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Abstract—The advancement of Internet-of-Things (IoT) edge
devices with various types of sensors enables us to harness
diverse information with Mobile Crowd-Sensing applications
(MCS). This highly dynamic setting entails the collection of
ubiquitous data traces, originating from sensors carried by
people, introducing new information security challenges; one of
them being the preservation of data trustworthiness. What is
needed in these settings is the timely analysis of these large
datasets to produce accurate insights on the correctness of user
reports. Existing data mining and other artificial intelligence
methods are the most popular to gain hidden insights from
IoT data, albeit with many challenges. In this paper, we first
model the cyber trustworthiness of MCS reports in the presence
of intelligent and colluding adversaries. We then rigorously
assess, using real IoT datasets, the effectiveness and accuracy
of well-known data mining algorithms when employed towards
IoT security and privacy. By taking into account the spatio-
temporal changes of the underlying phenomena, we demonstrate
how concept drifts can masquerade the existence of attackers
and their impact on the accuracy of both the clustering and
classification processes. Our initial set of results clearly show that
these unsupervised learning algorithms are prone to adversarial
infection, thus, magnifying the need for further research in the
field by leveraging a mix of advanced machine learning models
and mathematical optimization techniques.

Index Terms—Machine learning, classification, Mobile Crowd-
Sensing, data trustworthiness.

I. INTRODUCTION AND BACKGROUND

During the last few years, the area of Internet-of-Things
(IoT) has met a great development and has the potential to
offer a new understanding of our environment that will lead
to innovative applications with tangible positive impact on
users’ experience. This new paradigm leverages the prolif-
eration of modern sensing-capable devices to build a wide-
scale information collection network that can provide insights
for practically, anything, from anywhere and at anytime. In
order to provide concrete implementations for such complex
environments, many challenges have to be overcome with
security and privacy being critical pillars [1]: especially in
the context of safety applications where critical decisions are
based on information collected by users regarding their status
or surrounding events. For instance, in the civil protection
space, this human-as-a-sensor paradigm is used to harvest
information that enhances situational awareness [2].
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In the past, extensive research has been conducted towards
“protecting the users from the system”: building secure and
accountable IoT architectures that can safe-guard user privacy
while supporting user incentive mechanisms. Plethora of re-
search efforts [3], [4] have leveraged advanced cryptographic
primitives (e.g., pseudonyms, group signatures, etc.) for pro-
tecting users’ data from unauthorized access and preventing
potential leak of personal identifiable information. However,
the question, of how to “protect the system from the users”
in assessing the trustworthiness of contributed data so that
strong guarantees can be provided towards the accuracy and
correctness of the system output remains still open [5].

In the machine learning community, security problems have
already been addressed in the form of adversarial machine
learning. For instance, novelty detection has been addressed to
detect anomaly in acoustic data [6]. Game theory has also been
exploited in the design of convolutional neural networks to
detect image tampering [7]. Concept drift, which is a common
phenomenon in IoT data, has also been considered in security
problems such as in feature extraction [8] and fraud detection
[9]. Yet, most security/adversarial machine learning is based
on the assumption that training data are readily available. As
such, there are only a few works on unsupervised learning for
IoT data such as anomaly detection [10]. Our work addresses
this shortcoming in the context of trustworthiness within IoT.

The trustworthiness of collected information is typically
studied in relation to the trustworthiness of the human sensors
which raises important concerns on the content integrity.
Data are not necessarily originated from trustworthy sources
(e.g., sensors deployed and managed by authorities) but from
contributions of any user volunteers that posses a sensing-
capable device. This desired openness of IoT systems, such as
Mobile Crowd-Sensing (MCS) [1], renders them vulnerable
to malicious users that can pollute the data collection process,
thus, manipulating the system output [11]. A major challenge
in these settings is the timely analysis of large amounts of data
to produce highly reliable and accurate insights and decisions
on the correctness of incoming user reports. Unfortunately, this
is not straightforward especially in the presence of intelligent
and colluding adversaries trying to manipulate the system’s
perception of the phenomenon. Data mining and other artificial
intelligence methods are among the top methods to gain hidden
insights from IoT data, albeit with many challenges.

Although assuring data trustworthiness is a classical secu-
rity problem, especially in the context of sensor networks,
existing approaches based on traditional unsupervised learning
techniques will not suffice as explained next. For the afore-
mentioned MCS systems, data types can range from simple
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environmental monitoring to more complex data describing
dynamic and uncertain phenomena continuously evolving over
space and time (e.g., traffic information systems). There-
fore, well-studied techniques [12] for responding to content
integrity violations such as integrity model checking (re-
quires historical data, which may not be available), reputation
rankings (vulnerable to collusion), data aggregation (cannot
provide high level of granularity) and independent human
comparisons for data tagging (not feasible for continuous data
streams), cannot be easily applied to IoT datasets. What is
required is a set of mechanisms for assuring user-contributed
information without prior statistical description of the data to
be collected. Towards this direction, a variety of works focus
on building systems capable of handling available (contra-
dicting) evidence, classifying efficiently incoming reports and
effectively separating and rejecting those that are faulty [5].
However, their focus is on practicality aspects and their
applicability to complex IoT datasets; no special attention
has been given to the efficacy and accuracy of the internally
employed machine learning algorithms.

