Behavioral Software Engineering - Example of psychometric evaluation with R

Daniel Graziotin, Per Lenberg, Robert Feldt, Stefan Wagner

2020-05-18

Contents

Introduction 1
Context 1
Requirements and options 2
Data simulation 3
Item Review and Item Analysis 4
Factor Analysis 6
Item statistical properties 15
Reliability 18
Validity 19
Conclusion 19

Introduction

The present document provides an executable hands-on introductory psychometric validation example written for a behavioral software engineering audience.

The present document is part of a paper:
Daniel Graziotin, Per Lenberg, Robert Feldt, Stefan Wagner (2020): Behavioral Sofware Engineering: Methodological Introduction to Psychometrics. Under Review

Even though it is as self-contained as possible, we recommend reading it after reading the paper. The present document is also a R Markdown file. Its text version is interactive and can be executed directly in R Studio, making it completely reproducible.

Context

The present document contains an example, with simulated data, of the psychometric validation phases of a norm-based measurement instrument for assessing an overall construct with five sub-constructs.

Our fictitious construct is the "individual perception styles of source code" that, through a literature review (or, perhaps, after a grounded theory study), we believe is mainly composed of, or highly related, to the following five constructs: code curiosity, programming paradigm flexibility, learning disposition, collaboration propensity, and comfort in novelty.

We develop a measurement instrument with 31 items, all represented by likert items from 1 to 5 , which is self-assessed by the individual software engineer. The likert items would ideally form five likert scales, that would actually emerge after an exploratory factors analysis. However, when we develop scales we have a rough idea of the related constructs anyway. We represent here what we expect the exploratory factor analysis to show, with all items grouped by what we might see as potential factors.

- F1, "Code curiosity"
-7 items, F1_1 to F1_7
- F2 "Programming paradigm flexibility"
- 4 items, F2_1 to F1__4
- F3 "Learning disposition"
- 9 items, F3_1 to F3_-9
- F4 "Collaboration propensity"
- 4 items, F4_1 to F4_4
- F5 "Comfort in novelty"
- 5 items, F5_1 to F4_7

What the items actually are is not interesting for the purposes of the present document. Our team proceeds to psychometrically evaluate the measurement instrument, in particular, to reduce the number of items. Then, to validate the items belonging to the factors and, possibly, reducing the number of items agin. Finally, to offer a reasoning on statistical properties, reliability, and validity.

Requirements and options

The following are requirements that are typically found in a basic psychometric validation, with the exclusion of fabricatr, which is for fabricating data and we use for developing this example only.

```
if (!require("fabricatr")){
    install.packages("fabricatr", dep = T)
}
## Loading required package: fabricatr
require("fabricatr")
if (!require("psych")){
    install.packages("psych", dep = T)
}
## Loading required package: psych
require("psych")
if (!require("knitr")){
    install.packages("knitr", dep = T)
}
## Loading required package: knitr
require("knitr")
knitr::opts_chunk$set(echo = TRUE, cache = FALSE, width = 50)
```

We offer a dataset with pre-populated data that allows repetition of the entire document. For discarding our provided data and simulating new data (which should conform, to a fair extent, to what we expect in the various sections), set the safeguard variable to FALSE or delete the graziotin_et_al-bse_psychometrics_example.csv file. The new dataset will behave very similarly to the provided one-after all, we used the very same code to generate it. This option will allow reproducibility only.
For full repeatability, but mostly for better clarity, we recommend to start with our provided dataset. The reason is that the rest of this tutorial will provide reasoning around certain values for items that will slightly change in case a new dataset is generated.
The following are options that are useful for repetition and replication of our example.

```
# set to FALSE to regenerate the dataset
safeguard <- TRUE && file.exists('graziotin_et_al-bse_psychometrics_example.csv')
overall.sample.size = 142
pilot.test.sample.size = 23
reliability.sample.size = 48
```


Data simulation

This section explains how we constructed the simulated dataset graziotin_et_al-bse_psychometrics_example.csv.
This section can be safely skipped as it does not pertain to psychometric evaluation. We provide the data simulation part for full reproducibility.

```
if (!safeguard) {
    # 31 items belonging to 5 clusters
    items.initialset <- c(rep(1, 7), # cluster 1
                                    rep(2, 4), # cluster 2
                                    rep(3, 9), # cluster 3
                                    rep(4, 4), # cluster 4
                                    rep(5, 7)) # cluster 5
    likert.brakes <- c(-Inf,-1.5,-0.5, 0.5, 1.5, Inf)
    likert.values <- c("1", "2", "3", "4", "5")
    counter <- 0
    var.names <-
        unlist(lapply(items.initialset, function(x) {
            paste0("F", x, "_", counter <<- counter + 1)
        }))
    normalized.response <-
        draw_normal_icc(clusters = items.initialset,
                    ICC = sample(seq(0.4, 0.7, by = 0.05), 1),
                    sd = sample(seq(0.5, 0.9, by = 0.1), 1))
    ordered.response <- draw_ordered(x = normalized.response,
                                    breaks = likert.brakes,
                                    break_labels = likert.values)
    full.df <- rbind(ordered.response)
    colnames(full.df) <- var.names
    for (i in seq(1, overall.sample.size - 1)) {
        normalized.response <-
            draw_normal_icc(clusters = items.initialset,
                        ICC = sample(seq(0.4, 0.7, by = 0.05), 1),
                        sd = sample(seq(0.5, 0.9, by = 0.1), 1))
        ordered.response <- draw_ordered(x = normalized.response,
                                    breaks = likert.brakes,
                                    break_labels = likert.values)
        full.df <- rbind(full.df, ordered.response)
    }
    # each row is a participant id, from 1 to overall.sample.size
    rownames(full.df) <- seq(1, overall.sample.size)
}
```

Up to this point we have generated a perfect dataset. All items cluster as we wish them to be. We now add noise to the data. For two items, F1_4 and F5_25, we simulate oddly worded or uninteresting items that
most users rate at the maximum and minimum values, respectively. This will allow us later on to drop these items during item facility analysis.

```
if (!safeguard) {
    full.df[, 'F1_4'] <- draw_ordered(
        x = rnorm(n = overall.sample.size, mean = 2.7, sd = 0.8),
        breaks = likert.brakes,
        break_labels = likert.values
    )
    full.df[, 'F5_25'] <- draw_ordered(
        x = rnorm(n = overall.sample.size, mean = 1.2, sd = 0.8),
        breaks = likert.brakes,
        break_labels = likert.values
    )
}
```

