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1 Overview of dataset

Title: Random forest models of magnetospheric ultra-low frequency wave power.

Summary: A series of decision tree ensembles (random forests) which have been trained on
magnetospheric ultra-low frequency (ULF, 1-15mHz) plasma waves observed by ground based
stations. Wave power spectral density is predicted using input parameters of station, frequency,
solar wind properties [vsw, Bz, var(Np)] and azimuthal angle (i.e. magnetic local time, or MLT).
Constructed using fifteen years of solar wind OMNI data and a latitudinal magnetometer chain
from the CANOPUS/CARISMA network. This dataset therefore comprises a statistical model
of ULF ground-based wave power throughout the magnetosphere, dependent on solar wind con-
ditions.

Background: Radiation belt models are necessary to describe the near-Earth space environment,
which is hostile to spacecraft such as the satellites underpinning modern life. ULF waves are in-
volved in the energisation and transport of radiation belt electrons and are therefore a significant
component of such models. Empirical models to predict the wave power enable us to test our
understanding of the underlying physics and to predict the resulting radial diffusion of radiation
belt electrons. The series of models here are more accurate, easier to use and significantly more
versatile than the previous generation.

Publication year: 2020
Creators: S.N.Bentley, J.Stout, T.Bloch, C.E.J.Watt
Organisation: University of Reading
Rights-holders: University of Reading, Jennifer Stout, Téo Bloch
Sources: Solar wind data was obtained from the National Aeronautics and Space Adminis-
tration/ Goddard Flight Center’s OMNI data set via OMNIWeb (http://omniweb.gsfc.nasa
.gov/, (King & Papitashvili, 2005)) whilst ground-based magnetic field measurements were ob-
tained from the Churchill Line of the CANOPUS magnetometer chain in Canada (Rostoker et
al., 1995), now upgraded and expanded into the CARISMA array (Mann et al., 2008).
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2 Terms of use

Copyright University of Reading, Jennifer Stout and Téo Bloch.
This dataset is licensed by the rights-holder under a Creative Commons Attribution 4.0 Inter-
national Licence: https://creativecommons.org/licenses/by/4.0/.

3 Funding

This work was supported by STFC grant ST/R000921/1 and NERC grant NE/P017274/1.
T.B.’s PhD is supported by ST/R505031/1. Additional funding from the University of Read-
ing Undergraduate Research Opportunities Programme (UROP) supported J.S. during summer
2019.

4 Construction of dataset

This dataset corresponds to the model presented in “Random forest models of magnetospheric
ultra-low frequency wave power” (Bentley, Stout, Bloch, & Watt, 2020), where more detail on the
data processing and choice of hyperparameters (settings) can be found, along with optimisation
and validation of the models.

To summarise, fifteen years of hourly solar wind and ground-based magnetometer observa-
tions were used, from 1990-2004 inclusive. Power spectral density (PSD) was calculated for
the ground-observed waves using the multitaper method for four stations FCHU, GILL, ISLL

and PINA. Log10(PSD) in units of (nT )2

Hz
was the target variable on which our decision trees

were trained, with input vectors containing magnetic local time, solar wind speed vsw, north-
south component of the interplanetary magnetic field Bz and variance of proton number density
log10(var(Np)). Ground station magnetic local time m = [0, 23] was converted to be cyclic
(i.e. [mx = sin(2πm

24
),my = cos(2πm

24
)]). A decision tree ensemble was made for each station,

frequency, and horizontal geomagnetic component, reducing mean square error (MSE) and us-
ing a minimum number of 18 samples per leaf and a minimum depth of 11. Each ensemble
contains 256 trees. Random forests (decision tree ensembles) were trained using Python module
scikit-learn function RandomForestRegressor (Pedregosa et al., 2011).

5 Contents

Each ensemble model is saved in two formats: joblib and json. Joblib files are a seriali-
sation similar to python pickle files, which are quick and easy to use but persistence is not
guaranteed between versions. JSON files are human-readable files containing the equivalent
model. The Python modules joblib (v0.14.1, https://joblib.readthedocs.io/en/latest/)
and sklearn-json (v0.1.0, https://github.com/mlrequest/sklearn-json) were used respec-
tively.

File names follow the format componentSTATION freqmHz.format, for example xGILL 5-0mHz.json.
Possible combinations for these file names are indicated in Table 1.1 These have been stored in

1For completeness we have included all frequencies. However, any spectral estimation unavoidably smooths
some of the power across nearby frequencies. In the case of the multitaper method used here, with a time
half-bandwidth product of 1.4 applied to five-second resolution hourly data, the resolution bandwidth of the
multitaper estimate is seven times the frequency resolution, i.e. [−W,W ] = [−7∆f, 7∆f ] = ± 1.89 mHz. This
smearing will drop off with distance. Nevertheless, models trained on neighbouring frequencies may contain
some artificially “shared” power; for studies across multiple frequencies, we suggest a resolution of six times
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String in filename Possible options
component x (ground geomagnetic north-south), or

y (ground geomagnetic east-west)
STATION FCHU, GILL, ISLL, PINA
freq Every 0.277 mHz, from 1.67-15 mHz, in

format e.g. 1-67, 5-0, 11-67

format .joblib or .json

Table 1: All options for filenames

compressed files by component and STATION, e.g. xFCHU.

5.1 Using the dataset

The models can be read in to Python in either format. Example code below (tested in Python
(v3.8.1)) can be used to read in and apply models to a pandas dataframe of input values:

from joblib import dump ,load

import sklearn_json as skljson

import pandas as pd

import numpy as np

modeldir = ’<model -directory >’

m_str1 = ’xGILL_5 -0mHz.joblib ’

m_str2 = ’xFCHU_5 -0mHz.json’

# load in one of each type of model

model1 = load( modeldir+m_str1 )

model2 = skljson.from_json( modeldir+m_str2 )

# make a minimum example dataframe

mlt = 18

mlt_x = np.sin(2*np.pi*mlt / 24 )

mlt_y = np.cos(2*np.pi*mlt / 24 )

df = pd.DataFrame(

{’speed’:[450 ,500] ,

’Bz’: [0.1,1],

’var_Np ’:[-0.7,-0.22], # log10(varNp)

’MLTx’:[mlt_x ,mlt_x],

’MLTy’:[mlt_y ,mlt_y ]} )

# predict log10(PSD) under these conditions for GILL , FCHU 5mHz

Gpow = model1.predict(df)

Fpow = model2.predict(df)

More detailed operations can be applied to ensembles and ensemble members directly as per
the scikit-learn documentation.

the frequency resolution ∆f = 0.277mHz (e.g. 1.67, 3.33 and 5.0 mHz etc.) is a good compromise between
well-spaced frequency values with minimal smearing, and remaining physically useful. Alternatively, power
spectral density may be integrated across frequencies of interest.
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Dependencies: scitkit-learn (v0.22.1, (Grisel et al., 2020)), pandas (v0.25.3, (Reback et al.,
2019)), numpy (v1.17.5) and either joblib (v0.14.1, https://joblib.readthedocs.io/) or
sklearn-json (v0.1.0, https://github.com/saromanov/scikit-json).
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