Motivation & Contributions: The aim of this research is
to introduce and highlight this cyber-trustworthiness aspect in
IoT environments and explore how to leverage conventional
data mining algorithms for preempting adversarial behaviour.
To this end, we focus on MCS applications as a use case where
sensing attacks are prominent for users to save their sensing
costs and avoid privacy leakage, and we assume the employ-
ment of state-of-the-art data verification frameworks, such as
the one described in [5]. The main contribution of this work
is to provide a comprehensive analysis on the applicability of
various clustering and classification techniques for identifying
descriptive and predictive models to classify non-faulty and
faulty user incoming reports. More specifically, we (i) provide
a rigorous assessment of the effectiveness, efficiency and accu-
racy of several well-known data mining algorithms (Support
Vector Machine (SVM), Naive Bayes (NB), Random Forest
(RF), and neural Networks (NNs)) when employed towards
enhancing IoT security and privacy (deviating from existing
works that solely focus on performance based on one-shot
solutions and adversarial-free models [13], [14], conditions
that fail to hols in safety-critical applications), (ii) evaluate the
impact (level of distortion) to the system output in the presence
of strong, colluding adversaries, and (iii) demonstrate how the
spatio-temporal changes on the underlying phenomena (i.e.,
concept drift) can masquerade the existence of attackers and
affect the accuracy of both the clustering and classification
processes. We extensively evaluate the performance of the
unsupervised learning techniques, under various scenarios,
employing both real and synthetic datasets.

In the rest of this paper, we first describe the problem state-
ment and define the system and adversarial models (Sec. II).
We then provide an overview of MCS and the details of the
employed data verification framework focusing on the internal
clustering and classification processes (Sec. III). Sec. IV
outlines the experimental setup used to evaluate our core unsu-
pervised learning algorithms, with results presented in Sec. V.

Based on our findings, we posit open issues and challenges
and discuss possible ways to address them in Sec. VI before
we conclude in Sec. VII; so that machine learning can offer
enhanced IoT security and privacy capabilities that can further
accelerate data-driven insights and knowledge acquisition.

II. CYBER TRUSTWORTHINESS OF IOT MCS REPORTS

System Model: We consider the employment of a Mobile
Crowd-Sensing [1] platform (Sec. III) consisting of a large
set of users operating mobile devices equipped with embed-
ded sensors (e.g., inertial and proximity sensors, cameras,
microphones) and navigation modules. User mobile devices
collect and report sensory data, based on a specific sensing task
published by the MCS infrastructure (for a specific location),
and report back their raw data over any available network.

Each user submits to the infrastructure a stream of mea-
surements on the sensed phenomenon over a time interval,
t, specified in the sensing task description. We assume the
existence of a secure and privacy-preserving architecture, like
the ones presented in [3], [4]1, for guaranteeing the secure
communications and enhancing the privacy posture of the user
devices in order to avoid sensitive information leakage and/or
extensive user-profiling. User data are submitted in successive
reports, each with n measurements, vi where i ∈ {1, 2, ..., n},
corresponding to a device location, loc:

ri = {[v1, v2, v3, ..., vn] || t || loc ||σPrvKey ||C}

σPrvKey is a digital signature with some private key, with
the corresponding public key included in the certificate C.

Threat Model: The aim of the adversarial agents is to mis-
lead the IoT system towards desired malicious measurement
values T . To this end, this can be achieved by maximizing the
following constrained function, that is,

max f [xt − x(a)(τ)] s.t. f ≤ T (1)

where f denotes a utility function of the adversarial agent, xt

represents the actual ground truth measurement value and x(a)

denotes the malicious measurement sample. The function can
be linear or nonlinear and be more complex in formulation
as in [15]. Our contribution is to model for the “drift”
strategy of the adversarial agent similar to concept drift in
machine learning. The i-th agent, thus, introduces a misleading
measurement sample at time τ , which can be modelled as

x
(a)
i (τ) = min(xti + τδ + ηi(τ), T ), ∀ i = {1, ..., Na}, (2)

such that

τ = 0 x
(a)
i = xti + ηi(0) ≈ xti

τ = 1 x
(a)
i = min(xti + δ + ηi(1), T )

τ = 2 x
(a)
i = min(xti + 2δ + ηi(2), T )

. . .