For other three items, F4_21 to F4_23, we get even more malicious. Factor 4 only had 4 candidates for a representative cluster. We generate values for these three items again such that they do not likely belong to the cluster 'F4' anymore, but they do not provide clear extreme values that would get caught during item analysis.

```
if (!safeguard) {
    full.df[, 'F4_21'] <- draw_ordered(
        x = rnorm(n = overall.sample.size, mean = 1.5, sd = 2.3),
        breaks = likert.brakes,
        break_labels = likert.values
    )
    full.df[, 'F4_22'] <- draw_ordered(
        x = rnorm(n = overall.sample.size, mean = 3, sd = 2.1),
        breaks = likert.brakes,
        break_labels = likert.values
    )
    full.df[, 'F4_23'] <- draw_ordered(
        x = rnorm(n = overall.sample.size, mean = 4.5, sd = 1.8),
        breaks = likert.brakes,
        break_labels = likert.values
    )
    write.csv(x = as.data.frame(full.df),
                file = 'graziotin_et_al-bse_psychometrics_example.csv',
                row.names = F)
}
```


Item Review and Item Analysis

For brevity, as item review is mostly a review and reasoning of items, we assume that the 31 items for five factors are already the result of item review. So we proceed to perform a pilot test for item analysis.

We simulate a pilot study with the first pilot.test.sample.size lines of the dataframe. This is pilot.df. We call psych function describe() and start our item analysis.

```
full.df <-
    read.csv(file = 'graziotin_et_al-bse_psychometrics_example.csv')
pilot.df <- head(full.df, n = pilot.test.sample.size)
desc <- describe(pilot.df)
desc
```

\#\#	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kur	se
\#\# F1_1	1	23	2.91	1.08	3	2.89	1.48	1	5	4	0.16	-0.65	0.23
\#\# F1_2	2	23	2.74	0.96	3	2.79	1.48	1	4	3	-0.37	-0.90	0.20
\#\# F1_3	3	23	2.78	1.09	3	2.79	1.48	1	5	4	0.00	-0.88	0.23
\#\# F1_4	4	23	4.96	0.21	5	5.00	0.00	4	5	1	-4.19	16.26	0.04
\#\# F1_5	5	23	2.83	1.11	3	2.79	1.48	1	5	4	0.33	-0.79	0.23
\#\# F1_6	6	23	2.87	1.18	3	2.84	1.48	1	5	4	0.08	-0.99	0.25
\#\# F1_7	7	23	2.87	1.01	3	2.84	1.48	1	5	4	0.25	-1.03	0.21
\#\# F2_8	8	23	3.04	0.98	3	3.00	1.48	1	5	4	0.20	-0.32	0.20
\#\# F2_9	9	23	3.30	0.97	3	3.32	1.48	1	5	4	-0.32	-0.33	0.20
\#\# F2_10	10	23	3.04	0.93	3	2.95	1.48	2	5	3	0.57	-0.60	0.19
\#\# F2_11	11	23	3.17	0.65	3	3.16	0.00	2	5	3	0.79	1.08	0.14
\#\# F3_12	12	23	2.96	1.15	3	2.95	1.48	1	5	4	0.25	-0.74	0.24
\#\# F3_13	13	23	2.83	0.94	3	2.89	1.48	1	4	3	-0.31	-0.94	0.20
\#\# F3_14	14	23	2.83	1.07	3	2.79	1.48	1	5	4	0.33	-0.51	0.22
\#\# F3_15	15	23	2.91	1.04	3	2.95	1.48	1	5	4	-0.07	-0.84	0.22
\#\# F3_16	16	23	2.65	1.07	3	2.63	1.48	1	5	4	0.26	-0.77	0.22
\#\# F3_17	17	23	2.74	0.92	3	2.68	1.48	1	5	4	0.50	-0.18	0.19
\#\# F3_18	18	23	2.83	1.15	3	2.79	1.48	1	5	4	-0.02	-0.64	0.24
\#\# F3_19	19	23	2.78	0.95	3	2.84	1.48	1	4	3	-0.19	-1.09	0.20
\#\# F3_20	20	23	3.04	0.71	3	3.00	0.00	2	5	3	0.69	0.84	0.15
\#\# F4_21	21	23	3.70	1.43	4	3.84	1.48	1	5	4	-0.47	-1.29	0.30
\#\# F4_22	22	23	4.57	1.04	5	4.84	0.00	1	5	4	-2.39	4.74	0.22
\#\# F4_23	23	23	4.96	0.21	5	5.00	0.00	4	5	1	-4.19	16.26	0.04
\#\# F4_24	24	23	2.78	0.85	3	2.84	0.00	1	4	3	-0.88	0.13	0.18
\#\# F5_25	25	23	4.04	0.71	4	4.11	0.00	2	5	3	-0.80	1.21	0.15
\#\# F5_26	26	23	2.91	1.04	3	2.84	1.48	1	5	4	0.39	-0.68	0.22
\#\# F5_27	27	23	3.04	1.02	3	3.11	0.00	1	5	4	-0.57	-0.08	0.21
\#\# F5_28	28	23	2.65	1.11	3	2.63	1.48	1	5	4	0.11	-0.88	0.23
\#\# F5_29	29	23	2.91	1.08	3	2.89	1.48	1	5	4	0.16	-0.65	0.23
\#\# F5_30	30	23	2.96	0.98	3	3.05	1.48	1	4	3	-0.48	-0.94	0.20
\#\# F5_31	31	23	2.91	1.08	3	2.95	1.48	1	5	4	-0.25	-0.78	0.23

The function provides useful descriptive statistics for each item. Our first observation is that some items have mean and median that deviate notably from the (in our case) central value of 3 . These are F1_4, F4_22, F4_23, with a mean value approaching 5, and F5_25, with a mean value of 4.04, which is high but not alarming yet. Items F1_4 and F4_23 are also those with the smallest standard deviation of 0.21 , which results in a variance of 0.04 . The other two items show standard deviations in line with the rest of the dataset. Furthermore, F1_4 and F4_23 have unusual values for skew and kurtosis as well, indicating that the data is strongly biased on a value (indeed, their range is from 4 to 5). We conclude that items F1_4 and F4_23 have a high item facility (item difficulty), so they are candidate for deletion.

