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ABSTRACT
We present a system for online, incremental composite event recog-
nition. In streaming environments, the usual case is for data to ar-
rive with a (variable) delay from, and to be retracted/revised by the
underlying sources. We propose RTECinc , an incremental version of
RTEC, a composite event recognition engine with a formal, declar-
ative semantics, that has been shown to scale to several real-world
data streams. RTEC deals with delayed arrival and retraction of
events by computing at each query time composite event intervals
from scratch. This often results to redundant computations. Instead,
RTECinc deals with delays and retractions in a more efficient way,
by updating only the affected events. We evaluate RTECinc theoret-
ically, presenting a complexity analysis, and show the conditions in
which it outperforms RTEC. Moreover, we compare RTECinc and
RTEC experimentally using two real-world datasets. The results
are compatible with our theoretical analysis and show that RTECinc
may outperform RTEC.

CCS CONCEPTS
• Information systems → Data streaming; • Artificial Intel-
ligence → Knowledge representation and reasoning; • Theory of
computation → Constraint and logic programming.
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1 INTRODUCTION
Composite event recognition (CER) systems receive simple, derived
events (SDEs) in the form of a stream in order to perform various
reasoning tasks. Typically, reasoning involves the identification of
composite events (CE), that is, a combination of simpler events,
satisfying a given pattern. Within a CE pattern, the sub-events are
subject to temporal and atemporal constraints andmay be combined
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with (static) background knowledge. The CEs produced can then
be used for real-time decision-making.

A recently proposed CER system is the Event Calculus for Run-
Time Reasoning (RTEC) [6]. The Event Calculus is a logic program-
ming formalism for representing and reasoning about events and
their effects [20]. RTEC has a formal, declarative semantics, sup-
ports atemporal reasoning and reasoning over background knowl-
edge, has built-in axioms for composite temporal phenomena, and
explicitly represents CE intervals, thus avoiding the related logical
problems of time-point-based event processing approaches (see
[24] for a discussion).

RTEC has proven capable of real-time CER in numerous applica-
tions, such as city transport management, public space surveillance
from video content [6] and maritime monitoring [2, 26]. The com-
mon case in such streaming environments is for the input events
to arrive with variable delays to the CER system. Consider e.g. the
maritime domain, where terrestrial and satellite stations collect
position signals emitted by vessels. Some stations may have to deal
with a larger amount of messages than others and as a consequence
of this congestion, the events may arrive to the CER system with
various delays. Moreover, revisions or retractions may be applied
to input events, e.g., the start or end time of an event might have
been wrong and subsequently corrected by the event source [3].

RTEC deals with delays and retractions by means of windowing;
in particular, RTEC uses overlapping windows in order to ‘wait’
for delayed events and retractions. However, RTEC computes the
intervals of CEs within a window from scratch. Thus, even if a CE
remains unaffected by delays or retractions, its intervals will be re-
calculated, leading to inefficiency. To overcome this, we present an
incremental version of RTEC, i.e. RTECinc , which updates only the
CEs affected by delays and retractions, reduces the number of cal-
culations and as a result improves the computational performance.
The contributions of this paper are then the following:

• We present RTECinc , an incremental version of RTEC that
avoids redundant computations by handling delays and re-
tractions of events in a more efficient way.
• We evaluate theoretically RTECinc and show the conditions
in which it achieves lower computational complexity com-
pared to RTEC.
• We compare RTECinc and RTEC experimentally using real-
world and synthetic datasets. The results are compatible with
our complexity analysis and show that RTECinc outperforms
RTEC.

The structure of the paper is as follows: Section 2 summarises
the functionality of RTEC. Sections 3 and 4 elaborate, respectively,
on the implementation details of the incremental procedure and
the complexity analysis. Section 5 presents our empirical analysis,
while Section 6 discusses related work. Finally, in Section 7 we
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conclude with a summary and a discussion on future directions of
research.

2 BACKGROUND: RUN-TIME EVENT
CALCULUS

2.1 Language & Semantics
The time model of RTEC is linear and includes integer time-points.
If F is a fluent — a property that is allowed to have different values
at different points in time — the term F=V denotes that fluent F
has value V . holdsAt(F=V ,T ) is a predicate representing that fluent
F has value V at time-point T . holdsFor(F=V , I ) represents that I is
the list of maximal intervals for which F = V holds continuously.
holdsAt and holdsFor are defined in such a way that, for any fluent
F , holdsAt(F=V ,T ) if and only if T belongs to one of the maximal
intervals of I for which holdsFor(F=V , I ).

