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a b s t r a c t

Modeling interactions between social and natural systems is a hard task. It involves collecting data,
building up a conceptual approach, implementing, calibrating, simulating, validating, and possibly
repeating these steps again and again. There are different conceptual approaches proposed in the
literature to tackle this problem. However, for complex problems it is better to combine different ap-
proaches, giving rise to a need for flexible and extensible frameworks for modeling natureesociety in-
teractions. In this paper we present TerraME, an open source toolbox that supports multi-paradigm and
multi-scale modeling of coupled human-environmental systems. It enables models that combine agent-
based, cellular automata, system dynamics, and discrete event simulation paradigms. TerraME has a GIS
interface for managing real-world geospatial data and uses Lua, an expressive scripting language.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Planners and policy makers need models that capture how
human actions act on natural systems (Turner et al., 1995). These
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models represent coupled natureesociety systems in different
ways. Their capacity to capture the impact of human actions in
nature depends on the spatial and temporal scales used. It also
hinges on the chosen hypotheses about human behavior and
environmental response. Despite the challenges involved in
building them, these models have an important role. They bring
forth unstated assumptions hidden in policy proposals, helping us
to understand the possible results of different choices (Moran,
2010).

In this paper, we use the term paradigm to mean a worldview
intrinsic to a scientific theory. Models of natureesociety in-
teractions use different paradigms, including cellular automata,
agent-based models, map algebra, and system dynamics (White
and Engelen, 1997; Parker et al., 2003; Karssenberg and De Jong,
2005; Batty, 2012). In many cases using a single paradigm is not
enough. For complex problems, it is better to combine different
methods to learn more about how human societies interact with
nature (Rindfuss et al., 2004).

Most designers of natureesociety modeling tools choose a
paradigm and build a toolbox that supports it. Supporting a single
paradigm has many advantages. Most paradigms have a lot of
documentation and user communities, which helps potential
adopters. However, designer choices may also limit a software’s
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ability to grow. Tool designers have to choose a programming
environment, user interfaces, data types and their relations, algo-
rithms, data handling, and storage. A design suited for one para-
digm may not be adequate to support others. Although multi-
paradigm modeling tools can in theory combine different ways of
modeling, building such tools is a hard task. This begs the question:
“What kinds of software architecture are better suited for multi-
paradigm modeling of natureesociety interactions?” In what fol-
lows, we refer to this challenge as the multi-paradigm model design
problem.

This paper presents a possible response to this question. We
were inspired by how Bjarne Stroustrup built Cþþ (Stroustrup,
1994). He designed Cþþ in a bottom-up, modular fashion, allow-
ing object-oriented, generic programming, and procedural pro-
gramming styles. The flexibility of Cþþ has no doubt contributed
to its widespread use. Following these ideas, our proposed solution
for the multi-paradigm model design problem stems from three
conjectures. First, the tool should provide a collection of data types
and functions needed by different paradigms. This leads to a
bottom-up design based on building blocks that are combined by
the modeller. The second conjecture is that natureesociety in-
teractions happen in geographical space. Unlike human and capital
resources, that are mobile, natural resources are fixed. When
dealing with environmental problems, we have to capture
geographical features such as soil, climate, vegetation, and biodi-
versity in a spatially explicit way. Thus, models for natureesociety
interactions need a spatial component that represents natural
landscapes and the results of human interactions with them. Third,
natureesociety interactions occur at different scales. Many problems
need to be expressed as multi-scale models where matter, energy,
and information flow between different scales. The toolkit should
allow the user to break a complex model into simpler sub-models.
Each sub-model is a micro-world with its own temporal and
spatial resolution and behavior. Sub-models can then be nested
and combined in different ways. Thus, our proposed architecture
puts together a set of data types with methods to build and connect
geospatial micro-worlds.

Based on these conjectures, we have designed and implemented
the TerraME toolbox. It has building blocks for model development,
allowing the user to specify the spatial, temporal, and behavioral
parts of a model independently. Its components are expressive,
enabling different approaches to be combined. TerraME’s main aim
is flexibility. It does not enforce a unique modeling paradigm, but
provides the tools needed by the modeller. TerraME is an open
source software distributed under the GNU LGPL license and is
available at www.terrame.org.