As for item discrimination, being our example one for trait measurement, we calculate how the two items correlate with those that are supposedly part of their factors.

```
cor(pilot.df[, grepl("F1_" , names(pilot.df))], method = c("kendall"))
\begin{tabular}{lrrrrrr} 
\#\# & F1_1 & F1_2 & F1_3 & F1_4 & F1_5 & F1_6 \\
\#\# F1_11 & 1.00000000 & 0.69676640 & 0.40410397 & -0.03061384 & 0.78975397 & 0.64500204 \\
\#\# F1_2 & 0.69676640 & 1.00000000 & 0.41905498 & -0.04702449 & 0.60392630 & 0.62954379 \\
\#\# F1_3 & 0.40410397 & 0.41905498 & 1.00000000 & -0.04556977 & 0.41221507 & 0.60006751 \\
\#\# F1_4 & -0.03061384 & -0.04702449 & -0.04556977 & 1.00000000 & -0.06091449 & -0.02992751 \\
\#\# F1_5 & 0.78975397 & 0.60392630 & 0.41221507 & -0.06091449 & 1.00000000 & 0.68180919 \\
\#\# F1_6 & 0.64500204 & 0.62954379 & 0.60006751 & -0.02992751 & 0.68180919 & 1.00000000 \\
\#\# F1_7 & 0.67202944 & 0.56452429 & 0.48974943 & -0.23386171 & 0.75738930 & 0.61590315 \\
\#\# & F1_7 & & & & &
\end{tabular}
```

```
## F1_1 0.6720294
## F1_2 0.5645243
## F1_3 0.4897494
## F1_4 -0.2338617
## F1_5 0.7573893
## F1_6 0.6159031
## F1_7 1.0000000
cor(pilot.df[, grepl("F4_" , names(pilot.df))], method = c("kendall"))
## F4_21 F4_22 F4_23 F4_24
## F4_21 1.00000000 -0.06830148 0.1115476 0.09441808
## F4_22 -0.06830148 1.00000000 -0.1082363 0.04275379
## F4_23 0.11154759 -0.10823626 1.0000000 -0.35909479
## F4_24 0.09441808 0.04275379 -0.3590948 1.00000000
```

Item F1_4 behaves differently to other items of its cluster as it shows near zero correlation to all items but a weak one to F1_7.

Item F4_23 does not show particular differences in its cluster (we manipulated Factor 4 responses to result in a likely void factor).

We conclude that only item F1_4 possesses a high discrimination and we therefore are confident in removing it from the measurement instrument. F4_23 would show high discrimination as well, but not compared to the rest of its theorized cluster, yet it has high item facility. We decide to drop it as well. We decide to not drop F4_22 yet, but the entire cluster for Factor 4 looks suspicious already.

```
pilot.afteritemanalysis.df <-
    pilot.df[,-which(names(pilot.df) %in% c("F1_4", "F4_23"))]
```


Factor Analysis

Our psychometric evaluation study foresees an exploratory factor analysis (EFA) with an idea of items belonging to some possible constructs. While EFA does not require known factors at all (it is, after all, an exploration), we can still use it to cut down on items rather than on discovering how many factors we require. EFA will show us suggestions for factors, anyway.
We gather data with a new round of participants, this time aiming at a larger sample.

```
# we drop the pilot participants
study.df <-
    tail(full.df, n = NROW(full.df) - pilot.test.sample.size)
# we drop those columns that we identified after item analysis
study.beforeefa.df <-
    study.df[,-which(names(study.df) %in% c("F1_4", "F4_23"))]
```

Following the structure of our paper, we show here two possibilities for factor extraction, namely the scree plot and the very simple structure, and then we provide an entire session of factor loading estimation, factor extraction, and factor rotation with principal axis factoring.

Factor extraction: scree plot

The scree test is based on eigenvalues. The psych package is nice enough to perform a principal component analysis (PCA) as well as of a principal axis factoring (PAF) for generating the plot.

We plot the scree test using our sample with 29 variables.

```
scree(study.beforeefa.df)
```

Scree plot

The breaking point starts with the fifth component for PCA and with the fifth factor for PAF, suggesting that 4 is the number of factors to extract.

Factor extraction: Very Simple Structure

An alternative for factor extraction is the Very Simple Structure, or VSS, which can be used for extracting factors before their rotation.
We plot the structure using our initial five factor model with 29 items. As written in our paper, the VSS criterion requires a user specified number of factors, which should be above the target number of factors. We specify seven factors using the $\mathrm{n}=7$ parameter.

```
vss.test.five <-
    vss(study.beforeefa.df,
        title = "Very Simple Structure of our fictitious five factor model", \(\mathrm{n}=7\) )
\#\# Warning in fa.stats \((r=r, f=f, p h i=p h i, n . o b s=n . o b s, n p . o b s=n p . o b s,:\)
\#\# The estimated weights for the factor scores are probably incorrect. Try a
\#\# different factor score estimation method.
```

Very Simple Structure of our fictitious five factor model

Number of Factors

```
vss.test.five
##
## Very Simple Structure of Very Simple Structure of our fictitious five factor model
## Call: vss(x = study.beforeefa.df, n = 7, title = "Very Simple Structure of our fictitious five facto
## VSS complexity 1 achieves a maximimum of 0.81 with 7 factors
## VSS complexity 2 achieves a maximimum of 0.84 with 7 factors
##
## The Velicer MAP achieves a minimum of 0.02 with 4 factors
## BIC achieves a minimum of -1071.41 with 4 factors
## Sample Size adjusted BIC achieves a minimum of -135.64 with 4 factors
##
## Statistics by number of factors
## vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex
## 1 0.46 0.00 0.036 377 995 3.3e-57 40.6 0.46 0.117 -807 385 1.0
## 2 0.61 0.63 0.027 349 714 3.0e-27 
## 3 0.73 0.76 0.018 322 487 7.6e-09 17.1 0.77 0.065 -1052 
## 4 0.79 0.83 0.015 296 343 3.1e-02 11.1 0.85 0.036 -1071 -136 
## 5 0.79 0.83 0.018 271 310 5.1e-02 10.0 0.87 0.034 -985 -128 
## 6 0.79 0.83 0.020 247 274 1.2e-01 
## 7 0.81 0.84 0.023 224 247 1.4e-01 
## eChisq SRMR eCRMS eBIC
## 1 
## 2 1323 0.117 0.126 -345
## 3 575 0.077 0.087 -964
## 4 199 0.045 0.053-1216
## 5 167 0.042 0.051-1128
## 6 138 0.038 0.048-1042
## 7 113 0.034 0.046 -958
```

Besides the warning that the the estimated weights are probably incorrect, which would prompt us to use a different factor extraction method anyway, we can observe that the VSS criterion does achieve its maximum with 7 factors.

