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False assignment of spectra leads to crosstalk in the final 
image. A robust goodness-of-fit measure have to be emplo-
yed to filter out localizations with bad spectral fits.

In contrast to previous spectroscopic super-resolution 
microscopy efforts6,7 we can achieve nanometer resolution in 
3D with a single objective and camera over a field of view of 
130 x 60 µm2. This increases the applicability of this method 
for biomedical research compared to previous approaches. 

The optical setup can be implemented on any epi-
fluorescence microscope. We intend to publish the spectral 
analysis as an open source package in the near future.

Applicability & Outlook

In practice, the photon budget is the biggest limitation. One 
challenge here is to find good imaging conditions and ac-
quisition parameters for all dyes simultaneously. 

High transmission along the entire optical path is crucial. 
Spherical abberations in one channel channel can lead to 
misinterpretation of spectra (Fig. A).

Sparse emission is necessary to separate spectra of indivi-
dual events (Fig. B & C). Because the required sparsity is 
higher than in conventional STORM acquisitions, recording 
times can become longer.

Limitations and Ongoing Development

Discussion
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Calibration of spectral
separation with fluorescent 
beads from  a FocalCheck 
slide demonstrates a 
spetral resolution of 
1.1 nm/pxl

We use immunolabelling with standard organic dyes, 
which makes this method applicable to a wide range of mo-
lecular biology samples. 
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Standard epi-fluorescence and 
reconstructed STORM images of 
microtubules in CHO cells 
immunolabelled with AlexaFluor647
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STORM
Overview of entire field of view 
(130 x 130 μm2) and 
zoomed-in regions with individual 
DNA origami probes

  Emission peak [nm] Ext. coeff. [L/mol cm]
DyLight 633 650 nm  170 000
Alexa Fluor 647 666 nm  203 000
Biotium CF660 685 nm  200 000
Biotium CF680 698 nm  210 000
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Lateral Resolution and Field of View

DNA Origami probes (GattaQuant) labelled with 
AlexaFluor-647 at 50 nm distance demonstrate 
field-independent nanometer resolution
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Spectral Detection
Stochastic emission events are detected through an image 
splitter on a sCMOS camera. 
We repurposed an OptoSplit III (Cairns Research) to acco-
modate a Pellin-Broca prism for spectral separation.

For 3D localization, a cylindrical lens introduces a depth-
dependent astigmatism in one detection path. 
(Alternatively, a double helix or tetrapod PSF could also be 
employed)

Subsequent custom spectral analysis assigns a false 
colour to each localized emission event based on its spec-
troscopic signature.

Microscope control and localization fitting are performed in 
open-source software µManger3 and Fiji /  
ThunderSTORM4,5. 

Flat-field Illumination

We use 638 nm diode laser and a microlens-based Köhler 
integrator1 for homogenous epi-illumination of the entire 
field of view. This ensures field-independent image 
resolution2. 

Microscope setup
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Concept Summary

Stochastic blinking 
events of different

far-red fluorophores are 
used for 3D localization

Analysis of spectral 
signature relative 
peak of each event 
in spectral channel

False colour assignment and rendering 
of multi-colour superresolution image 
from thousands of acquired frames

• Multi-colour localization microscopy approach 
for simultaneous acquisition of up to 4 different 
fluorophores

• A single excitation laser, objective and sCMOS 
camera on a standard inverted microscope

• Large field of view: 130 x 60 µm2

• Spectral fingerprint of each emission event 
serves to classify fluorophore

• Dissolves problems with image registration, 
chromatic aberrations and sample drift for   
nanoscale co-localization analysis 
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