between A and B, and the course of this line
will require less time than the course of any other which does not entirely pass through conjugate points
of successive waves. This line, traversed in a minimum time, I will call a ray of light; the time required
for the passage of such a ray is that in which the waves expand from A to B.

The shape of the ray of light is easily deduced from what has just been said. Let ds be an element
of one of the lines from A to B, and θ the angle that this element makes with the velocity ρ of the aether
in its vicinity; the time needed to traverse this element will be

ds
B
=

ds
A+ κρ cos θ

=
ds
A
−
κρ cos θ ds

A2

[where the second equality is again a first-order approximation for small ρ], and the time required to
traverse the entire path, whose length we call ` , will be∫

ds
B
=

`

A
−

κ

A2

∫
ρ cos θ ds .

The factor ρ cos θ is the speed of the aether in the direction of ds and therefore, since there exists an
[aether] velocity potential ϕ,8 can be represented by ∂ϕ/∂s . It follows that the integral on the right has
the value ϕB− ϕA , where the subscripts A and B distinguish the values of the velocity potential at points
A and B.

In the expression thus obtained,
`

A
−

κ

A2
(
ϕB− ϕA

)
,

7 The earlier Dutch edition notes, in parentheses, that B may be different for different lines [3, p.322].
8 The velocity potential is discussed in previous sections; but only in the Dutch edition is this clause found here [3, p.323].
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the last term is the same for all the lines from A to B. For the ray, the first term, and therefore ` , must
accordingly become a minimum; the ray is therefore a straight line.

Stokes has already reached this result by another method for the case κ = 1. We get there again
if, instead of assuming a single center A, we start with a wave S1 of any shape. If S2 is one of the
later positions of this wave, and AB a line by which S1 , S2 , and all the intermediate positions are cut in
conjugate points, then it is found again, by the same reasoning as above,9 that this line will be traversed
by the light10 in a minimum time, implying again that it is straight.

Section 13 (p.359)

Considerations similar to those of the previous section can be used to determine the change in direction
that a light ray suffers when it passes from one medium to another. Let the surface V be the interface,
of any shape, between two homogeneous ponderable materials, so that the propagation speed A and
the entrainment coefficient κ have the uniform values A1 and κ1 in the first medium, and similarly the
uniform values A2 and κ2 in the second medium. This general case includes that in which there is free
aether [a vacuum] on one side of V.

Suppose that from any wave, of which the part that we have to consider is still entirely in the first
medium, the luminous movement propagates towards the interface. Huygens’ principle will again allow
us to follow the progress of waves in infinitesimal steps, even after they have already partly penetrated
into the second medium. In the latter case the wave is composed of two parts, which meet the interface
along the same line, but which at each point of this line make between them a certain angle, and which
will generally be of different shapes. These two parts will however be designated, in what follows, as a
single wave. This wave, in the extent of it that we consider, can be cut by the interface along a single
line that ends at the edges of the wave, or else along a curve that closes on itself, or finally according to
two or more lines of either nature. The first case arises, for example, when a plane and limited wave falls
obliquely on a plane surface; the second case, when such a surface is met by a spherical wave; finally, a
cylindrical surface can be cut by a plane wave along two straight lines.

In any case, given an [initial] position S of the kinked wave, in order to deduce the position S′ that
it occupies after the time dt , we must construct two or, strictly speaking, three species of elementary
waves. First, around the points of S which are already in the second medium, [there are] elementary
waves similar to those discussed in §10,11 and for which we will use the values A2 and κ2 specific to the
second medium. The envelope surface of these waves provides almost the entire the part of S′ which is
located in the second medium; only a narrow border, in the immediate vicinity of the boundary surface,
is missing. Second, we have to construct elementary waves analogous to the previous ones, but with
the values that A and κ have in the first medium, around all the points of S in this medium which are
sufficiently far from the interface that the corresponding elementary waves fall short of it. The envelope
of these waves is, up to a very small distance from V , the part of S′ which is in the first medium.