However, the increase in vss1 and vss2 score decreases rapidly after four factors. This can be noted graphically as well as in the console output. The fit behaves the same. The VSS still suggests that having four factors is optimal.

Factor extraction: Parallel Analysis

Finally, a robust method for factor extraction is Parallel Analysis (PA), which performs a constant comparison of our solution with randomly generated data.

\#\# Parallel analysis suggests that the number of factors $=4$ and the number of components $=4$
As with the Scree Plot function, we see that psych fa.parallel function performs both a PCA and a PAF with the data. The textual output suggests already that four factors should be extracted. The graph shows our data and with calculated components (crosses) and factors (triangles). They are placed the same as with a Scree Plot. The red lines (upper one for PCA, lower one for PAF), on the other hand, represent the mean generated eingenvalues. Factors are retained as long as they are greater than the mean eigenvalue generated from the random matrices.

For both PCA and PAF, the generated data crosses the lines of the actual eigenvalue between 4 and 5 components and factors. This suggests that 4 factors should be extracted.

Factor loading, extraction, and rotation: principal axis factoring

The R psych package makes it easy to perform loading estimation, factor extraction, and factor rotation with a single function call. We will perform here a principal axis factoring (PAF) to fully go from five factors (the initial assumption) to four factors. We show in this section how a reasoning can be conducted by observing values as returned by functions for loading, extration, and rotation.

Besides our reasoning on pure numbers, we will add elements of confirmatory factory analysis (CFA) to guide our retention of items and factors, that is, measures of fit. First, the change in chi square from factor n to factor $\mathrm{n}-1$ should go from significant (there is is a bad fit) to insignificant. To the chi square test, we add other two measure of fit, namely the root mean square of the residuals (RMSR) and the root mean square error of approximation (RMSEA) index. RMSR should be as close to zero as possible while RMSEA should be below 0.05 .

It should be kept in mind that measures of fit are mere indicators in EFA, being them part of a confirmatory factor analysis (CFA) strategy mostly, and should be taken into consideration together with a sensitivity analysis.
As suggested in our paper, we opt for Principal Axis Factoring (PAF) with a hybrid orthogonal first, oblique rotation then, namely a promax rotation. This means that we have a further criterion for factor reduction, that is reducing factors while the sum of squared loadings is below 1.00.

```
five.factors <-
    fa(
        study.beforeefa.df ,
        fm = "pa",
        nfactors = 5,
        rotate = "promax"
    )
```

\#\# Loading required namespace: GPArotation
five.factors
\#\# Factor Analysis using method = pa
\#\# Call: fa(r = study.beforeefa.df, nfactors = 5, rotate = "promax", fm = "pa")
\#\# Standardized loadings (pattern matrix) based upon correlation matrix
\#\# PA1 PA2 PA3 PA4 PA5 h2 u2 com
\#\# F1_1 -0.06 0.71 $-0.09 \quad 0.00-0.040 .550 \quad 0.451 .1$
\#\# F1_2 0.00 0.74 $0.04-0.10-0.08 \quad 0.558 \quad 0.441 .1$
\#\# F1_3 $-0.050 .70 \quad 0.12 \quad 0.00-0.04 \quad 0.486 \quad 0.511 .1$
\#\# F1_5 $0.00 \quad 0.70-0.01 \quad 0.02 \quad 0.120 .507 \quad 0.491 .1$
\#\# F1_6 -0.0810 .76
\#\# F1_7 -0.05 0.73 $0.09-0.06-0.130 .548 \quad 0.451 .1$
\#\# F2_8 $-0.02-0.10 \quad 0.01 \quad 0.69-0.150 .484 \quad 0.521 .1$
\#\# F2_9 $0.04-0.01 \quad 0.02 \quad 0.84 \quad 0.110 .733 \quad 0.271 .0$
\#\# F2_10 $00.04-0.04 \quad 0.15 \quad 0.64-0.06 \quad 0.433 \quad 0.571 .1$
\#\# F2_11 0.05
\#\# F3_12 $0.7170 .00 \quad 0.00-0.03 \quad 0.08 \quad 0.585 \quad 0.421 .0$
\#\# F3_13 $0.64 \quad 0.04 \quad 0.00 \quad 0.04 \quad 0.070 .419 \quad 0.581 .0$
\#\# F3_14 $0.720 .00-0.09 \quad 0.03-0.070 .5150 .481 .1$
\#\# F3_15 $00.82 \begin{array}{llllllll} & 0.05 & 0.01 & -0.07 & 0.28 & 0.697 & 0.30 & 1.3\end{array}$
\#\# F3_16 $0.69 \begin{array}{llllllll}0.05 & 0.03 & 0.06 & 0.00 & 0.504 & 0.50 & 1.0\end{array}$
\#\# F3_17 $0.81-0.02-0.04 \quad 0.08-0.110 .700 \quad 0.301 .1$
\#\# F3_18 $0.65-0.20 \quad 0.06 \quad 0.10 \quad 0.030 .517 \quad 0.48 \quad 1.3$
\#\# F3_19 $0.790 .02-0.08-0.02 \quad 0.030 .6000 .401 .0$
\#\# F3_20 $0.76-0.10 \quad 0.01-0.07-0.18 \quad 0.639 \quad 0.361 .2$
\#\# F4_21 -0.16 $-0.01-0.13 \quad 0.19 \quad 0.06 \quad 0.089 \quad 0.91 \quad 3.0$

```
## F4_22 0.04 0.03 0.02 0.01 0.0.54 0.284
## F4_24 -0.06 -0.29 0.05 0.01 -0.05 0.094 0.91 1.2
## F5_25 -0.04 -0.09 0.02 -0.10 0.06 0.026 0.97 3.1
## F5_26 0.03 -0.04 0.72 -0.01 0.04 0.533 0.47 1.0
## F5_27 -0.13 0.02 0.77 -0.05 -0.06 0.579 0.42 1.1
## F5_28 -0.03-0.03 0.68 0.16 -0.10 0.490 0.51 1.2
## F5_29 -0.06 0.01 0.66 0.07 0.03 0.424 0.58 1.0
## F5_30}00.05 -0.05 0.66 0.10 0.16 0.474 0.53 1.2
## F5_31 0.03 0.16 0.69 -0.07 0.00
##
## PA1 PA2 PA3 PA4 PA5
## SS loadings 5.02 3.31 2.95 2.12 0.60
## Proportion Var 0.17 0.11 0.10 0.07 0.02
## Cumulative Var 0.17 0.29 0.39 0.46 0.48
## Proportion Explained 0.36 0.24 0.21 0.15 0.04
## Cumulative Proportion 0.36 0.59 0.81 0.96 1.00
##
## With factor correlations of
## PA1 PA2 PA3 PA4 PA5
## PA1 1.00 -0.06 0.20 0.13 -0.09
## PA2 -0.06 1.00 -0.14 0.07 -0.05
## PA3 0.20 -0.14 1.00 -0.06 -0.07
## PA4 0.13 0.07 -0.06 1.00 0.05
## PA5 -0.09 -0.05 -0.07 0.05 1.00
##
## Mean item complexity = 1.2
## Test of the hypothesis that 5 factors are sufficient.
##
## The degrees of freedom for the null model are 406 and the objective function was 14.23 with Chi S
## The degrees of freedom for the model are 271 and the objective function was 2.98
##
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 119 with the empirical chi square 167.43 with prob < 1
## The total number of observations was }119\mathrm{ with Likelihood Chi Square = 310.07 with prob < 0.051
##
## Tucker Lewis Index of factoring reliability = 0.946
## RMSEA index = 0.034 and the 90 % confidence intervals are 0 0.052
## BIC = -985.07
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
## PA1 PA2 PA3 PA4 PA5
## Correlation of (regression) scores with factors 0.96 0.94 0.93 0.92 0.74
## Multiple R square of scores with factors 0.93 0.88 0.86 0.84 0.55
## Minimum correlation of possible factor scores 
```