In the next section, we consider the challenges for designing
software to model natureesociety interactions, pointing out the
choices we made. We describe the general architecture of TerraME
in Section 3. Section 4 has examples that show the main features of
TerraME. We finish the paper by reflecting on the contributions and
the limits of our proposed solution to the multi-paradigm model
design problem.

2. Design choices for natureesociety interaction modeling
toolboxes

In this section, we discuss four decisions faced by designers of
modeling tools that support natureesociety interactions. In each
case, we point out the choices we made in TerraME.

� Choosing which modeling paradigms to support.
� Selecting the model interface.
� Defining how the model interfaces with databases and GIS.
� Providing tools for verification, calibration, and validation.
2.1. Choice of modeling paradigms

Natureesociety modeling paradigms include Cellular Automata
(von Neumann, 1966), System Dynamics (Forrester, 1961), Agent
Based-Systems (Wooldridge and Jennings, 1995), Map Algebra
(Tomlin,1990), and Discrete Event System Specification (Zeigler et al.,
2005). Cellular automata (CA) are finite machines organized in a
lattice connected by neighborhood relations. CAs can produce
complex patterns from simple rules. In the system dynamics view,
the world consists of stocks of energy, information, or matter.
Model rules are differential equations defining flows that transport
energy, information or matter between stocks. Agent-basedmodels
represent autonomous individuals that interact with themselves,
the environment, and other agents. Map algebra uses raster maps
to allocate properties in space and provides functions over maps to
convey change. In the discrete event formalism, an event is an in-
dividual temporal episode. Instead of having functions that
compute the next step of the simulation, an event-based model has
a set of events and conditions when they occur.

Most existing modeling tools are centered on a paradigm,
although they may support others. Examples of agent-based
modeling tools are NetLogo (Tisue and Wilensky, 2004) and
RePast (North et al., 2006). System modeling tools include STELLA
(Roberts et al., 1983), Vensim (Eberlein and Peterson, 1992), and
Simile (Muetzelfeldt and Massheder, 2003). PCRaster is a map
algebra toolbox with extensions for dynamic modeling
(Karssenberg et al., 2001, 2009; Wesseling et al., 1996). JDEVS is an
event-based modeling software (Filippi and Bisgambiglia, 2004).
Focusing in a paradigm favors knowledge reuse. Users familiar with
one modeling paradigm will be comfortable when facing a new
toolbox based on similar ideas. If one knows STELLA, learning
Vensim and Simile is straightforward. Models developed in Net-
Logo can be ported to RePast without excessive work (Crooks and
Castle, 2012). Designers can also extend an existing tool to sup-
port other paradigms than their original choice.

The alternative is to build a multi-paradigm modeling tool in a
bottom-up way. This is what we did in TerraME since we hold that
natureesociety relations are inherently complex. As expressed by
Mike Batty: “in modeling, the quest for parsimony, simplicity, and
homogeneity is increasingly being confronted by the need for
plausibility, richness, and heterogeneity” (Batty, 2012). A multi-
paradigm toolbox allows modellers to combine different para-
digms when solving a problem. However, such tools are harder to
learn since there are many concepts to be grasped. Flexibility comes
at a price. We recognize that not all users will be willing to make it,
although we believe the effort is worthwhile.

2.2. Selecting the model interface

Modeling toolboxes need to provide analytical power to ex-
press complex problems. Nearly all tools use a programming lan-
guage with additional high-level statements. Some tools also
provide icon-based graphical programming, like the system dy-
namics tools STELLA and Simile. Visual interfaces are appealing and
enable decision-makers to quickly graspmodel behavior. However,
it is not easy to express spatial variation using icons. Thus, most
spatially-based tools use a programming language as their main
interface.