An event description in RTEC comprises rules that express: (a)
event occurrences using the happensAt predicate, (b) the effects of
events using the initiatedAt and terminatedAt predicates, (c) the values
of fluents, with the use of the holdsAt and holdsFor predicates, as
well as other, possibly atemporal, parameters. Table 1 summarises
the RTEC predicates available to the event description developer.
Variable names start with an upper-case letter, while predicates and
constants start with a lower-case letter. Variables starting with ‘_’
are free, i.e. they may take any value. Instantaneous simple, derived
events (SDEs) and CEs are represented by means of happensAt, while
CEs are represented as fluents. The majority of CEs are durative
and, therefore, in CER the task generally is to compute the maximal
intervals for which a fluent representing a CE has a particular
value continuously. Fluents in RTEC are of two kinds: simple and
statically determined. We focus on the incremental computation of
the maximal intervals of simple fluents.

One of the main attractions of RTEC is that we can use the full
expressivity of logic programming to represent complex temporal
and atemporal constraints, as conditions in initiatedAt and terminatedAt

rules for durative CEs. Next, we provide an abstract initiatedAt rule
that will be our reference point. terminatedAt rules have a similar
form.

initiatedAt(F = V ,T ) ←

happensAt(A,T ),

holdsAt(B = VB ,T ),

not happensAt(C,T ),

not holdsAt(D = VD ,T ).

(1)

Rule (1) is a rule of conjunctions, in the sense that all the body
literals should be satisfied in order for the rule to fire. The symbol
not denotes negation by failure [11]. VariableT , present to the head
and all body literals, refers to the same time-point. Rule (1) initiates
F = V at T if event A has occurred at T , there exists an interval
of B = VB that includes T , there is no occurrence of event C at T
and there is no interval of D = VD that includesT . We use the term
positive to refer to events and fluents that occur at or include T , e.g.
A and B, and the term negative to refer to events and fluents that do
not occur at or include T (symbol not), e.g. C and D. initiatedAt and
terminatedAt rules of type (1) are not restricted in the number of body
literals. The only requirement is the first body literal to be a positive

Table 1: Main predicates of RTEC.

Predicate Meaning

happensAt(E,T ) Event E occurs at time T
holdsAt(F = V ,T ) The value of fluent F is V at time T
holdsFor(F = V , I ) I is the list of maximal intervals

for which F = V holds continuously
initiatedAt(F = V ,T ) At time T the simple fluent

F = V is initiated
terminatedAt(F = V ,T ) At time T the simple fluent

F = V is terminated

happensAt predicate, which can then be followed by a possibly empty
set of positive/negative happensAt and holdsAt predicates.

A concrete example fluent definition, from the maritime domain
[26], is presented below:

initiatedAt(gap(Vessel) = nearPorts,T ) ←

happensAt(gap_start (Vessel),T ),
holdsAt(withinArea(Vessel, nearPorts) = true,T ).

initiatedAt(gap(Vessel) = farFromPorts,T ) ←

happensAt(gap_start (Vessel),T ),
not holdsAt(withinArea(Vessel, nearPorts) = true,T ).

terminatedAt(gap(Vessel) = _Value,T ) ←
happensAt(gap_end (Vessel),T ).

(2)

The above set of rules formalise the notion of a ‘communication
gap’. Communication gaps indicate that a vessel is not emitting its
position, either due to the absence of a nearby receiving station or
on purpose. Communication gaps are important in maritime moni-
toring since the vessel’s behavior is unknown. Maritime analysts
often consider communication gaps as an intention of hiding (e.g.,
in cases of illegal fishing in a protected area). Notice that there
is a distinction between gaps occurring near ports from those oc-
curring in the open sea. The former are usually not significant in
maritime monitoring. In rule-set (2), to distinguish the two types of
gaps, we represent a communication gap as a multi-valued fluent,
as opposed to Boolean fluents, which are a special case where the
possible values are true and false.

Rules in (2) have in their body positive events, gap_start and
gap_end, and a fluent, withinArea(Vessel, nearPorts), that partici-
pates positively in the first rule and negatively in the second. The
events gap_start and gap_end are input events produced by a mod-
ule annotating vessel position streams, indicating that a vessel
stopped and re-started transmitting its position [26], respectively.
The fluentwithinArea(Vessel, nearPorts) denotes the periods of time
a vessel is near a port, and is produced by spatial processing of the
position signals of the vessel. According to rule-set (2), a communi-
cation gap is initiated for Vessel if a gap_start has occurred near or
far from ports and is terminated when a gap_end event is detected.
Note that the terminatedAt rule in rule-set (2) terminates both types
of gaps by using the free variable _Value.

RTEC utilises the time-points produced by initiatedAt and
terminatedAt rules to construct the maximal intervals during which a
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fluent has a value continuously. Therefore, to compute the intervals
I for which F = V , i.e. holdsFor(F = V , I ), we find all time-points Ts
at which F = V is initiated by using initiatedAt rules, and then, for
eachTs , we compute the first time-pointTf afterTs at which F = V
is terminated by using terminatedAt rules. This is an implementation
of the law of inertia.