There still remain the points of S which are so close to the interface that the [secondary] disturbances
emanating from them cross it before the end of the time dt . Around these points we could construct
a third group of elementary waves, but we do not need them to get to know the surface S′. Indeed,
consideration of the elementary waves which are located entirely in the first or in the second medium
leaves undetermined only an infinitesimally narrow band of S′, near the interface, and we can fill this
gap by extending each of the already known parts of S′ by infinitesimal planes which connect to the
direction of the surface already obtained.

Moreover, even when an elementary wave falls partly in the second medium, the part of this wave
which is still located in the first medium will nevertheless have the form indicated in §10. Therefore, in

9 This clause is found only in the Dutch edition [3, p.324].
10 Instead of “by the light”, the earlier Dutch edition says “with the speed B”. But B may vary with direction. Perhaps,

on second thought, this was considered a distraction because the problem of minimizing the time is reduced “by the same
reasoning as above” to the trivial problem of minimizing ` .

11 That is, elementary waves dragged by the aether, which is moving w.r.t. the lab frame.
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the previous construction we can still use such waves on the only condition that their point of contact
with the envelope surface falls within the first medium or on the boundary surface itself. Operating in
this manner, one obtains in its entirety the part of S′ located in the first medium.

The points of two successive waves are again in conjugate pairs, and by limiting ourselves to those
pairs which are either both in the first medium or both in the second, we can say that all the straight lines
which join two conjugate points, whether located in the first or in the second medium, are traversed in
the same time with the speed B indicated in §12.

But if a straight line is drawn between two non-conjugate points of S and S′, so that it is still entirely
contained in the same medium, the traversal of this line12 will take more time than the traversal of a
straight line joining two conjugate points.

Let us imagine a line which, starting from a point A in the first medium, and even after its passage
into the second medium, constantly joins conjugate points. Let B be the point where this “light ray”
meets the interface, and C one of the points that it reaches beyond the interface. If we then draw between
A and C some other line, which cuts the interface at (say) B′, where it may undergo a change of direction
like the line ABC at point B, then the traversal of ABC will require less time than that of AB′C. To
perceive this, we need only interpose between A and C an infinitude of waves,13 of which one passes
through B and one through B′, and notice that the elements of AB′C do not all join conjugate points of
successive waves.

The light ray is therefore, of all the paths going from A to C, the one which14 is traversed in the
shortest time. It follows, according to the result of the preceding paragraph, that this ray must be
composed of two straight lines, and B will be the position of the variable point B′ that minimizes the
time needed to traverse the broken15 line AB′C.

According to the formulas of the preceding section, the time needed to traverse AB′ is

AB′

A1
−

κ1

A1
2
(
ϕB′− ϕA

)
, (7)

and the time to traverse B′C is
B′C
A2
−

κ2

A2
2
(
ϕC− ϕB′

)
; (8)

and ϕB′ has the same value in both expressions since, according to our hypothesis, the velocity potential
is a continuous function.

The sum of (7) and (8) can be represented very simply, because of the value that we have accepted
in §10 for the entrainment coefficient [namely κ = 1

/
n2 ]. Indeed, denoting by n1 and n2 the absolute

refractive indices of the two media, we have

κ1 : κ2 = n2
2 : n1

2,

and moreover we know that
A1 : A2 = n2 : n1 .

It follows [from these proportions] that
κ1

A1
2 =

κ2

A2
2 .

I would add that the fraction κ
A2 has the same value for all isotropic media.16 If this is denoted by µ,

the sum of (7) and (8) will be:
AB′
A1
+ B′C

A2
− µ

(
ϕC− ϕA

)
.