Let us now break down the output of this function.
The function represents the candidate factors with labels PA1 to PA5. The factor numbering does not necessarily correspond to the factors we developed, that is, PA1 is not automatically assigned to items F1_x. Factors with lower numbering are those that provide the highest sum of squared loadings (SS loadings in R output) and also the variance explained.
Let us first inspect the computed loadings (which could also be singled out with the loadings(five.factors)
function.), in particular, the summary table that provides the sum of squared loadings (SS loadings) and the variance explained for each factor. A first observation is that PA5 provides a sum of squared loadings below 1 , which is an indication for removal. The factor accounts also for only 0.04 variance, and the cumulative variance moves from 0.46 to 0.48 from four factors to five factors.

Goodness of fit with Likelihood Chi Square is already non-significant but approaching significance levels ($\mathrm{p}=$ 0.052). RMSR and RMSEA are within desirable levels.

If we then move to inspect the loadings of all our single items, we see a table of our F items crossed with the candidate factors PA. Furthermore, the table provides, for each item, the communalities (h2), the unique variance (u2), and the complexity of the component loadings (com).

We observe that the item possessing the highest load to PA5 is F4_22 with 0.536 . All other items have loadings near 0 . Furthermore, most of our items for a factor F have a corresponding factor PA (e.g., F1 items load mostly on factor PA2) while PA5 seems to meet all Fx items.

Another observation is on items for F4. As stated above, F4_22 is the only one with a meaningful loading on a factor, that is PA5, while F4_21 does not seem to have a meaningful loading on anything. The only remaining item, F4_24, provides a loading on PA2, which seems associated with F1items mostly. Given our previous suspicious on F4items, after an internal review, we decide to drop the F4 items entirely and test for a four factors model.