CE definitions in RTEC are (locally) stratified logic programs
[28]. Stratification allows to map all fluent-value pairs F = V and all
events to the non-negative integers. At level 0 we have the events
and fluents that serve as input (these are the ‘explicit facts’ of our
knowledge base). Simple fluents are output entities and thus, belong
to higher strata. Events and fluents of level n are defined in terms of
at least one event or fluent-value of level n−1 and a possibly empty
set of events and fluent-values from levels lower than n−1. Rules in
RTEC are ‘safe’, i.e., every variable that appears in the head of the
rule or in any negative literal in the body also appears in at least
one positive literal in the body.

2.2 Operation
A CER system consumes a stream of SDEs which may not neces-
sarily be temporally ordered, in the sense that there may exist a
(variable) delay between the time each SDE occurs and the time
of arrival to the CER system. Furthermore, there may be revisions
and retractions of SDEs. Consider for example the case where the
parameters of a SDE were originally computed erroneously and
subsequently revised, or the case where a SDE was reported by
mistake, and the mistake was realized later [3].

In RTEC, the CER process involves the computation of the maxi-
mal intervals of fluents. This process takes place at specified query
times q1,q2, . . . . The recognition at each qi is performed over the
SDEs that fall within a specified interval, the working memory or
window. All SDEs outside the window are discarded and not consid-
ered during recognition. Thismeans that at eachqi the CER depends
only on the SDEs that took place in the interval (qi−ω,qi ]. The size
of ω size as well as the temporal distance between two consecutive
query times — the slide step (qi−qi−1) — are user-specified.

In order to deal with delays or retractions of SDEs, the user
must set ω to be longer than the slide step, i.e, qi−ω < qi−1 < qi .
For example, consider that an SDE occurs in the interval (qi−ω,
qi−1] but arrives at RTEC only after qi−1. By setting ω longer than
the slide step, the effects of the SDE will be taken into account at
query time qi . Similarly, if a SDE arrived at RTEC at qi−1 and was
subsequently retracted, the effects of retraction will be taken into
consideration at qi . However, information may still be lost. Any
SDEs arriving or retracted between qi−1 and qi are discarded at qi
if they took place before or at qi−ω.

At each query timeqi , RTEC computes from scratch the intervals
of CEs. Figure 1 illustrates the process of computing the initiation
points of F = V at two consecutive query times with the use of
rule (1). In this example, the window ω is longer than the step; this
way, we may consider delayed arrivals or retractions of events as
well as fluent intervals calculated or removed at qi and falling in
(qi − ω, qi−1]. The upper part of Figure 1 displays the initiation
points calculated at qi−1. These points are the result of occurrences
of event A and intervals of B = VB that include the occurrences of
A. Additionally, event C did not occur at these time-points and the
intervals of D = VD do not include them.

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi  - ω

 

 

  

  

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

Figure 1: Initiation point computation. The upper part of the
figure shows the initiation points of F = V , as defined by
rule (1), calculated at qi−1, while the bottom part shows the
initiation points calculated at qi . Dots represent event occur-
rences, unlabeled horizontal lines represent fluent intervals
and arrows facing upwards represent initiation points. Dots
coloured green express event instances that arrived at RTEC
at qi . Lines coloured green express fluent intervals that were
calculated at qi . Dots (resp. lines) coloured red express event
instances (fluent intervals) that were retracted at qi . Vertical
dashed lines indicate the initiation points that are common
among the two query times.

At the bottom part of Figure 1, we present the initiation points
calculated at qi . Notice the presence of delayed arrivals for events
A and C (green dots), a new interval computed for D = VD (green
line), a retraction of eventC (red dot), and an interval reduction for
B = VB . The delayed arrival of event A along with the retraction of
event C lead to a new initiation point. Two initiation points that
were present at qi−1 are no longer present at qi . The first, due to
the new interval of D = VD or the diminished interval of B = VB
(both have the same effect), and the second due to a delayed arrival
of event C .

Three out of the four initiation points calculated at qi are iden-
tical among the two query times. These initiation points are not
affected by delays and retractions and are simply re-computed. This
is clearly unnecessary and indicates the redundant computations
performed by RTEC. Since RTEC employs a computation from
scratch strategy, some calculations are repeated leading to ineffi-
ciency. Moreover, the same has to be done for termination points.
In large event descriptions, expressing big CE hierarchies, this pro-
cess can be very expensive. Thus, in the next section we present a
method for incremental evaluation addressing these issues.

3 INCREMENTAL EVALUATION
We present the procedure of computing incrementally the maximal
intervals of a fluent. Recall from Section 2.1 that the intervals of a
fluent are produced on the basis of its initiation and termination
points. Notice that some of the initiation and termination points
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Algorithm 1 recogniseSimpleFluent

1: retrieve(F = V , seQ i-1 , IQ i-1 )
2: deleteSEpoints(F = V , seQ i-1 )
3: computeSEpoints(F = V , seQ i-1 , seQ i )
4: makeIntervals(seQ i , IQ i )
5: symmetricDifference(IQ i , IQ i-1 , ins,del )
6: assert(F = V , seQ i , IQ i , ins,del )

might not contribute to the intervals of the fluent at a query time
qi but might contribute to the future intervals. Assume that at the
previous query time, qi−1, an ending point, Tf , was calculated, but
the absence of a starting point, Ts , prevented the construction of
the interval (Ts ,Tf ]. Furthermore, consider that at qi the delayed
arrival of an event gives rise to the initiation point Ts < Tf and
as result to the interval (Ts ,Tf ]. Thus, we must store all the initia-
tion and termination points that fall inside the overlapping part of
consecutive windows, i.e. (qi−ω,qi−1].