In TerraME, we chose a programming language interface. To
support rapidmodel implementationwe chose Lua, an open-source
interpreted language with extensible semantics (Ierusalimschy
et al., 1996). The modeller uses a clear and expressive language
that calls demanding operations in Cþþ, hidden from him. This
provides a good trade-off between source code directness and
computational efficiency.

http://www.terrame.org


Fig. 1. TerraME architecture.
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2.3. Interfaces with databases and GIS

Natureesociety models need to work with geospatial data for
real-world applications. Many tools use flat files to store model
input and output. However, databases are more suitable than flat
files to store these datasets because they provide consistency,
durability, and sharing (Gray, 1981). Using a database also helps the
user to organize data. The modeller relies on the same database to
do exploratory analysis, run the simulation, and examine the re-
sults. Most recent GIS (geographical information systems) have
interfaces to databases to provide spatial data access and storage.
By linking with a GIS, modeling tools inherit its capacity for data
handling. Among the toolboxes that provide integration with a GIS
are NetLogo, RePast, Simile, and PCRaster.

In TerraME, we chose the TerraLib open source geospatial library
(Câmara et al., 2008) to serve as its GIS and database interface.
TerraLib supports open source database management systems such
as MySQL and PostgreSQL and its vector data model is compatible
with OGC (Open Geospatial Consortium) standards. The library has
functions to read data in different formats and convert them into
regular or irregular cellular spaces. It also ensures persistent stor-
age and retrieval of modeling data. It also has tools for viewing data
such as TerraView (Câmara et al., 2008). The downside is that
adopters of TerraME will also have to use the TerraLib support for
geospatial databases. Considering the growing acceptance of open
source GIS tools (Steiniger and Bocher, 2009), we believe this is a
manageable risk.
2.4. Tools for verification, calibration and validation

The model building steps include conception, structuring, cali-
bration, verification, and validation (Jakeman et al., 2006). Tool-
boxes should provide services and tools to support its users in all
these stages. Faulty results are hard to spot when shown as
numbers. Users find and fix conceptual and implementation mis-
takes more efficiently if real-time visualization interfaces are
available during simulations. In TerraME, as in similar tools, we
provide a real-time visualization interface of simulation outputs.

Natureesociety models need to be calibrated with spatially
explicit data. There is a considerable body of recent research con-
cerning data assimilation and calibration (Beven and Binley, 1992;
Janssen and Heuberger, 1995; Lin and Beck, 2012). Stochastic data
assimilation methods allow models to update their initial condi-
tions as new input data becomes available. Applications such as
PCRaster have developed sophisticated calibration tools that can be
used in hydrology, crop growth, and air pollution (Karssenberg
et al., 2009; Verstegen et al., 2012). In TerraME, we chose calibra-
tion tools that use aggregated values and spatial explicit model
validationmethods, such as those proposed by Costanza (1989) and
Pontius and Millones (2011).
3. TerraME: terra modeling environment

3.1. System conception and architecture

The TerraME architecture is shown in Fig. 1. Its lowest tier uses
the TerraLib Cþþ library (Câmara et al., 2008). The second tier
provides support for modeling in Cþþ including agent-based, cell-
space, systems-oriented and event-based paradigms. The third tier
is the interface between TerraME and Lua. It adds data types and
functions for model simulation and evaluation to Lua. Other
mathematical and statistical libraries can have their APIs exported
to the Lua interpreter. The next tier is the Lua interpreter, which
takes model source code as input and executes the simulation. The
last tier consists of end user models. The top of Fig. 1 shows four
examples of models that can be implemented using TerraME.

TerraME considers that a model has spatial, temporal, and
behavioral dimensions. The spatial dimension deals with the
geographical area under study and the spatial resolution used for
data sampling. The behavioral dimension refers to the rules (for
example, agent behavior) and to the indirect techniques (for
example, statistical methods) that represent change. The temporal
dimension includes the period considered by the model and the
frequency when change occurs. To define a model, the user sets up
instances of TerraME’s spatial, behavioral, and temporal types,
which are described below.
3.2. Spatial types

TerraME provides four spatial types: Cell, CellularSpace, Neigh-
borhood, and Trajectory. A cell is a spatial location which has
persistent and runtime attributes. Persistent attributes are stored in
geospatial databases, while runtime values exist only during the
simulation. A cellular space is a set of cells representing a
geographical area divided in regular or irregular partitions. Cellular
spaces can be saved and recovered from TerraLib databases. Each
entity of a geospatial database (cell, pixel, point, line, or polygon) is
loaded as a cell in TerraME. Fig. 2 shows a database with three
different layers: (1) a set of roads represented as lines, (2) Brazilian
states within Amazonia represented as polygons, and (3)
25 � 25 km cells composing a sparse grid representing protected
areas in Amazonia. Each of them can be read into a cellular space.