τ →∞ x(a) = T (3)

1We omit further cryptographic protection specifics as these have been
addressed in the literature and we refer the reader to the cited papers.
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Fig. 1: MCS Data Verification.

where δ is a small positive number used to slowly drift
from the ‘legitimate’ measurement of the adversarial agent’s
device to the targeted final malicious measurement value T ,
and ηi(τ) is a small noise component modelled by Gaussian
distribution at time instant τ . The IoT system provides N
samples {xi} made up of legitimate measurements {xti} and
malicious measurements {x(a)i } generated by Na adversarial
agents. To maximize the trustworthiness of the IoT system, the
overarching objective is to detect the legitimate measurements
{xti} from the malicious measurements {x(a)i }. In MCS, this
problem is further compounded by the fact that we do not have
access to labelled or training data {xti}. Thus, the classification
problem is inherently an unsupervised problem. To detect the
legitimate measurements, the problem can be thus simplified
into two sub-problems: clustering of N samples {xi} to
artificially create labelled data of two categories, and then
the classification of the malicious measurements from the
legitimate measurements by exploiting the labelled data.
Remark#1: Clustering inherently performs classification,
thus, using a classifier may seem redundant. However, it is
crucial to use both. It is not practical to run a clustering
algorithm whenever a new sample is received by the IoT
system, but it is computationally more affordable to run a
trained classifier, especially since IoT requires lightweight
applications.
Remark#2: The model used by adversarial agents in (2) show
that they are mimicking concept drift as a phenomenon. For
example, it is not uncommon for temperature to drift from
30 degrees during the day to 16 degrees during the night.
However, the model in (2) is unlikely to be drifting at the
same rate of that of a natural phenomenon such as temperature.
Thus, regular clustering on new samples for classification may
lead to false detection. On one hand, updating the labels too
often by clustering leads to biasing the IoT system towards
the malicious measurements. On the other hand, we need
to account for the concept drift of natural phenomenon to
properly update the labels of the data for the classifier to be
more robust in a dynamic environment.

III. MOBILE CROWD-SENSING & DATA VERIFICATION

The advancement of smart-phones with various type of
sensors enabled us to harness diverse information with Mo-

bile Crowd-Sensing (MCS) applications. In particular, an
MCS platform or server recruits mobile users to monitor the
surrounding features and offers crowd-sensing applications
spanning from urban sensing [16] and network and traffic
monitoring [17], [18].

The features of interest (to be sensed) are described in a
sensing task description that is essentially a data collection
campaign distributed to recruited users [1]. The area of interest
of a sensing task is the locality within which participating users
must contribute data. The area of interest can be defined either
explicitly (e.g., coordinates forming polygons on maps) or
implicitly (through annotated geographic areas). In most cases,
the area of interest is divided into spatial units: homogeneous,
with respect to the sensed phenomenon, areas. This is mainly
due to the following reason: In an MCS environment, there
are a wide variety of devices by different users and it is not
possible to retrieve ground truth from the users. Thus, there is
no a priory knowledge of what makes reports faulty or non-
faulty; something that needs to be extracted by analyzing data
objects without consulting a known class model. The sensed
phenomenon has temporal but not significant spatial variations
within a spatial unit, thus, allowing the exploration of the
spatial characteristics (of the incoming data) towards reasoning
on the actual value of the sensed phenomenon.

As aforementioned, we assume the existence of a data
verification framework, similar to the one presented in [5], for
assessing the data trustworthiness of user incoming reports. In
what follows, we take take a similar approach, as illustrated
in Fig. 1. We consider 3 phases as follows:
Training phase: During the training phase, legitimate user
reports are classified as legitimate or malicious corresponding
to non-faulty and faulty ones. Based on its design, the system
does not know with certainty whether a report is legitimate
or malicious. Incoming user reports are classified as evidence
rather than raw data (based on the Dempster-Shaffer Theory).
Classification phase: In this phase, the output of the training
is entered into the employed classifiers (i.e., NB, SVM, RF
and NNs). These learning algorithms are used to classify the
users’ reports received after the end of the training phase.
Concept drift checking phase: The statistical properties of
the sensed data may change over time causing what we call
as concept drifts. These can deteriorate the performance of the
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classification and they impose the need for quick adaptation
so that MCS data trustworthiness is maintained.

In the investigated problem, we assume that there is no
ground-truth to train the MCS application. We, thus, need
to take a hybrid clustering-classification approach. Although
clustering by itself can be used for classification, it is not
as efficient as classification when it comes to classify every
single incoming report for each spatial unit. As a result of
this, we consider that after clustering occurs there is a period
T during which only classification is executed on the incom-
ing reports, which have been partially (i.e., less than 50%)
infected with adversarial samples. The period parameter T ,
before re-clustering is triggered, is determined by a sensitivity
threshold, θ, which is compared against the current perception
of the system for the sensed phenomenon (current value), as
described above. If a conflict between the already computed
ground-truth and the incoming user reports exceeds, θ, the
system switches from the classification to the clustering phase
in order to re-train the underlying descriptive data model.