Algorithm 1 shows the pseudo-code of recogniseSimpleFluent,
the procedure for incrementally computing and storing the intervals
of fluents. This procedure comprises several steps, some of which
are in common with RTEC and are shown in bold in Algorithm 1.
First, RTECinc retrieves from the computer memory the initiation
and termination points seQ i-1 and the maximal intervals IQ i-1 of
fluent F = V computed at qi−1 (line 1). The intervals in IQ i-1 are
temporally sorted and end in (qi−ω,qi−1].

The second step (line 2 in Algorithm 1) concerns the deletion
of initiation and termination points, calculated at qi−1, that no
longer hold at qi . Next, the addition phase (line 3 in Algorithm 1)
consists of the calculation of new initiation and termination points,
i.e. points that were not present at qi−1. The details of these two
steps will be presented shortly. The surviving time-points of the
deletion phase and the produced time-points of the addition phase,
constitute the initiation/termination points of F = V at qi , i.e. seQ i .
The next step concerns the construction of the fluent intervals by
means of the initiation and termination points. This process is done
as in RTEC and leads to the intervals of F = V at qi , IQ i (line 4 in
Algorithm 1).

RTECinc computes the intervals that were added, ins , and re-
tracted, del , for F = V at qi . The purpose of this operation lies in
the fact that F = V may participate, positively or negatively, in the
body of initiatedAt and terminatedAt rules of a fluent of a higher stra-
tum. This is achieved by taking the symmetric difference between
the intervals of F = V calculated at qi−1, IQ i-1 , and the intervals
calculated at qi , IQ i (line 5 in Algorithm 1). Finally, the computed
list of intervals IQ i , along with the initiation/termination points
calculated at qi , seQ i , and the intervals in ins and del , are stored
(line 6 in Algorithm 1), replacing the ones computed at qi−1. Next,
we delve into the details of the deletion and the addition phases,
since these mainly differentiate RTECinc from RTEC.

3.1 Deletion phase
In the deletion phase, RTECinc examines which of the initiation
and termination points falling in the overlapping part of two con-
secutive query times, (qi−ω,qi−1], still hold at qi . An initiation/
termination point may no longer hold for several reasons. In the

case of negative events (see e.g. event C in rule (1)), the event may
have occurred in the interval (qi−ω,qi−1] but arrived to the system
at qi . If the time occurrence of this delayed event coincides with
an initiation/termination point calculated at qi−1, the latter must
be retracted. In the case of negative fluents (see fluent D in rule
(1)), an interval, not present at qi−1, computed at qi and falling in
(qi−ω,qi−1] may include an initiation/termination point. Again,
the initiation/termination point should be removed.

In the case of positive events (see event A in rule (1)), the time
of occurrence of the event may have been reported by mistake at
qi−1, and by qi the mistake may have been realized and the specific
event occurrence retracted. If the time of this event occurrence
coincides with the time of an initiation/termination point, then this
point should be deleted. Finally, in the case of positive fluents (see
fluent B in rule (1)), an interval, calculated at qi−1 and falling in
(qi−ω,qi−1], that included an initiation/termination point may be
deleted or shrunk. As a consequence the interval may no longer
include the initiation/termination point and once again this point
should be removed.

To determine which of the initiation/termination points of
F = V survive, we use a transformation of the rules expressing CE
definitions. Rule (3) below e.g. is a transformation of rule (1):

[
initiatedAt(F = V ,T )

]seQ i-1

←

[
happensAt(A,T )

]del
∨

[
holdsAt(B = VB ,T )

]del
∨

[
happensAt(C,T )

] ins
∨

[
holdsAt(D = VD ,T )

] ins
.

(3)

Rule (3) is a delta rule determining if an initiation point must be
deleted; termination points are handled in a similar manner. As
opposed to rule (1), this is a rule of disjunctions. Notice that the
negative predicates of rule (1) occur positively in the body of rule
(3). The superscripts in the head and the body literals indicate the
set in which the time argument T must belong to. Table 2 presents
the definitions of these sets. We evaluate rule (3) for each initiation
point of seQ i-1 , i.e. for each initiation point calculated at qi−1 and
in (qi−ω,qi−1]. Since rule (3) consists of disjunctions, it suffices
for the time argument of only one of the body literals to match the
value of T in the head in order for the rule to be satisfied. Rule (3)
fires, stating that an initiation point T in seQ i−1 should be deleted,
when one of the following conditions is satisfied:

(a) T coincides with a retracted occurrence of event A (set del ).
(b) T is included in a retracted interval of B = VB (set del ).
(c) T matches the time-stamp of a delayed arrival of event C

(set ins).
(d) T belongs to a new interval of D = VD calculated at qi (set

ins), due to a delayed event arrival or retraction.
If one of these conditions holds, the point T under investigation
is removed from seQ i−1 . A point survives this process, i.e., it is not
removed from seQ i−1 , if all conditions fail. When all points in seQ i−1

have been examined the deletion phase terminates.
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Table 2: Notation of the deletion and addition phases.