The third spatial type is Neighborhood, a topological represen-
tation of proximity relations. A neighborhood is a set of pairs (c,w),
where c is a neighbor cell and w is the weight of the relation.
Neighborhoods connect cells inside the same cellular space or be-
tween spaces. Each cell can have more than one neighborhood.
TerraME has functions to create simple neighborhoods such as
Moore and von Neumann. Complex spatial relations use a gener-
alized proximity matrix (GPM). A GPM is a directed graph whose
weights express relations between geographic objects (Aguiar,
2006) that can be loaded from a TerraLib database during simula-
tions. TerraME does not work with vector geometries explicitly as
most operations over such geometries are computationally inten-
sive tasks. This is a limitation, but it has the advantage of not
computing spatial operations repeatedly during simulations, which
reduces computational cost. Fig. 3 shows different types of neigh-
borhoods. Upper tiles show Moore neighborhoods. The lower ones
depict neighbors built from roads using a GPM.

TerraME supports any algorithm that uses a Euclidean repre-
sentation of space. During simulations, it is possible to compute
raster-based operations using the (x, y) positions of cells.



Fig. 2. Squared cells representing a cellular space for Brazilian Amazonia.
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Neighborhood relations from exogenous vector-based data, such as
connectivity to markets through roads, can change by loading
GPMs registered for different simulation times. Once relations are
already stored in files, loading them in different executions of the
model reduces simulation time because they do not need to be
computed repeatedly.

The fourth spatial type, Trajectory, allows the user to define how
to go through a cellular space. A trajectory is an iterator that selects
a subset of a cellular space and defines an order for traversing this
subspace. Defining trajectories is especially useful for allocating
change in space. For example, consider a land change model where
the user is interested in modeling the transition from forest to
agriculture. The modeller can define a trajectory by selecting all
Fig. 3. Different types
cells representing forest and ordering them by their potential for
change. Cells with higher potential can then be traversed first.

3.3. Behavioral types

To describe model behavior, TerraME has two types: Agent and
Automaton. Agents are uniquely identifiable individuals situated in
space. They can represent actors, institutions, or even whole sys-
tems. Each agent has a state, can move over cellular spaces, and can
communicate with other agents. TerraME provides functionalities
to agents such as synchronous and asynchronous messages, con-
nections to cells and other agents, and life span. For model devel-
opment, agents can be grouped in a Society. A society is a collection
of neighborhoods.



Fig. 5. Environments with cellular spaces of different resolutions.

T.G.S. Carneiro et al. / Environmental Modelling & Software 46 (2013) 104e117108
of agents with the same set of properties and temporal resolution.
Societies can be created from scratch or retrieved from geospatial
databases during the simulation. An agent is related to a society as a
cell is to a cellular space.

An automaton is a spatial process that has independent states at
each location. While an agent acts globally in the cellular space, the
automaton acts locally. A single agent with a unique internal state
can control several cells. An automaton has many instances that
share the same set of states and attributes, but change indepen-
dently from each other. At a given time, each instance of an au-
tomaton can be in a different state and have different attribute
values.

TerraME supports both agents and automata because of the
different needs of natureesociety modeling. Societal models need
agents that can move freely in space and interact with other agents.
By contrast, many natural models (such as hydrological ones) need
local variations of global laws. The physical laws are the same, but
the local behavior is constrained by natural variations. Thus, the
automaton type is better suited for modeling natural processes.

3.4. Temporal types

Once spatial structures and behavioral rules are described, it is
necessary to define temporal structures. TerraME has two temporal
types: Event and Timer. An event is a time instant when the simu-
lation engine executes operations. A timer is a clock that registers a
continuous simulation time. It manages an event queue ordered
according to their priorities and timestamps. Fig. 4 shows how
event scheduling works in TerraME. It contains a timer with a
queue of four events. As each event is removed from the head of the
queue, the timer’s clock is updated with its timestamp. After that,
the event’s action is executed and the event may be deleted or
requeued according to its result.