Unfortunately, we cannot assume that the re-training will
consist of adversarial-free samples because we have assumed
that data is legitimate on its entirety only at the beginning
of the system setup (i.e., during the first time clustering
occurs). An important challenge is the computation of θ so
that an optimal balance between performance and accuracy is
achieved. In other words, θ must be defined such as concept
drift and attack drift (Sec. V) are optimally distinguished,
where the term attack drift refers to a concept drift that has
been imposed by the adversarial samples. To give a better
intuition of the role of θ, note that T decreases with θ, i.e.,
the system is more sensitive for higher values of θ and the
concept drift reaches θ faster, thus, triggering re-clustering.

Based on the above discussion, this paper is a step to-
wards investigating optimal behaviours of systems that use
data mining algorithms to perform MCS capabilities. Among
other things, in Sec.V, we investigate the impact that attacks
have into the re-clustering process and how this affects the
subsequent classification. More precisely, we derive various
results that show the accuracy of classification after the system
has been re-trained with various levels of adversarial samples.

IV. EXPERIMENTAL SETUP

The main focus of this work is to provide a comprehensive
analysis and evaluation of various classification techniques
used for assessing user incoming reports in each MCS region
(Sec. III); i.e., their characterization as legitimate and mali-
cious. To this end, we provide strong empirical evidence on
the performance of the most prominent algorithms leveraging
both real-world and synthetic datasets. In order to obtain more
effective and accurate results, four different classification al-
gorithms are being explored, namely Neural Networks (NNs),
Support Vector Machine (SVMs), Random Forest (RF) and
Naive Bayes (NB) [19], whose performance is being compared
in terms of accuracy under the presence of strong, colluding
adversaries. We opted in for using this sub-set of well-known
data mining algorithms based on their efficiency to work

within complex and noisy domains as is usually the case in
IoT [20], [21], [22].

Datasets: We evaluate the system under various scenarios by
employing both real-world and synthetic datasets. Real-world
datasets provide us with a good understanding of a classifier’s
performance in real case scenarios, i.e., deployed sensors
measuring noisy physical phenomena. Synthetic datasets allow
us to estimate the impact of various system parameters (e.g.,
the distribution that legitimate reports follow) for different
adversarial presence (i.e., number of malicious users ) and
strategies (i.e., the distributions that malicious users employ).

The real dataset has been originated from urban sensing
applications [23], whereas the synthetic dataset relates to an
MCS traffic monitoring. Regardless of the underlying set,
we inject faulty adversarial reports and assess the classifier’s
ability to accurately achieve a truthful view of the underlying
phenomenon. In our experiments, we used the Strata Clara
dataset, from the Data Sensing Lab [24], which lies within the
domain of environmental monitoring [16]. This dataset con-
tains raw measurements of different physical phenomena (i.e.,
humidity, sound and temperature), from 40 sensors deployed
at the Strata Clara convention center in the United States in
2013. The normal distributions of the monitored phenomena
are: (µ, σ) = {(31, 5)|(3, 2)|(21, 1.3)}, respectively.

The synthetic dataset emulates a traffic monitoring MCS
task [25]. It has been generated by drivers’ smartphones
that are reporting their location and velocity. We consider
250 users and simulate urban road links along with their
traffic conditions by generating “actual” location traces for
each vehicle (i.e., smartphone) using the Simulation of Urban
MObility (SUMO) traffic simulator [26].

Adversarial Behaviour: The overall goal of the framework
is to infer the actual value of the sensed phenomenon in
presence of adversarial users who generate malicious reports
to set the system perception to a faked value. We assume that
adversaries collaborate to attack the data collection process.
The collaboration is achieved by having injected malicious
reports drawn from the same normal distributions, which are
also different to those of the adversary-free datasets (the
legitimate reports that determine the actual phenomenon).

In our experiments, we measure the performance of the
various classifiers in terms of their resistance to adversarial
data infection. The adversarial choices determine the distortion
adversaries try to impose on data trustworthiness [27]. The
chosen values for (µ, σ) determine the similarity (overlap) be-
tween the legitimate and adversarial distributions. Intuitively,
adversarial detection decreases with this similarity because
the malicious reports introduce values that are very near
to the legitimate ones. To increase the probability to detect
adversarial reports, which are entered to the machine learning
model, we consider the following cases:
Case I: Adversaries may cause significant distortion of the
phenomenon’s values by increasing the distance between µ of
the adversarial distribution and µ of the legitimate distribution;
Case II: Adversaries may maximize the system uncertainty
by choosing a normal distribution with large σ;
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Fig. 2: Performance analysis of the DBSCAN clustering algorithm.