Notation Meaning
seQ i−1 Initiation and termination points calculated at

qi−1 and falling in (qi−ω,qi−1]
del Event occurrences and fluent intervals

falling in (qi−ω,qi−1] and retracted at qi
ins Event occurrences and fluent intervals

falling in (qi−ω,qi−1] and inserted at qi
Q i-1 Event occurrences and fluent intervals

falling in (qi−ω,qi−1]
Q i Event occurrences and fluent intervals

falling in (qi − ω,qi ]
Q i\ins Event occurrences and fluent intervals at qi

without considering the ones inserted at qi
Q i∪del Event occurrences and fluent intervals at qi

along with the ones retracted at qi

Figure 2 illustrates the deletion phase with the use of a simple
example. The evaluation of rule (1) at qi−1 results in the initiation
points shown in the upper part of Figure 2. The occurrences of
event A belonging to intervals of B = VB , not coinciding with
occurrences of eventC and not included in the intervals of D = VD ,
leads to the calculation of these points at qi−1. In the bottom part of
Figure 2, rule (3) is used to examine which of these points should be
removed. The vertical dashed lines indicate the points not surviving
the deletion process. The deletion of each of these points is done
according to one of the four conditions outlined above. For example,
the first initiation point is removed because the corresponding
occurrence of A was retracted, while the last one was removed due
to an interval of D = VD , calculated at qi , that includes it.

3.2 Addition phase
Once the deletion phase has completed, the addition phase com-
mences. The addition phase consists of the calculation of new initia-
tion and termination points, i.e. points that were not present at qi−1.
The new time-points may belong to the overlapping part of the two
consecutive windows, (qi−ω,qi−1], or to the non-overlapping part,
(qi−1,qi ]. Consider rule (1) again and assume that at qi−1 the rule
did not fire despite the fact that all body predicates except the first
one satisfied the time argument T . At qi a delayed arrival of event
A with a time-stamp satisfying T will activate the rule. Similarly,
deletions of event occurrences or fluent intervals may lead to the
satisfaction of a rule. For example, if rule (1) did not fire at qi−1
due to the fact that event C occurred at T , but at qi the specific
occurrence of event C was retracted, the rule would fire.

The previous examples refer to initiation/termination points
falling inside (qi−ω,qi−1]. Initiation/termination points belonging
to the non-overlapping part (qi−1,qi ] are not affected by delays
or retractions. To calculate the new initiation points, we use the

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi  - ω

 

 

  

  

Rule (1)

happensAt(A,T),

holdsAt(B=VB,T),

not happensAt(C,T),

not holdsAt(D=VD,T).

Rule (3)

[happensAt(A,T)] 
del      v 

[holdsAt(B=VB,T)] 
del

   v

[happensAt(C,T)] 
ins

     v

[holdsAt(D=VD,T)] 
ins

   .

Figure 2: Illustration of the deletion phase. The upper part
of the figure shows the initiation points calculated at qi−1
using rule (1). The bottom part presents the deletion pro-
cess at qi using the delta rule (3). The non-overlapping
part of the two query times, (qi−1,qi ] is greyed out since
the deletion phase concerns only the overlapping part,
(qi−ω,qi−1]. Dots represent event occurrences, unlabeled
horizontal lines represent fluent intervals and arrows fac-
ing upwards represent initiation points. The black color sig-
nifies event occurrences and fluent intervals present both at
qi−1 andqi , the green color signifies delayed arrival of events
and fluent intervals computed at qi , while the red color sig-
nifies event occurrences and fluent intervals retracted at
qi . Enlarged dots and lines denote participation in the dele-
tion process. The vertical dashed lines indicate the initiation
points that will be removed from seQ i−1 .

following delta rules (termination points are handled similarly):
initiatedAt(F = V ,T ) ←

[
happensAt(A,T )

] ins
,

[
holdsAt(B = VB ,T )

]Q i
,

not

[
happensAt(C,T )

]Q i
,

not

[
holdsAt(D = VD ,T )

]Q i
.

(a)

initiatedAt(F = V ,T ) ←
[
happensAt(A,T )

]Q i\ins
,

[
holdsAt(B = VB ,T )

] ins
,

not

[
happensAt(C,T )

]Q i
,

not

[
holdsAt(D = VD ,T )

]Q i
.