Factor reduction

We decide to drop the F4 items entirely and test for a four factors model.

```
# we drop those columns that we identified after item analysis
study.efa.df <-
    study.beforeefa.df[,-which(names(study.beforeefa.df) %in% c("F4_21", "F4_22", "F4_24"))]
four.factors <-
    fa(study.efa.df ,
            fm = "pa",
            nfactors = 4,
            rotate = "promax")
four.factors
## Factor Analysis using method = pa
## Call: fa(r = study.efa.df, nfactors = 4, rotate = "promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 PA4 h2 u2 com
## F1_1 -0.03 0.73 -0.11 0.00 0.568 0.43 1.0
## F1_2 0.04 0.75 0.03 -0.12 0.556 0.44 1.1
## F1_3 -0.02 0.68 0.11 -0.02 0.462 0.54 1.1
## F1_5 0.01 0.69 -0.04 0.03 0.481 0.52 1.0
## F1_6 -0.07 0.74 0.02 0.07 0.576 0.42 1.0
## F1_7 -0.01 0.73 0.07 -0.07 0.530}00.47 1.0
## F2_8 -0.06 -0.09 -0.01 0.67 0.432 0.57 1.1
## F2_9 -0.03 -0.02 -0.02 0.86 0.720 0.28 1.0
## F2_10 -0.01 -0.04 0.13 0.65 0.438
## F2_11 -0.01 -0.01 0.00 0.65 0.416 0.58 1.0
## F3_12 0.77 0.00 0.01 -0.04 0.582 0.42 1.0
## F3_13 0.63 0.04 0.00}00.04 0.414 0.59 1.0
## F3_14 0.72 0.01 -0.07 0.00 0.512 0.49 1.0
## F3_15 0.80 0.04 0.02 -0.07 0.615 0.38 1.0
## F3_16 0.70}00.05 0.04 0.04 0.506 0.49 1.0
## F3_17 0.82 -0.01 -0.02 0.04 0.683 0.32 1.0
## F3_18 0.64 -0.19 0.08 0.08 0.519 0.48 1.2
```

```
## F3_19 0.79 0.02 -0.07 -0.03 0.596 0.40 1.0
## F3_20 0.76 -0.09 0.04 -0.11 0.589 0.41 1.1
## F5_25 -0.04 -0.09 0.03 -0.11 0.024 0.98 2.4
## F5_26 0.05 -0.03 0.71 -0.03 0.528 0.47 1.0
## F5_27 -0.09 0.04 0.76 -0.08 0.567 0.43 1.1
## F5_28 -0.01 -0.01 0.67 0.12 0.473 0.53 1.1
## F5_29 -0.05 0.00 0.66
## F5_30 0.05 -0.06 0.64 0.09 0.451 0.55 1.1
## F5_31 0.07 0.17 0.69 -0.11 0.495 0.51 1.2
##
## PA1 PA2 PA3 PA4
## SS loadings 4.94 3.21 2.92 2.09
## Proportion Var 0.19 0.12 0.11 0.08
## Cumulative Var 0.19 0.31 0.43 0.51
## Proportion Explained 0.38 0.24 0.22 0.16
## Cumulative Proportion 0.38 0.62 0.84 1.00
##
## With factor correlations of
## PA1 PA2 PA3 PA4
## PA1 1.00 -0.08 0.16 0.24
## PA2 -0.08 1.00 -0.12 0.06
## PA3 0.16 -0.12 1.00 0.03
## PA4 0.24 0.06 0.03 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are 325 and the objective function was 13.29 with Chi S
## The degrees of freedom for the model are 227 and the objective function was 2.51
##
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 119 with the empirical chi square 132.9 with prob < 1
## The total number of observations was 119 with Likelihood Chi Square = 265.54 with prob < 0.04
##
## Tucker Lewis Index of factoring reliability = 0.949
## RMSEA index = 0.037 and the 90 % confidence intervals are 0.009 0.056
## BIC = -819.32
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
## PA1 PA2 PA3 PA4
## Correlation of (regression) scores with factors 0.96 0.93 0.92 0.92
## Multiple R square of scores with factors 0.92 0.87 0.85 0.84
## Minimum correlation of possible factor scores 0.84 0.75 0.71 0.68
```

The four factor model seems an improvement over the previous one. The variance explained has not decreased (it actually increases to 0.51), and each factor explains at minimum 16% of the variance. Where we did not improve was the Likelihood Chi Square test, which is now significant $(\mathrm{p}=0.04)$. RMSR and RMSEA have not changed significantly are are still within desirable levels.

If we inspect the single items and their loadings on factors, however, the situation is improved significantly. All our developed items for a factor F load majorly on a single cluster PA found by the PAF analysis.

The only exception appears to be F5_25, which seems to not load on any factor whatsoever. After reviewing
the item, we decide to remove it and run the EFA again.

```
# we drop those columns that we identified after item analysis
study.efa.bis.df <-
    study.efa.df[,-which(names(study.efa.df) %in% c("F5_25"))]
four.factors.bis <-
    fa(study.efa.bis.df ,
        fm = "pa",
        nfactors = 4,
        rotate = "promax")
four.factors.bis
```

\#\# Factor Analysis using method = pa
\#\# Call: fa(r = study.efa.bis.df, nfactors = 4, rotate = "promax", fm = "pa")
\#\# Standardized loadings (pattern matrix) based upon correlation matrix
\#\# PA1 PA2 PA3 PA4 h2 u2 com
\#\# F1_1 $-0.01 \quad 0.73-0.12 \quad 0.02 \quad 0.57 \quad 0.431 .1$
\#\# F1_2 0.05
\#\# F1_3 $\begin{array}{llllllll}-0.01 & 0.68 & 0.10 & 0.00 & 0.46 & 0.54 & 1.0\end{array}$
\#\# F1_5 $0.03 \quad 0.69-0.05 \quad 0.050 .48 \quad 0.521 .0$
\#\# F1_6 $-0.05 \quad 0.75 \quad 0.00 \quad 0.10 \quad 0.58 \quad 0.421 .0$
\#\# F1_7 $0.01 \quad 0.73 \quad 0.06-0.04 \quad 0.530 .471 .0$
\#\# F2_8 $-0.04-0.04-0.03 \quad 0.660 .430 .571 .0$
\#\# F2_9 0.00 0.04 $-0.05 \quad 0.85 \quad 0.72 \quad 0.281 .0$
\#\# F2_10 $0.020 .00 \quad 0.11 \quad 0.630 .430 .57 \quad 1.1$
\#\# F2_11 $0.020 .04-0.02 \quad 0.65 \quad 0.430 .571 .0$
\#\# F3_12 $\quad 0.770 .00 ~ 0.01-0.04 \quad 0.58 \quad 0.421 .0$
\#\# F3_13 $0.64 \quad 0.05-0.01 \quad 0.050 .41 \quad 0.591 .0$
\#\# F3_14 $0.730 .02-0.07 \quad 0.01 \quad 0.51 \quad 0.491 .0$
\#\# F3_15 $0.80 .80 .05 \quad 0.01 \quad-0.06 \quad 0.62 \quad 0.381 .0$
\#\# F3_16 $0.70 .700 .07 \quad 0.03 \quad 0.05 \quad 0.51 \quad 0.491 .0$
\#\# F3_17 $0.820 .00-0.02 \quad 0.04 \quad 0.68 \quad 0.321 .0$
\#\# F3_18 $0.64-0.18 \quad 0.07 \quad 0.08 \quad 0.52 \quad 0.481 .2$
\#\# F3_19 $0.79 \begin{array}{llllllllllllll} & 0.03 & -0.07 & -0.02 & 0.60 & 0.40 & 1.0\end{array}$
\#\# F3_20 $0.76-0.08 \quad 0.04-0.10 \quad 0.59 \quad 0.411 .1$
\#\# F5_26 $0.04-0.04 \quad 0.72-0.050 .530 .471 .0$
\#\# F5_27 $-0.10 \quad 0.02 \quad 0.76-0.09 \quad 0.57 \quad 0.431 .1$
\#\# F5_28 $-0.01-0.01 \quad 0.67 \quad 0.12 \quad 0.47 \quad 0.531 .1$
\#\# F5_29 -0.06 -0.01 $0.66 \quad 0.05 \quad 0.43 \quad 0.571 .0$
\#\# F5_30 $0.04-0.07 \quad 0.64 \quad 0.07 \quad 0.45 \quad 0.551 .1$
\#\# F5_31 $0.06 \quad 0.15 \quad 0.69-0.110 .49 \quad 0.511 .2$
\#\#
\#\# PA1 PA2 PA3 PA4
\#\# SS loadings $\quad 4.94 \quad 3.20 \quad 2.922 .07$
\#\# Proportion Var $0.20 \quad 0.130 .120 .08$
\#\# Cumulative Var 0.200 .330 .440 .53
\#\# Proportion Explained 0.380 .240 .220 .16
\#\# Cumulative Proportion 0.380 .620 .841 .00
\#\#
\#\# With factor correlations of
\#\# PA1 PA2 PA3 PA4
$\begin{array}{lllll}\text { \#\# PA1 } & 1.00 & -0.13 & 0.18 & 0.20\end{array}$
\#\# PA2 $-0.13 \quad 1.00-0.09-0.05$
$\begin{array}{lllll}\text { \#\# PA3 } & 0.18 & -0.09 & 1.00 & 0.08\end{array}$
$\begin{array}{lllll}\text { \#\# PA4 } & 0.20 & -0.05 & 0.08 & 1.00\end{array}$

```
##
## Mean item complexity = 1
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are }300\mathrm{ and the objective function was 12.97 with Chi S
## The degrees of freedom for the model are 206 and the objective function was 2.21
##
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 119 with the empirical chi square 108.99 with prob < 1
## The total number of observations was 119 with Likelihood Chi Square = 234.17 with prob < 0.087
##
## Tucker Lewis Index of factoring reliability = 0.962
## RMSEA index = 0.033 and the 90 % confidence intervals are 0 0.054
## BIC = -750.33
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
## PA1 PA2 PA3 PA4
## Correlation of (regression) scores with factors 0.96 0.93 0.92 0.91
## Multiple R square of scores with factors 0.92 0.87 0.86 0.84
## Minimum correlation of possible factor scores 0.84 0.75 0.71 0.67
```