Case III: Adversaries may increase the system uncertainty
about the true value of the phenomenon by selecting an
adversarial distribution with µ equal to µ of the legitimate
distribution but with significantly smaller σ.

V. RESULTS AND ANALYSIS

The effects of the aforementioned classification algorithms
are based on the following parameters, i.e, size of dataset,
performance and accuracy. In what follows, we analyze the
system’s ability to identify and filter out faulty reports, i.e.,
the labeling of user reports as legitimate and malicious.

The performance metrics of interest used to evaluate and
interpret the classifiers’ results are the following: (i) confusion
matrix that contains information about the classifications’
results, (ii) true positive rate that depicts the percentage of
correct predictions, (iii) false positive rate the reflects the
proportion of instances classified in class x, but belong to a
different class, along with all the instances that are not in class
x, (iv) recall that depicts the proportion of instances that are
correctly predicted as positive, and (v) precision that estimates
the probability that a positive prediction is correct.

In each experiment, we provide the system with reports
originating from both legitimate and malicious users (Sec. IV).
This dataset is partitioned into two sub-sets: a training set (TS)
and an evaluation set (ES). Based on the TS, the clustering
(training phase) takes place. Then, the ES is used to assess
the performance of the supervised classification part. For
each simulation we perform tenfold cross validation to avoid
overfitting. We show results based on both real and synthetic
datasets; due to space limitations, we do not repeat similar
figures from both sets.

Clustering accuracy: Since the clustering is not efficient
for continuous data streams (requires the execution of the
clustering algorithm for each incoming report (Sec. III)), we
refrain from evaluating different algorithms. We focus primar-
ily on the impact the accuracy of the employed clustering (i.e.,
DBSCAN) has on the performance of the classifiers.

Fig. 2 examines the accuracy of the DBSCAN cluster-
ing algorithm for different fractions of deviating users and
varying adversarial strategies (data distributions). We leverage

the synthetic datasets generated from the emulated traffic
sensing task. Legitimate users report their velocity from a
normal distribution with (µ = 16, σ = 2). Our focus is on
measuring the level of distortion that adversaries can incur on
the system when trying to identify patterns from the collected
data so as to gain a perception on the sensed phenomenon.
Adversarial behavior can employ different strategies (Sec. IV)
based on whether they want to target the systems’ certainty or
uncertainty of the phenomenon; by crafting data distributions
with selected µ and σ values that correspond to a different
percentage of overlapping regions (Sec. IV).

Fig. 2 (a) takes a closer look at DBSCAN’s accuracy when
adversaries follow a normal distribution with a fixed standard
deviation, (σ = 2), (equal to the one of the legitimate data dis-
tribution) and varying mean values, µ. Here, we set the number
of malicious users to be 35%, 40% and 45%, respectively. We
see that DBSCAN achieves (almost) perfect clustering when
the overlap between the distributions is relatively small (i.e.,
difference in mean values is higher than 15%) and even for
a large number of adversaries (45%). When the overlap is
around 10% (adversarial µ ∈ [17, 18]), the clustering accuracy
still remains relatively high (≥ 60%). Only for high overlap
percentages, the accuracy drops to close to 50% (or lower in
the case of a high number of adversaries).
Remark#3: When the two distributions are almost identical,
the clustering accuracy drops radically. However, the impact in
this case is minimal since the adversaries do not significantly
distort the system’s output.

This is further demonstrated in Fig. 2 (b) where we examine
the impact of varying standard deviation values. Here, we fix
the number of malicious users to be 40% and we vary the
applied distributions (both µ and σ). We see that only in the
case where the standard deviation values of both distributions
are equal, the accuracy drops to (' 55%). In this case, the
same σ introduces ambiguity to the certainty of the system
with regards to the sensing phenomenon, thus, making it
difficult to decide on the correct descriptive data model.

Finally, for identical distributions, the clustering exhibits
an average random behavior since malicious and legitimate
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Fig. 3: Confusion matrices for temperature (µ = 21, σ = 1.3) sensor and different classification algorithms.

reports do not differ at all (same as classifying based on a
“coin toss”).

Classification accuracy: Fig. 3 depicts the accuracy of the
employed classifiers for the SC dataset (temperature sensor)
and for 40% of deviating users following the same malicious
distribution, (µ = 22, σ = 2). In this case, classification
accuracy is represented in a structure termed confusion matrix.
Each column of the matrix shows the instances in a predicted
class (1 for positive, i.e., legitimate and -1 for negative, i.e.,
malicious, reports), while each row shows the instances in an
actual class. A confusion matrix C is such that Ci,j is equal to
the number of observations known to be in classi but labeled,
by the classifier, to be in classj . Essentially, C shows the true
positives (TPs), false positives (FPs), true negatives (TNs) and
false negatives (FNs). The confusion matrices for NB, RF,
SVM and NNs classifiers are shown in Fig. 3. The diagonal
elements show the number of correct classifications made for
each class, and the off-diagonal elements indicate the errors.
Remark#4: The overall correctness of all employed classi-
fiers remains high (Accuracy ' 0.9), despite the high number
of malicious users and the high level of similarity between
the malicious and legitimate data distributions. In almost all
cases, the percentage of correctly classified samples is at least
85%. Considering the high number of adversaries, this is
partially due to the number of negative samples increasing in
the evaluation set and, thus, mis-classifying one such sample
has a smaller impact on the overall precision.