(b)

initiatedAt(F = V ,T ) ←
[
happensAt(C,T )

]del
,

[
happensAt(A,T )

]Q i\ins
,

[
holdsAt(B = VB ,T )

]Q i\ins
,

not

[
holdsAt(D = VD ,T )

]Q i
.

(c)

initiatedAt(F = V ,T ) ←
[
happensAt(A,T )

]Q i\ins
,

[
holdsAt(D = VD ,T )

]del
,

[
holdsAt(B = VB ,T )

]Q i\ins
,

not

[
happensAt(C,T )

]Q i∪del
.

(d)

(4)

The superscripts of these rules correspond to the set the time argu-
mentT is evaluated and are presented in Table 2. In rule (4)(a), event
A is evaluated over the occurrences that arrived to the CER system
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(b)
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(d)

[happensAt(A,T)] 
Qi \ ins 

,

[holdsAt(B=VB,T)] 
Qi \ ins 

,

not [happensAt(C,T)] 
Qi  U del 

.

[holdsAt(D=VD,T)] 
del 

,

[happensAt(A,T)] 
Qi \ ins 

,

[holdsAt(B=VB,T)] 
Qi \ ins 

,

not [holdsAt(D=VD,T)] 
Qi 

.

[happensAt(C,T)] 
del 

,

[happensAt(A,T)] 
Qi \ ins 

,

[holdsAt(B=VB,T)] 
ins 

,

not [holdsAt(D=VD,T)] 
Qi 

.

not [happensAt(C,T)] 
Qi 

,

[happensAt(A,T)] 
ins

 ,

[holdsAt(B=VB,T)] 
Qi 

,

not [holdsAt(D=VD,T)] 
Qi 

.

not [happensAt(C,T)] 
Qi 

,

Figure 3: Illustration of the addition phase. Dots represent
event occurrences, unlabeled horizontal lines represent flu-
ents intervals and arrows facing upwards represent initia-
tion points. The black color signifies event occurrences and
fluent intervals present both at qi−1 and qi , the green color
signifies events arriving at, and fluent intervals computed
at qi , while the red color signifies occurrences and fluent in-
tervals retracted by qi . Enlarged dots and lines denote par-
ticipation in the addition process. The vertical dashed lines
indicate the time-points and intervals that give rise to a new
initiation point. Each of the four illustrations corresponds
to a delta rule in (4).

at qi (set ins). The time-points in set ins are examined against all
the intervals of B = VB (set Q i) overlapping the interval (qi−ω,qi ].
If an interval of B = VB includes a time-point in set ins , then this
time-point should not coincide with any occurrence of event C at
qi , and should not overlap any of the intervals of D = VD at qi . If
all of these conditions are satisfied, then the rule fires and gives
rise to a new initiation point. Figure 3(a) shows the calculation of

an initiation point belonging to the non-overlapping part (qi−1,qi ]
by using rule (4)(a).

Rule (4)(b) is similar to (4)(a), but has a small modification which
ensures that derivations are not repeated. In this rule, only the in-
tervals computed at qi are considered for B = VB (set ins). However,
event A is matched against the occurrences at qi , excluding the
occurrences that were inserted to the system atqi (setQ i\ins). This
means that we examine only time-points falling inside (qi−ω,qi−1]
and present to the system from the previous query time qi−1. This
is important in order to avoid repeating evaluations. If in rule (4)(b)
we used all the time-points of event A at qi , then we would have
to repeat evaluations, since the inserted time-points of event A
at qi (set ins) are included in the occurrences of the event at qi .
The negative body literals are evaluated as in rule (4)(a). Figure
3(b) shows the calculation of an initiation point belonging to the
overlapping part (qi−ω,qi−1] by using rule (4)(b).

Rule (4)(c) examines if a retracted occurrence of event C (set
del ) can lead to a new initiation point. Recall from rule (1) that we
demand the absence of event C in order for the rule to be satisfied.
Thus, if at qi there are deleted occurrences of event C , this means
that event C did not actually occur at the previously reported time-
points, and thus an initiation point of F = V should have been
calculated. Notice that the conditions of the rule have been re-
ordered for performance. Now, eventC is evaluated first. This favors
computation since the time-points in set del are usually few. Figure
3(c) shows the calculation of an initiation point belonging to the
overlapping part (qi−ω,qi−1] by using rule (4)(c).

Rule (4)(d), examines positively the deleted intervals of D = VD .
At qi−1 an interval of D = VD may have prevented the calculation
of an initiation point. If at qi this interval of D = VD is deleted,
the rule will produce a new initiation point. We employ the same
optimizations as in the previous two rules, but we introduce a new
one concerning negative literals. In rule (4)(c) we examined event
C over the time-points in del . If any of these points led to new
initiation points, then these derivations should not be repeated in
rule (4)(d). In order to achieve this, we evaluate event C negatively
over all the occurrences at qi including the deleted ones (set Q i ∪

del ). The occurrences of event C at qi do not include the retracted
occurrences (set del) and by taking them into consideration we
avoid repeating derivations. Figure 3(d) shows the calculation of an
initiation point belonging to the overlapping part (qi−ω,qi−1] by
using rule (4)(d).