12 The Dutch edition adds “with the speed B” [3, p.326].
13 This evidently means an infinite succession of positions of the same wave.
14 The Dutch edition adds “with the speed B” [3, p.327], although the same paragraph mentions a point B.
15 French brisée= broken; Dutch gebroken = broken/refracted.
16 This value is 1/c2, where c is the speed of light in vacuo.
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Since the last term of this expression is independent of the location of B′, it is simply necessary that

AB′

A1
+

B′C
A2

(9)

is minimized when B′ occupies position B. But it follows from this that the lines AB and BC are located,
with the normal to the interface at B, in the same plane, and that the sines of the angles which they make
with this normal are between them in the ratio of A1 to A2 [the “Snell” or “Snell-Descartes” laws, in
terms of phase velocity]. I can dispense with demonstrating this consequence here. Let us merely note
that from expression (9), everything related to the movement of the aether with respect to the ponderable
material has disappeared. Even when everything is at rest, the way by which the ray passes from one
medium to another is determined by the condition that (9) is a minimum; however, it is known that in
this case the laws of Snell apply.17

That these laws still subsist for the related rays when the aether is in motion, with respect to the
ponderable matter, has been demonstrated in a general way, first by Stokes in his memoir on Fresnel’s
theory of aberration,18 then by Veltmann. These scholars, however, took the Fresnel hypothesis as the
starting point of their demonstration and their method is different from mine.

It is important to note that the result depends entirely on the value assigned to the entrainment
coefficient. Indeed the given demonstration is in default as soon as ϕB′ does not cancel in the sum of
expressions (7) and (8). Now this [cancellation] takes place only if κ1

/
A1

2 = κ2
/
A2

2 —that is, only if
for different media κ is inversely proportional to n2, so that κ , which in free aether must to be equal to 1,
has in any other medium the value 1

/
n2.

The reflection of light can be treated in the same way as refraction. There is the difference that the
reflected waves intersect with the incident waves, but this circumstance does not change the reasoning.
It will be easily perceived that the ordinary laws of reflection continue to apply to the related rays, and
that to reach this conclusion one does not need any hypothesis on the entrainment coefficient. It will
suffice to admit that in the same medium this coefficient always has the same value.

...

Chapter 16 (p. 415): The propagation of waves and rays in an arbitrary
nonabsorbent medium (1906)

...

[Editor’s note: The following theory, covered in the earlier sections of chapter 16, uses Huygens’
construction and is needed for the first part of §18, which deals with rectilinear propagation. In a general
medium,which may be anisotropic, the wave-slowness surface (also called the normal-slowness surface)
is the surface whose “distance” from the origin in any direction is the wave slowness (i.e., the reciprocal
of the phase velocity) in that direction. If the Cartesian “components of normal slowness”, as Hamilton
called them [2], are denoted by α, β, γ, then the equation of the wave-slowness surface can be expressed
in the form given by Lorentz (p. 417):

ϕ(α, β, γ) = 0 , (6)

where ϕ is some function (not to be confused with the aether velocity potential in chapter 14). In a
homogeneous medium, if a plane wavefront passes through the origin at time 0, the time t at which it
reaches a point at position (x, y, z) is the dot product of the wave slowness and the position vector; i.e.,

αx + βy + γz = t .

17 The last clause is taken from the Dutch text [3, p.329]; the French refers to “the laws that I have just stated.”
18Reference [7].
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This is the equation of the wavefront at time t . Hence its equation at time 0 is

αx + βy + γz = 0 , (19)

and its equation after unit time is
αx + βy + γz = 1 ; (20)

again the equation numbers are Lorentz’s (p. 423). The wavefront that expands from a source at the
origin in unit time is the ray-velocity surface—that is, the surface whose “distance” from the origin
in any direction is the ray velocity in that direction. Lorentz conventionally called it the wave surface
(Wellenfläsche). Hamilton evocatively called it the unit wave. By Huygens’ construction, this surface is
tangential to (i.e., it is the envelope of) all the plane wavefronts given by (20), corresponding to all the
combinations of α, β, γ that satisfy (6). According to a theorem cited by Lorentz (p. 424), the direction
from the origin to a general point of this surface—whose coordinates x, y, z are now the components of
the ray velocity—is the direction of (

∂ϕ

∂α
,
∂ϕ

∂ β
,
∂ϕ

∂γ

)
.

So (§16, p. 430) the components of the ray velocity can be written

x =
1
N
∂ϕ

∂α
, y =

1
N
∂ϕ

∂β
, z =

1
N
∂ϕ

∂γ
,

where N is a quantity to be determined. And it is determined by substituting for x, y, z in (20):

N = α
∂ϕ

∂α
+ β

∂ϕ

∂ β
+ γ

∂ϕ

∂γ
. (31)

In what follows, x, y, z revert to being ordinary (position) coordinates.]