For instance, in the case of SVM (Accuracy ' 0.9), 17
out of 20 samples were classified positive correctly and all
true negatives were identified without error (similar for NB
and RF). In the case of NNs, the accuracy is slightly lower
(Accuracy ' 0.85); 15 out of 20 samples were classified
positive correctly whereas all true negatives were (again)
identified without error. This minor drop in the accuracy may
be due to the fact that NNs are more likely to overfit and can
suffer from multiple local minima compared to SVMs. Overall,
the true negative classification remains high in all cases and
only the false positive rate shows a variation, depending on
the internal way of operation of each classifier [19].

Impact of Adversaries: In our pertinent, well-motivated
attack scenario, to assess the impact of collaborative pollution
attacks, we examine the trade-off between the detectability

of adversarial reports and the distortion they inflict on the
system’s output. Adversarial report distributions that signif-
icantly differ from the actual one (i.e., based on legitimate
users’ reports) can more effectively distort the system’s output.
But, at the same time, they can be detected and sifted easier.
On the other hand, as modelled in Sec. II, we also consider
adversaries that employ a “drifting strategy” (similar to con-
cept drift in machine learning) to masquerade their existence.
Such exploratory attacks [28] occur when adversaries react
to the deployed classifiers and attempt to evade detection by
strategically crafting malicious samples that are close to the
data distribution(s) followed by the legitimate users.

In this context, Fig. 4 (a) shows the classification accuracy
when different adversarial strategies are employed (different
mean values). Here, we have again leveraged the synthetic
datasets generated from the emulated traffic sensing task
(µ = 16, σ = 2). We also fix the number of malicious
users to be 40%. The bars depict the precision score for all
employed classifiers taking also into consideration the impact
that adversarial strategies have on the descriptive data models
produced by the clustering phase (various clustering precision
as depicted in Fig. 2). As we can see the overall correctness of
the system remains high (≥ 65% while NB demonstrates an
accuracy close to 85%) for all cases where the difference in the
mean values of the two distributions is (at least) 20%. Recall
that this reflects the percentage of overlapping regions between
the distributions, meaning that in this case adversarial samples
significantly differ from the actual ones. On the other hand, in
the case of a “drifting attack” (difference in the mean values
is less than 15%), we can see that the classification accuracy
drops close to 60% whereas for NB drops to less than 40%.
Remark#5: Classification accuracy is similar for NNs, SVM
and RF, whereas NB behaves drastically worse for highly
overlapping distributions. This is perhaps due to its simplicity
in modelling, i.e., it assumes statistical independence between
the different features. In our case, the feature used is a
probability mass function of the data, which clearly violates
the statistical independence assumption.

To alleviate for the above assumption on the correctness of
the clustering accuracy, we also consider causative attacks [28]
where adversaries try to influence the clustering process (train-
ing phase) in an attempt to reduce the quality of a future
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(a) (exploratory) different “normal” malicious data distributions.
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(b) (causative) different clustering models accuracy based on non-
adversarial data training.

Fig. 4: Accuracy of NB, RF, SVM and NN classifiers for varying adversarial strategies.

classifier. Due to the iterative nature of the data verification,
exploratory attacks may ultimately have causative effects. This
occurs when a drifting attack, mislabelled by the system,
results to the invocation of the training phase leveraging this
non-adversarial data model as training input data. Essentially
this is an attack against the clustering process trying to create
a false perception of the sensed phenomenon. The classifiers
should react even in this case; its output must reflect the innate
uncertainty of the sensed phenomena.

Fig. 4 (b) shows the accuracy of all employed classifiers
for different clustering accuracies. This experiment reflects the
impact that a “drifting attack” will have on the re-clustering
process (of the data verification) that will eventually affect
the classification of subsequent user reports to legitimate and
malicious. Again, the fraction of deviating users is set to 40%.
As we can see, when the clustering accuracy is ≥ 70%, all
classifiers yield correct predictions with really high accuracy
(≥ 85%). What is interesting to notice is the generally
better performance of the SVM: its accuracy increases rapidly
with respect to the other classifying algorithms. This can
be attributed to its robustness in finding the optimal margin
gap between separating hyper planes between the classes,
especially when the quality of the training data gets better.
Remark#6: As expected, clustering accuracy can have a
significant impact on the classification of subsequent user
reports which is aggravated based on the vast amount of
incoming data in IoT applications. As described in Sec. III,
the re-clustering process is invoked when a concept drift
(which can also be the result of a drifting attack) has been
detected which necessitates for the correct configuration of the
sensitivity parameter, θ, so that the results of such attacks can
be mitigated without depleting the system resources (which in
turn can lead to denial of service attacks).