In each of the four delta rules, a body literal is evaluated over
the set ins or del . In practice these sets are small, compared to the
set of all event occurrences and fluent intervals, i.e., set Q i. By
using small sets, the evaluation is faster and the performance is
improved compared to the recomputation from scratch of RTEC.
The introduced optimisations also ensure that a new initiation point
can only be produced by one of the four delta rules.

4 COMPLEXITY ANALYSIS
We present a worst-case complexity analysis. We focus on the cost
of computing fluent intervals in the overlapping part of two consec-
utive query times, (qi−ω,qi−1]. We omit the non-overlapping part,
(qi−1,qi ], since the cost is the same in RTEC and RTECinc . Recall
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Table 3: Complexity analysis notation.

Notation Meaning

mOV Number of time-points in (qi−ω,qi−1]
e Number of event types
f Number of fluent types
te Number of event occurrences in (qi−ω,qi−1]
|If | Number of fluent intervals in (qi−ω,qi−1]
n Number of event occurrences and fluent intervals

inserted or retracted at qi and in (qi−ω,qi−1]
l Number of fluent defining rules

that the time model used by RTEC is discrete. The number of time-
points that are common among qi−1 and qi , i.e. the time-points
in (qi−ω,qi−1], is denoted in shortmOV. The maximum number of
maximal intervals inmOV is thereforemOV/2. Table 3 summarises
the notation of the complexity analysis. Assume that there are e
events in the body of an initiatedAt/terminatedAt rule defining a fluent.
e is bound in the worst case by the number of event types of the
event description. Furthermore, assume that all the events have te
occurrences in (qi−ω,qi−1], and additionally n delayed insertions
and retractions. Similarly, assume that there are f fluents in the
body of an initiatedAt/terminatedAt rule. In the worst case, this is the
number of fluent types of the event description. All fluents have
|If | intervals in (qi−ω,qi−1], and n inserted and retracted intervals.
See Table 3 for the notation.

4.1 Analysis of RTECinc

In the deletion phase of the incremental procedure, the initia-
tion and termination points seQ i-1 calculated at qi−1 and falling
in (qi−ω,qi−1] are examined in order to determine their validity
at qi . This is achieved by the use of delta rules of type (3). As-
suming that there are l rules of type (1) defining a fluent, we will
have l delta rules of type (3). In these delta rules each of the ini-
tiation/termination points calculated at qi−1 are checked against
the delayed insertions of positive body events and fluents, and
against the retractions of negative events and fluents. Evaluating a
happensAt predicate expressing an event in the body of a delta rule
of type(3) requires retrieving the event’s inserted or retracted time-
points from the computer memory, and checking whether the ini-
tiation/termination point under investigation coincides with one
of the inserted/retracted time-points. Fluents are represented by
means of holdsAt predicates in the body of a rule. Evaluating a hold-

sAt predicate requires retrieving from the computer memory the
inserted or retracted intervals of the fluent, and checking whether
the initiation/termination point belongs to these intervals. In the
worst case, all body literals of the rules of type (3) will be evaluated,
and thus, the cost of the deletion phase is bound by

O

(
l × |seQ i-1 | × (e + e × n + f + f × n)

)
, (5)

where |seQ i-1 | represents the number of initiation/termination
points calculated at qi−1 and falling in (qi−ω,qi−1].

The purpose of the addition phase is to compute the initiation/
termination points that are the result of delayed insertions and
retractions, by using delta rules of type (4). According to our initial
assumptions, each initiatedAt/terminatedAt rule contains e events and
f fluents. Therefore, each one of the l rules of type (1) consists of
e + f delta rules. Recall that in each of these delta rules, only one
event or fluent is evaluated over its delayed insertions (set ins) or
retractions (set del). The evaluation of the remaining events and
fluents is performed as follows:

(1) If an event or fluent has not been evaluated over its inser-
tions or retractions, it is evaluated over all its occurrences
or intervals (set Q i).

(2) If a positive event or fluent has been evaluated over its in-
sertions, it is evaluated over all its occurrences or intervals
excluding the inserted ones (set Q i \ ins).

(3) If a negative event or fluent has been evaluated over its
retractions, it is evaluated over all its occurrences or intervals,
including the retracted ones (set Q i ∪ del ).

To simplify the presentation, we assume that in the first e delta
rules we evaluate an event over its insertions or retractions, and
in the remaining f delta rules we evaluate a fluent over its in-
serted/retracted intervals. Recall that the first body literal of an
initiatedAt/terminatedAt rule is restricted to be a positive happensAt pred-
icate. Thus, in the f delta rules the first body literal is an event
which is evaluated over all its occurrences, excluding the insertions.
Moreover, in the worst case each insertion/retraction of an event
and each inserted/retracted interval of a fluent will contribute a
new initiation/termination point. As in the deletion phase, we have
to retrieve from the computer memory the time-points and inter-
vals according to the conditions outlined above, and perform the
appropriate comparisons as indicated in each of the e + f delta
rules. The cost of computing the initiation/termination points by
using all the l rules of type (4), therefore, is bound by formula (6).