3.5. The environment type

In TerraME, the Environment type allows the user to set up
multi-scale models. An Environment represents a micro-world
containing data and commands to be executed. It includes the
spatial, behavioral, and temporal parts of a model. Environments
can be nested, supporting multi-scale models. Thus, combining
different environments, users can build complex models.

When developing multi-scale models, the user first defines one
environment for each model. Then, the internals of each environ-
ment are set by defining appropriate instances of TerraME’s types.
Breaking up a multi-scale model in different and independent
(1) Get first EVENT

1:32:00 cs:load( ) 
(2) Update current time

1:32:10 ag1:execute( )

1:38:07 ag2:execute( )

1:42:00 cs:save()

(2) Update current time

(3) Execute the ACTION ()

. . .

(4) ACTION
return value

false

return value

true
(5) Schedule EVENT again

Fig. 4. Timer and event, the temporal types of TerraME.
environments favors interdisciplinary research. Each environment
may use a different combination of disciplinary knowledge. Fig. 5
shows one environment that covers the whole Amazon region
with 50 � 50 km2 cells. It has two nested environments, one
modeling the Pará state at 10 � 10 km2 and the other modeling the
Amapá state at 5 � 5 km2.

3.6. Calibration and high performance tools

TerraME provides a genetic algorithm for model calibration. It
optimizes model parameters to find the best adjustment, using
goodness of fit metrics to avoid local minima. It can calibrate
several parameters simultaneously, even when the model is sto-
chastic and the error function is noisy (Fraga et al., 2010). Currently,
we are using the goodness-of-fit measure proposed by Costanza
(1989). Future versions of TerraME will include other goodness-
of-fit metrics and optimization methods to improve calibration.
We have also built a high performance layer to use multiple cores in
shared memory architectures. High performance services can be
used during model calibration to explore larger search spaces (Silva
et al., 2011). A version for distributed memory architectures is
currently under development.

4. Examples of dynamic models in TerraME

This section shows case studies that explore the functions of
TerraME.We focusmainly on the toolbox instead of showing details
of each model.

4.1. A simple land change model

The first example is a land change model whose spatial support
is a cellular space of 25 � 25 km2 cells representing the Brazilian
Amazonia rain forest (shown in Fig. 6). This model is a simplified
version of the model developed by (Aguiar, 2006).

The first part of the model (shown in Fig. 7) describes the spatial
entities. An object of type CellularSpace is created to read data from
the Amazonia database. It requires a database location, the name of
the theme within the database, and the attributes to be read. The
“amazonia” CellularSpace connects to a Microsoft Access database
and loads the attributes “percent_defor” (percentage of deforesta-
tion, from zero to one), “distance_urban” (distance to urban



Fig. 6. Brazilian Amazonia database. The attribute percentage of deforestation is used to color the map, with green representing the cells with forest and red the percentage of
deforestation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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centers), “inv_distance_market” (inverse of the square of distance
to markets), and “protection_area” (percentage of protected areas
in the cell). These attributes are read for all cells. The last line de-
fines a Moore neighborhood for each cell.

Once the attributes are read into the cellular space, we define a
function called calculatePotential() to estimate the deforestation
potential of each cell, as shown in Fig. 8. It takes a cellular space as
argument and uses the second order functions forEachCell() and
forEachNeighbor(). A second order function takes an object and
another function as arguments and applies this function to every
element of the given object. We use forEachCell() to traverse a
Fig. 7. Defining a
cellular space, applying a function to all cells. Inside this function,
we call forEachNeighbor() to traverse the neighborhood of each cell.
In this example, forEachNeighbor() is used to sum the deforestation
of all neighbors of a cell. The expected deforestation for each cell is
a weighted sum of the average deforestation of its neighbors, its
distance to urban centers, its connection to markets, and its per-
centage of protected areas. Each cell will get a new attribute called
potential that represents its deforestation potential, computed as
the difference between the expected deforestation and the current
deforestation. The function returns the total potential for change,
calculated as the sum of each individual potential.
CellularSpace.