VI. ROAD-MAP & FUTURE PROSPECTS

As it is commonly the case for any relatively young re-
search area, the landscape of Mobile Crowd-Sensing for IoT
is fragmented into various families based on the emerging
research challenges. Undoubtedly, data trustworthiness is a
prominent challenge with unprecedented number of conse-

quences, should it is not addressed appropriately. We consider
this paper as the first step towards the development of a
holistic framework, which will improve data trustworthiness
in IoT environments that utilize machine learning capabilities.
Although, standard classification algorithms are not designed
with such requirement in mind, in this paper we assessed their
accuracy in presence of data infected with adversarial samples.
We strongly believe that this work can be the basis of future
research that will attempt to address two main challenges
within the IoT security and privacy field: (a) accuracy, in the
context of concept drift, of IoT data and how this can be bal-
anced with computational complexity; and (b) near real-time
performance of any proposed data trustworthiness framework
in the presence of vast volume of IoT data processed; e.g., in
the cloud in the form of big data or at the edge of a network

Speaking about improving data verification, future work in
the field can be geared towards proposing a combination of
machine learning techniques to enhance classification accuracy
within the investigated model. One shall use ensemble learning
to utilize multiple classifiers so that they can leverage their
advantages and enhance the overall accuracy of IoT data
verification [29]. However, ensemble learning will introduce
high computational complexity. This generates by default
an interesting challenge of investigating trade-offs between
accuracy and complexity to determine optimal choices. We
envisage that ensemble learning can alleviate the effects of
concept drift, which refers to changes in the data distribution
over time. Another direction to improve IoT data trustworthi-
ness is the application of deep learning by using autoencoders
to train the deep neural network [30]. Due to this technique
being computationally expensive, training must be done offline
so that classification can be done online.

In the presence of vast volume of IoT data, it is often the
case that limited computational resources (e.g., memory, time)
and the requirement to make near real-time predictions affects
the efficacy of various IoT applications: one of them being
Mobile Crowd-Sensing (MCS). Furthermore, vast amount data
may be collected so quickly that labelling all items may be
delayed or even not possible. To address these issues we
envisage the use of game theory, which can determine optimal
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defence strategies, in the form of thresholds that determine
when the system shall conduct certain required actions, such
as re-clustering. Game theory can also support decisions of the
defender, i.e., the IoT ecosystem itself, in presence of strategic
attackers. These strategies will aim to maximize data trustwor-
thiness in the presence of advanced colluding adversaries who
shall utilize sophisticated adversarial strategies targeting data
distortion by taking into account more parameters than our
current model, such as: geography, users’ density and number
of submissions per second. A potential approach will seek
optimal allocation of defending resources in a similar fashion
to our previous work [31].

VII. CONCLUSIONS

This paper extensively evaluates the effectiveness and accu-
racy of several fuzzy techniques within the IoT environment
for Mobile Crowd-Sensing (MCS) applications. To the best
of our knowledge, this is the first attempt at analyzing such
data mining techniques in the context of secure and privacy-
preserving MCS, where data trustworthiness is of paramount
importance. Our work provides a comprehensive analysis
on the applicability of various clustering and classification
techniques for identifying descriptive and predictive models
to analyze and predict the class of objects whose class label
is unknown. We have evaluated the impact to the system
output in the presence of strong colluding adversaries, and we
have demonstrated how the spatio-temporal changes on the
underlying phenomenon (i.e., concept drift) can masquerade
the existence of attackers and affect the accuracy of clustering
and classification processes. After this preliminary analysis,
our future plans include exploiting more advanced techniques,
including deep learning, so as to be able to propose a holistic
framework that will improve IoT security and privacy using
the right combination of machine learning models. This is
a particularly challenging space due to the uncertainty of
the classifiers with regards to the real nature of the reports
submitted to a reporting station as legitimate.

REFERENCES

[1] T. Giannetsos, S. Gisdakis, and P. Papadimitratos, “Trustworthy people-
centric sensing: Privacy, security and user incentives road-map,” in 13th
Annual Mediterranean Ad Hoc Networking Workshop, 2014, pp. 39–46.

[2] J. Ballesteros, M. Rahman, B. Carbunar, and N. Rishe, “Safe cities. a
participatory sensing approach,” in 37th IEEE Conf. on Local Computer
Networks, 2012, pp. 626–634.

[3] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Trian-
dopoulos, “Anonysense: A system for anonymous opportunistic sensing,”
Pervasive and Mobile Computing, vol. 7, no. 1, pp. 16–30, 2011.