Section 18 (p.431)

We still have to show, what has already been said, that in a homogeneous medium the rays are always
straight lines, whatever may be curvature of the wavefronts. For this purpose I note that for every given
direction of the wave normal, we have a certain direction and a certain velocity u of the ray, and that we
can (see §16) go from one wavefront σ to the neighboring one σ′ by drawing, from every point P on σ,
a line in the ray direction corresponding to the wave normal at P, and cutting from it an infinitesimal
length PP′= udt. The geometric location of the points P′ is then the new wavefront.

If x, y, z are the coordinates of P, then according to the formulas given in §16 [for the components
of the ray velocity], the coordinates of P′ are determined by the equations

x ′ = x + 1
N

∂ϕ

∂α
dt , y′ = y +

1
N

∂ϕ

∂β
dt , z′ = z + 1

N
∂ϕ

∂γ
dt .

Now let Q be an arbitrary point of the surface σ that is infinitesimally close to P, and Q′ the point where
σ′ is cut by the ray passing through Q . If the prefixed operator d denotes the changes that variables
[other than t] undergo in the transition from P, P′ to Q,Q′, then, according to the preceding equations,

dx ′ = dx + d
(

1
N

∂ϕ

∂α

)
dt , dy′ = dy + d

(
1
N

∂ϕ

∂β

)
dt , dz′ = dz + d

(
1
N

∂ϕ

∂γ

)
dt .

To prove that the following element P′P′′ of the ray has the same direction as PP′ and that the ray
is therefore a straight line, it suffices to show that the surface σ′ at P′ is parallel to the surface σ at P.
To assure ourselves of this, we need only verify that for all possible displacements PQ of the surface σ,
i.e. for all values of dx, dy, dz which satisfy the condition

αdx + βdy + γ dz = 0 ,
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we also have
αdx ′+ βdy′+ γ dz′ = 0 .

But this follows from the fact that the expression

αd
(

1
N

∂ϕ

∂α

)
+ βd

(
1
N

∂ϕ

∂β

)
+ γ d

(
1
N

∂ϕ

∂γ

)
,

which can also be written

d
{

1
N

[
α
∂ϕ
∂α
+ β

∂ϕ
∂β
+ γ

∂ϕ
∂γ

] }
−

1
N

(
∂ϕ
∂α

dα + ∂ϕ
∂β

dβ + ∂ϕ
∂γ

dγ
)
,

is always zero; indeed, the first term of the latter expression vanishes because of equation (31), and the
second because of equation (6).

An even simpler proof is given by a theorem, which follows directly from Huygens’ construction,19
and according to which, of all lines s connecting any two points A and B, the ray is the one for which
the integral ∫

ds
u

is minimized. From this theorem, in which u is to be understood as the speed of a ray coinciding with
ds , it immediately follows that, as far as the course of a ray going from A to B is concerned, it does not
matter whether A is a point of an already existing wavefront, or is itself a center of vibration. In this
latter case, however, Huygens’ construction leads to closed wavefronts that are similar to each other and
have A as the center of similarity. The successive points of a ray have similar positions on these surfaces
and therefore lie on a straight line emanating from A.

It is notable that in a homogeneous medium we can now directly deduce, for any given wavefront σ,
the position σ′ which it takes after a finite [non-infinitesimal] time τ. One need only draw a ray from
each point of σ and cut a length uτ on it.

∗ ∗ ∗

Editor’s acknowledgments

Deutsch habe ich fünfeinhalb Jahre gelernt und achtunddreißig Jahre lang vergessen. The less said about
my French (let alone Dutch), the better. So this English edition makes heavy use of the online Google
and Microsoft translators. My contribution is mostly editing and annotation, typesetting, redrawing of
the figures (with minor enhancements as noted), and a pathological obsession with the subject-matter.

The copyright status of this translation is not to be confused with that of Lorentz’s original work.

19 [Footnote 1 in the original:] See chapter 14 of this collection, §12.
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