Fig. 8. Land change potential procedure.
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After calculating the potential of each cell, the model allocates
30,000 km2 of deforestation in the Brazilian Amazonia over a 50-year
time span. To do this, it uses the algorithm presented in Fig. 9, which
takes a cellular space and its total potential for change as inputs. It
Fig. 9. Land change all
defines a trajectory to traverse the cells that have a positive defores-
tation potential, running from higher to lower potential values.
To select the cells with positive potential for change, it uses the
parameter filter. By taking the attribute “potential” as reference, the
ocation procedure.



Fig. 10. A timer with a single event to simulate deforestation.
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parameter sort arranges the cells from higher to lower potential
values. The deforestation area of each cell is then allocated as a
functionof its potential for change.There is anextra check to avoid the
percent of deforestation of a cell going over 100%. Deforestation takes
place until at least 99.9% of the initial demand has been allocated.

To wrap up the model, we define its temporal component,
composed by a timer with a single event, as shown in Fig. 10. The
event calls calculatePotential() to compute the potential and then
deforest() to allocate deforestation. The simulation starts in 2000
and runs until 2050. Fig. 11 shows three parameters of the model
and the evolution of deforestation along a simulation.

4.2. A multi-scale continenteoceaneatmosphere model

The second example simulates a water cycle involving atmo-
sphere, continent, and ocean, as follows:

� Water in the continent flows by gravity into the ocean;
� The height of the ocean is kept the same among its cells;
� Water in the ocean evaporates to the atmosphere;
� Water vapor in the atmosphere goes to higher altitudes by
convection;

� High concentrations of water vapor turn into rain, moving
water from the atmosphere to the continent.

The model has three cellular spaces. The atmosphere has a
spatial overlay with continent and ocean, while some cells in the
border of the continent touch other cells in the ocean. Fig. 12 shows
the layers and the water flows.
Fig. 11. Amazonia deforestation model. (a) Distance to cities; (b) Distance to roads; (c) Pe
The first step to implement this model is to define three cellular
spaces (ocean, athmosphere, and continent). Fig. 13 shows the source
code for reading the continent cellular space from a database. The
continent has three attributes: height, quantity of water, and
infiltration capacity. The other cellular spaces are created in a
similar way.

The next step defines the neighborhoods. In the continent, the
neighborhood of a cell depends on its height and that of its adjacent
cells. Only cells with a lower height belong to a cell’s neighborhood.
This strategy sets up a local drainage direction for each cell to
simulate the water flow by gravity. Fig. 14 shows the code to create
the continent’s neighborhood using a filter over a 3 � 3 neighbor-
hood. In the end of this procedure, cells where all 3 � 3 neighbors
are higher will have no neighbors. Such cells correspond to
depression areas.

We also need to set connections between cellular spaces to
simulate evaporation, precipitation, and discharge. Fig. 15 shows
how to connect the atmosphere to the continent using crea-
teNeighborhood(). The argument target indicates that a connection
will be created between cellular spaces, from the one that calls the
function to its target. The geometric matching between the cellular
spaces is defined by the argument strategy. The strategy “coord”
connects two cellular spaces whose spatial positions are the same.
Other connections in the model are created similarly. As we have
more than one neighborhood associated to each cell, we need to
give a name to the new neighborhood. In this case, the name is
“atmosphere_continent”.

After describing the spatial entities and connecting them, we
now set the water flows. For the sake of simplicity, we show only
rcentage of protected areas; (d) Deforestation in the first, 15th, 35th, and 50th year.



Fig. 12. Atmosphereecontinenteocean database and water flows.
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the continent’s behavior, as the other cellular spaces use similar
strategies. Water flows downstream (runoff) and also permeates
the continent (infiltration). We express these two processes sepa-
rately in the model.

In the runoff calculation, water in the higher cells flows to the
lower ones. Recall the continent’s neighborhood is a local drainage.
Using the neighborhood, we divide the water flow from a cell to its
neighbors, as shown in Fig.16. To compute thewater flows, we need
to keep two copies of each cell. One contains the water that will
flow out of the cell. The other will receive water from upstream
neighbors, which will be kept for the next iteration. For this pur-
pose, TerraME has two versions of the attributes of a cellular space
in memory. One stores past values of each cell’s attributes, while
the other stores the current (updated) values. This helps to simulate
processes that occur in parallel in space. Past attributes are read
only, as changes take place in the current time. Before updating the
cells, it is necessary to synchronize() the cellular space. This updates
the past values with the current attributes, so we can start another
simulation step.