[4] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “SPPEAR: security &
privacy-preserving architecture for participatory-sensing applications,” in
7th ACM Conf. on Security & Privacy in Wireless and Mobile Networks,
2014, pp. 39–50.

[5] ——, “SHIELD: A data verification framework for participatory sensing
systems,” in 8th ACM Conf. on Security & Privacy in Wireless and
Mobile Networks, 2015, p. 16.

[6] E. Principi, F. Vesperini, S. Squartini, and F. Piazza, “Acoustic novelty
detection with adversarial autoencoders,” in International Joint Confer-
ence on Neural Networks, 2017, pp. 3324–3330.

[7] A. S. Chivukula and W. Liu, “Adversarial learning games with deep
learning models,” in Int. Joint Conference on Neural Networks, 2017,
pp. 2758–2767.

[8] R. C. Cavalcante, L. L. Minku, and A. L. Oliveira, “Fedd: Feature
extraction for explicit concept drift detection in time series,” in Int.
Joint Conference on Neural Networks, 2016.

[9] A. D. Pozzolo, G. Boracchi, and O. Caelen, “Credit card fraud detection
and concept-drift adaptation with delayed supervised information,” in
IEEE Joint Conference on Neural Networks, 2015.

[10] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, 2017.

[11] S. S. Rahman, R. Heartfield, W. Oliff, G. Loukas, and A. Filippoupolitis,
“Assessing the cyber-trustworthiness of human-as-a-sensor reports from
mobile devices,” in Software Engineering Research, Management and
Applications, 2017.

[12] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu, “Towards trustworthy
participatory sensing,” in 4th USENIX Conf. on Hot Topics in Security,
2009.

[13] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data
mining for the internet of things: literature review and challenges,” Int.
Journal of Distributed Sensor Networks, vol. 11, 2015.

[14] Z. Feng and Y. Zhu, “A survey on trajectory data mining: Techniques
and applications,” IEEE Access, vol. 4, pp. 2056–2067, 2016.

[15] N. Dalvi, P. Domingos, S. Sanghai, D. Verma et al., “Adversarial clas-
sification,” in 10th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, 2004.

[16] E. Miluzzo, M. Papandrea, N. D. Lane, A. M. Sarroff, S. Giordano,
and A. T. Campbell, “Tapping into the vibe of the city using vibn, a
continuous sensing application for smartphones,” in Int. Symp. on From
digital footprints to social and community intelligence, 2011.

[17] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: a distributed mobile
sensor computing system,” in 4th Int. Conf. on embedded networked
sensor systems, 2006, pp. 125–138.

[18] J. Whitefield, L. Chen, A. Giannetsos, S. Schneider, and H. Treharne,
“Privacy-enhanced capabilities for vanets using direct anonymous attes-
tation,” in IEEE Vehicular Networking Conference, 2017.

[19] A. Mavrogiorgou, A. Kiourtis, and D. Kyriazis, “A comparative study
of classification techniques for managing iot devices of common spec-
ifications,” in Int. Conf. on the Economics of Grids, Clouds, Systems,
and Services, 2017, pp. 67–77.

[20] M. Abdar, M. Zomorodi-Moghadam, R. Das, and I.-H. Ting, “Perfor-
mance analysis of classification algorithms on early detection of liver
disease,” Expert Systems with Applications, vol. 67, pp. 239–251, 2017.

[21] Y. Li, T. Shen, X. Sun, X. Pan, and B. Mao, “Detection, classification
and characterization of android malware using api data dependency,” in
Int. Conf. on S&P in Communication Systems, 2015.

[22] H. Kim, J. Shin, S. Kim, Y. Ko, K. Lee, H. Cha, S.-i. Hahm, and
T. Kwon, “Collaborative classification for daily activity recognition with
a smartwatch,” in IEEE Int. Conf. on Systems, Man, and Cybernetics,
2016, pp. 3707–3712.

[23] D. Mendez, A. J. Perez, M. A. Labrador, and J. J. Marron, “P-sense: A
participatory sensing system for air pollution monitoring and control,”
in IEEE Pervasive Computing and Communications Workshops, 2011,
pp. 344–347.

[24] D. S. Lab, “Strata santa clara dataset,” Feb. 2013. [Online]. Available:
http://datasensinglab.com/data/

[25] S. Gisdakis, V. Manolopoulos, S. Tao, A. Rusu, and P. Papadimitratos,
“Secure and privacy-preserving smartphone-based traffic information
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, 2015.

[26] P. Fernandes and U. Nunes, “Platooning of autonomous vehicles with
intervehicle communications in sumo traffic simulator,” in 13th Int. IEEE
Conf. on Intelligent Transportation Systems, 2010, pp. 1313–1318.

[27] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
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