With the revised four factor model, the total variance explained rises to 0.53 , which is another improvement.
It holds that all our developed items for a factor F load majorly on a single cluster PA found by the PAF analysis. In particular, our factors sorted for their importance (variance explained) are F3 (PA1), F1 (PA2), F5 (PA3), and F2 (PA4). We are satisfied with the resulting measurement instrument so far.

We improved on Likelihood Chi Square test, which is now back to non-significant ($\mathrm{p}=0.087$). RMSR and RMSEA have not changed significantly are are still within desirable levels. We decide to stop our EFA at this point and use the present form of our measurement instrument, with 4 factors and 26 items.

The resulting measurement instrument

We started with 31 items, which in our fictitious example were already a reduction, after item review, of an original measurement instrument with five factors. Thanks to item analysis and exploratory factor analysis, we were able to reduce the measurement instrument to 26 items (a 16% reduction) and four factors. All this with an improved confidence in what we can conclude from interpreting the results of employing the measurement instrument.
study.after.efa.df <- study.efa.bis.df

Item statistical properties

| describe(study.after.efa.df) | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# | vars | n mean | sd median | trimmed | mad min | max | range | skew kurtosis | se | | | | |
| \#\# F1_1 | 1 | 119 | 2.99 | 1.13 | 3 | 2.99 | 1.48 | 1 | 5 | 4 | 0.05 | -0.68 | 0.10 |
| \#\# F1_2 | 2 | 119 | 2.87 | 0.97 | 3 | 2.89 | 1.48 | 1 | 5 | 4 | -0.01 | -0.37 | 0.09 |
| \#\# F1_3 | 3 | 119 | 2.87 | 1.11 | 3 | 2.87 | 1.48 | 1 | 5 | 4 | -0.01 | -0.60 | 0.10 |
| \#\# F1_5 | 4 | 119 | 2.97 | 1.05 | 3 | 2.96 | 1.48 | 1 | 5 | 4 | 0.09 | -0.38 | 0.10 |
| \#\# F1_6 | 5 | 119 | 2.87 | 1.11 | 3 | 2.87 | 1.48 | 1 | 5 | 4 | 0.06 | -0.70 | 0.10 |
| \#\# F1_7 | 6 | 119 | 2.94 | 1.06 | 3 | 2.93 | 1.48 | 1 | 5 | 4 | 0.12 | -0.51 | 0.10 |
| \#\# F2_8 | 7 | 119 | 2.99 | 1.06 | 3 | 2.95 | 1.48 | 1 | 5 | 4 | 0.23 | -0.60 | 0.10 |
| \#\# F2_9 | 8 | 119 | 3.06 | 1.01 | 3 | 3.03 | 1.48 | 1 | 5 | 4 | 0.08 | -0.71 | 0.09 |

\#\# F2_10	9	119	3.18	1.05	3	3.19	1.48	1	5	$4-0.14$	-0.45	0.10
\#\# F2_11	10	119	2.97	1.03	3	2.94	1.48	1	5	$4 \quad 0.16$	-0.81	0.09
\#\# F3_12	11	119	3.13	1.06	3	3.15	1.48	1	5	4-0.22	-0.38	0.10
\#\# F3_13	12	119	3.20	1.07	3	3.21	1.48	1	5	4-0.07	-0.57	0.10
\#\# F3_14	13	119	3.13	1.05	3	3.11	1.48	1	5	$4 \quad 0.01$	-0.55	0.10
\#\# F3_15	14	119	3.00	1.05	3	3.02	1.48	1	5	4-0.09	-0.44	0.10
\#\# F3_16	15	119	3.15	1.10	3	3.15	1.48	1	5	40.00	-0.64	0.10
\#\# F3_17	16	119	3.13	1.17	3	3.15	1.48	1	5	4-0.27	-0.76	0.11
\#\# F3_18	17	119	3.18	1.10	3	3.18	1.48	1	5	40.03	-0.69	0.10
\#\# F3_19	18	119	3.03	1.10	3	3.04	1.48	1	5	4-0.07	-0.64	0.10
\#\# F3_20	19	119	3.08	1.04	3	3.10	1.48	1	5	$4-0.19$	-0.61	0.10
\#\# F5_26	20	119	2.94	1.05	3	2.95	1.48	1	5	40.03	-0.63	0.10
\#\# F5_27	21	119	3.01	1.04	3	3.02	1.48	1	5	$4-0.06$	-0.60	0.10
\#\# F5_28	22	119	3.05	1.10	3	3.05	1.48	1	5	40.09	-0.51	0.10
\#\# F5_29	23	119	3.02	1.08	3	3.03	1.48	1	5	$4-0.07$	-0.60	0.10
\#\# F5_30	24	119	3.02	1.02	3	2.99	1.48	1	5	$4 \quad 0.11$	-0.51	0.09
\#\# F5_31	25	119	2.96	0.96	3	2.93	1.48	1	5	40.20	-0.48	0.09