Water infiltration to the continent is a continuous process that
needs to be discretized within the simulation. It is described as an
event-driven function that computes a numerical integration al-
gorithm using the built-in function integrate(), as shown in Fig. 17.
When the simulation triggers the event to execute water infiltra-
tion, the integration is computed for each cell using the period
between the current time and the last time the event was executed.
The main parameter of integrate() is the equation to be integrated.
In this example, the numerical integration uses an infiltration()
function that states the water in a cell will be reduced by 0.03 units
Fig. 13. A cellular space repr

Fig. 14. Creating a local drainag
per unit of time. The other arguments are the integration method
(“euler”), an initial value, the triggering event, and the integration
step.

After creating the behavior within the continent, we define
temporal entities. Fig. 18 shows the timer that controls the conti-
nent’s simulation. It has two events, which may have priorities to
define their execution order. Lower values denote higher priority,
with zero being the default value. The first event simulates water
balance flows in the continent, while the second simulates the
water infiltration. This timer and the cellular space representing the
continent are then joined to make up an Environment. Using
similar procedures as those that set up the continent environment,
we can create the ocean environment and the atmosphere
environment.

The next step describes how water moves between cellular
spaces: discharge (continent to ocean), rain (atmosphere to conti-
nent), and evaporation (ocean to atmosphere). Fig. 19 describes the
source code for the water discharge. As water arrives in the lower
cells on the border of the continent, the model sends water from
the continent to the ocean. In this case, functions getNeighborhood()
and forEachNeighbor() use the name of the neighborhood that
connects the continent to the ocean as their argument.

The three environments (ocean, continent, and atmosphere) are
enclosed in a global one, as shown in Fig. 20. The global environ-
ment also has a timer that triggers events to distribute the initial
flow of water, make it rain, and execute evaporation and discharge.
The event that executes rain has a parameter period to indicate that
it will execute three times less frequently than the other events. To
change the amount of rain along the simulation, one could change
function execute_rain() or reduce its periodicity. Finally, we set the
global environment to be executed until time 2000. During the
simulation, the global environment synchronizes the timers so that
all events occur in the correct order. Fig. 21 shows the flow of water
in each cellular space at the end of a simulation. It is possible to see
the emergence of global patterns of water from the local rules
defined by the model.

4.3. A simple predatoreprey model

The last example describes a predatoreprey model using an
agent-based approach. In this model, preys and predators are
represented as individuals that live in a cellular space. The type
Agent encapsulates the attributes and behavior of autonomous in-
dividuals. A prey has two properties, energy and name, and a
function, execute(). Energy represents its current fitness, starting
with 50 quanta, while name distinguishes preys from predators.
esenting the continent.

e direction neighborhood.



Fig. 15. Coupling the atmosphere with the continent.

Fig. 16. Continent water runoff balance.

Fig. 17. Continent water infiltration.

Fig. 18. A timer and environment for the continent.
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Fig. 19. Source code for water discharge.

Fig. 20. The world environment.
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The function execute() has a single parameter representing the prey
itself. It describes the actions executed by the prey at each time
step. In the beginning, the prey loses one quantum of energy to
move from its current cell to a random neighbor. Then it checks its
energy. When it has 60 or more quanta of energy, the prey re-
produces asexually, creating a descendant in the same cell. When
its energy is equal or less than zero, the prey dies. Finally, if there is
grass in the cell, the prey feeds on it, converting the cell’s cover
from grass to soil to increasing its own energy by five quanta. Fig. 22
represents the prey agent.
Fig. 21. Results of the water cycle simulation:
A predator is described similarly. It loses energy, moves, re-
produces, and dies in the sameway as a prey. The difference is that
it looks for preys in the cell it belongs. We use forEachAgent() to go
through a collection of agents, applying a function to each one. In
this example, we use forEachAgent() to represent how predators
feed on preys. A predator looks for a prey in the same cell it is
located. If there is a prey, the predator kills and eats it, increasing
its energy by half of the prey’s energy. At each time step, the
predator stops searching for other preys after finding the first one
(Fig. 23).
(a) continent, (b) ocean, (c) atmosphere.