Possible minimum and maximum scores versus obtained minimum and maximum scores for F1, F2, F3, and F5, respectively.

```
f1.df <-
    study.after.efa.df[, grepl("F1_", names(study.after.efa.df))]
f2.df <-
    study.after.efa.df[, grepl("F2_", names(study.after.efa.df))]
f3.df <-
    study.after.efa.df[, grepl("F3_", names(study.after.efa.df))]
f5.df <-
    study.after.efa.df[, grepl("F5_", names(study.after.efa.df))]
print("F1")
## [1] "F1"
c(c(1, NCOL(f1.df) * 5), c(min(rowSums(f1.df)), max(rowSums(f1.df))))
## [1] 1 30 8 29
print("F2")
## [1] "F2"
c(c(1, NCOL(f2.df) * 5), c(min(rowSums(f2.df)), max(rowSums(f2.df))))
## [1] 1 20 5 20
print("F3")
## [1] "F3"
c(c(1, NCOL(f3.df) * 5), c(min(rowSums(f3.df)), max(rowSums(f3.df))))
## [1] 1 45 9 44
print("F5")
## [1] "F5"
c(c(1, NCOL(f5.df) * 5), c(min(rowSums(f5.df)), max(rowSums(f5.df))))
## [1] 1 30 6 29
```

```
factors.after.efa.df <-
    data.frame(
        F1 = rowSums(f1.df),
        F2 = rowSums(f2.df),
        F3 = rowSums(f3.df),
        F5 = rowSums(f5.df)
    )
describe(factors.after.efa.df)
\begin{tabular}{lrrrrrrrrrrrr} 
\#\# & vars & n & mean & sd median & trimmed & mad & min & max & range & skew & kurtosis & se \\
\#\# F1 & 1 & 119 & 17.52 & 4.97 & 17 & 17.43 & 4.45 & 8 & 29 & 21 & 0.20 & -0.50 \\
0.46 \\
\#\# F2 & 2 & 119 & 12.19 & 3.26 & 12 & 12.16 & 2.97 & 5 & 20 & 15 & 0.08 & -0.34 \\
\#\# F3 & 3 & 119 & 28.03 & 7.51 & 29 & 28.14 & 7.41 & 9 & 44 & 35 & -0.17 & -0.49 \\
\#\# F5 & 4 & 119 & 17.99 & 4.68 & 18 & 17.97 & 4.45 & 6 & 29 & 23 & 0.01 & -0.01 \\
\# & 0.43
\end{tabular}
error.bars(
    factors.after.efa.df,
    ylab = "Score",
    xlab = "Factor",
    main = "Confidence intervals \n for F1, F2, F3, and F5",
    eyes = F,
    sd = F
)
```

Confidence intervals for F1, F2, F3, and F5

Factor
print("Standardized scores available in factors.after.efa.standard.df but not shown here.")
\#\# [1] "Standardized scores available in factors.after.efa.standard.df but not shown here." factors.after.efa.standard.df <-
data.frame(

```
    F1 = scale(rowSums(f1.df)),
    F2 = scale(rowSums(f2.df)),
    F3 = scale(rowSums(f3.df)),
    F5 = scale(rowSums(f5.df))
)
```


Reliability

Being our measurement instrument one for norm-referencing testing and not one for assessing skills, we perform a test-retest reliability assessment. Only a smaller number of participants (reliability.sample.size) accepted to take part to a second test.

```
reliablity.df.first <-
    tail(study.after.efa.df, reliability.sample.size)
reliablity.df.second <-
    tail(study.after.efa.df, reliability.sample.size)
f1.first <-
    rowSums(reliablity.df.first[, grepl("F1_" , names(reliablity.df.first))])
f2.first <-
    rowSums(reliablity.df.first[, grepl("F2_" , names(reliablity.df.first))])
f3.first <-
    rowSums(reliablity.df.first[, grepl("F3_" , names(reliablity.df.first))])
f5.first <-
    rowSums(reliablity.df.first[, grepl("F5_" , names(reliablity.df.first))])
f1.second <- round(jitter(unname(f1.first), amount = 3))
f2.second <- round(jitter(unname(f2.first), amount = 3))
f3.second <- round(jitter(unname(f3.first), amount = 3))
f5.second <- round(jitter(unname(f5.first), amount = 3))
```

Test-retest reliability for F1, F2, F3, and F5 are, respectively:

```
print("F1")
## [1] "F1"
cor(unname(f1.first), unname(f1.second))
## [1] 0.9462781
print("F2")
## [1] "F2"
cor(unname(f2.first), unname(f2.second))
## [1] 0.8248873
print("F3")
## [1] "F3"
cor(unname(f3.first), unname(f3.second))
## [1] 0.9751233
print("F5")
## [1] "F5"
```

```
cor(unname(f5.first), unname(f5.second))
```

\#\# [1] 0.9209

Validity

Our fictitious measurement instrument is novel and has no correspondence with existing measurement instruments. Therefore, any discussion on its validity depends on the instrument itself and the reasoning we can apply to it. Therefore, the present example can not elaborate on validity measurements.

Conclusion

The present document presented an introduction to psychometric evaluation with R for a behavioral software engineering audience. Through phases of item review and item analysis, exploratory factor analysis, item statistical properties, and reliability and validity evaluation, we show how we started with 31 items and 5 factors to represent our fictitious "individual perception styles of source code" to 26 items and four factors.
We could, therefore, offer the resulting measurement instrument in a paper describing its psychometric evaluation, for other researchers to use for further evaluation, and companies to use.