Fig. 22. Describing a prey as an agent.
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The second part of this model creates one society of predators,
one of preys and a cellular space where they will be located. The
agents defined previously are used as prototypes that will be cloned
to create both societies. In the example, both societies have 200
agents cloned from their respective prototypes. The model also
creates an environment composed by the cellular space and the
societies. To put agents in the cellular space, we call the function
createPlacement() using a random strategy. A timer defines cycles of
preys, predators, and grass regrowth (Fig. 24).

The initial distribution of agents and the result of one simu-
lation are shown in Fig. 25. Green cells are filled with grass. Black
asterisks represent preys, while red asterisks represent preda-
tors. In the beginning, all of the cells are green since the cellular
space is filled with grass. As the simulation proceeds, preys feed
grass, which changes the color of cells to white. The number of
agents within each society also changes, as they feed, reproduce,
and die.
Fig. 23. Describing a pr
5. Discussion and final remarks

In this section, we consider the lessons learned when designing
TerraME. We start by recalling our conjectures: a toolkit for
modeling natureesociety interactions needs to provide a set of data
types with methods to build and connect geospatial micro-worlds.
Thus, the lowermost level of TerraME has two data types: Cell and
Agent. Cells represent the spatial partitions, with attributes that
capture the variations of the natural and the human-built worlds.
Agent represents autonomous individuals that can change the
landscape. Two containers come right above both types. A set of
cells representing a geographic area of interest with a given reso-
lution and extent makes up a CellularSpace. A set of agents that have
the same set of attributes and basic behavior compose a Society.
Both sets can have their entities loaded directly from a geospatial
database, which simplifies dealing with real-world data. Some
simulation toolkits have added interfaces to geospatial databases as
edator as an agent.



Fig. 24. Societies and other objects for the predatoreprey model.

Fig. 25. Simulation of a predatoreprey model (left, initial condition; right, final state).
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an extension from their original concepts. By contrast, manipu-
lating geospatial data is native in TerraME.

Another innovation in TerraME is the idea of environment. An
environment represents a micro-world with one or more cellular
spaces and one or more societies. Inside an environment, there is
temporal coherence between its events. Using the idea of envi-
ronments, models can be composed of sub-models with different
spatial and temporal resolution and behavior. This bottom-up logic
allows for considerable flexibility. Simple models can be built using
a single cellular space or a single society, without the need to define
environments. Complex models will use environments to imple-
ment micro-worlds separately and couple them.

TerraME’s flexibility comes at a price, however. To understand
why, consider some of the alternative toolkits. If the user’s problem
can be expressed as sets of operations over maps, then map algebra
toolkits such as PCRaster (Karssenberg et al., 2001) provide higher-
level operations. Instead of iterating over every cell of a map as
TerraME does, map algebra functions take a map (or a cellular
space) as an atomic unit. Single statements in map algebra need a
considerable number of lines in TerraME. Nevertheless, if the
problem requires combining agents with maps, it is probably easier
to express such models in TerraME than in a map algebra toolkit.

We recognize that prospective users will pay a price for the
flexibility provided by TerraME. The learning curve will be steeper
than that of a single-paradigm model. Also, there are no previous
examples of similar tools that the user is likely to be familiar with.
All of this may place a barrier for first-time users of TerraME.
Nevertheless, we consider that there is space for a multi-paradigm
modeling tool. Some problems will be too complex to fit in a single
paradigm. Also, users that want to combine different approaches
can benefit for having these concepts supported in a single tool.

When comparing natureesociety modeling tools, it is useful to
consider the lessons learned from programming languages in
general. It is unlikely that a single programming language will fit
the needs of all software developers. There is room for scripting,
object-oriented, functional and multi-paradigm languages. The
same view applies to modeling. The community will benefit for
multiple solutions. We believe that TerraME is a new approach to
natureesociety modeling, which will find its niche alongside
existing and mature tools.
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