In Formula (6) the first line corresponds to the cost of evaluating
the e delta rules, and the last two lines correspond to the cost of
evaluating the remaining f delta rules. The cost of the f delta rules
is split in two lines to distinguish between the time-points that fail
to lead to a new initiation/termination point (first line) and those
that give rise to a new initiation/termination point (second line).
Recall that in the f delta rules the first body literal is a happensAt

predicate which is evaluated over all its occurrences but without
considering the insertions (set Q i \ ins). Since, in the worst case,
all events and fluents contribute n initiation/termination points
through their insertions/retractions, there will be some time-points
that will not be promoted to new initiation/termination points.
These correspond to the inserted occurrences n as well as other
occurrences of the first body literal. The only time-points that will
lead to a new initiation/termination point are those included in
the n inserted/retracted intervals of the fluent under investigation.
Therefore, the failing time-points for each f delta rule are te − 2n,
where te is the number of event occurrences in (qi−ω,qi−1] .

The final step of the incremental procedure consists of sorting
the initiation/termination points, constructing intervals from these
points, and calculating the inserted and retracted intervals of F = V
at qi (see Algorithm 1). In the worst case, the initiation/termination
points at qi are the time-points calculated at qi−1 (set seQ i-1 ), since
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O
*...
,

l ×

*.........
,

(n × e ) ×
[
e + f + 1 + (e − 1) × te − e−1

2 × n + f × |If |
]
+

(te − 2n) × f × (3 + n)+
(n × f ) ×

[
e + f + 1 + (e − 1) × (te − n) + ( f − 1) × |If | +

3−f
2 × n

]
+/////////
-

+///
-

. (6)

none of them was removed during the deletion phase, plus the
time-points computed at the addition phase, l × n × (e + f ). We
represent the number of initiation/termination points that hold at
qi as |seQ i |. The cost of sorting initiation and termination points
is bound by O ( |seQ i | log |seQ i |) and the cost of constructing the
new maximal intervals is bound by O ( |seQ i |). Finally, the cost of
the symmetric difference (see line 5 of Algorithm 1) of the intervals
computed at qi−1, IQ i-1 , and the intervals computed at qi , IQ i , is
limited by the sum of the sizes of the two lists, as this predicate
operates under the assumption that each list of maximal intervals is
sorted. Since the intervals calculated at qi−1 are at most |seQ i-1 |/2
and the intervals calculated at qi are at most |seQ i |/2, the cost of
the symmetric difference is bound by O ( |se

Q i |+ |seQ i-1 |
2 ).

4.2 Comparison of RTEC and RTECinc

We show the conditions in which RTECinc is preferable over RTEC.
The worst case scenario for RTEC does not coincide with the worst
case scenario for RTECinc and vice versa. Hence, we perform two
comparisons, one for the worst case of each CER engine.

4.2.1 Worst case for RTEC. In evaluation from scratch, the worst
case is that every time-point mOV of the overlap, (qi−ω,qi−1], is
promoted to an initiation/termination point by all the initiatedAt/
terminatedAt rules. Therefore, the cost of RTEC is bound by:

O
(
mOV × (l × (e + f + 1 + (e − 1) ×mOV + f ×mOV/2) + logmOV + 1)

)
. (7)

Due to the fact that all time-points inmOV, are initiation/termination
points, at qi the following hold for RTECinc :

(1) mOV = |se
Q i | = te .

(2) |seQ i-1 | =mOV − n × (e + f ).
(3) |If | =mOV/2.

Furthermore, there are no occurrences of negative events or all their
occurrences are retracted at qi , and respectively, negative fluents
do not have intervals or these intervals have been removed at qi .
Concerning positive events and fluents, there are no retractions of
occurrences and no retraction of intervals at qi .

The cost of RTECinc is the sum of formulas (5), (6), and the cost
formulas of sorting the initiation/termination points, constructing
the intervals and taking the symmetric difference of IQ i-1 and IQ i .
By using the above equalities and performing the appropriate sub-
stitutions in the total cost of RTECinc and in cost formula (7) of
RTEC, we derive inequality (8), that expresses the conditions in
which RTECinc is preferable to RTEC.
n

mOV
× (e + f ) ×

[
e × (mOV −

n
2 ) + f × mOV

2 +
n
2 −mOV ×

mOV+n
n

]
+mOV < 0

(8)
Inequality (8) is simplified in order to highlight more clearly the im-
proving conditions. According to inequality (8), the most important
factor for improving the performance is the ratio n (e+f )

mOV
, that is, the

sum of the number of delayed insertions/retractions of all events
and the number of computed/retracted intervals of all fluents at qi ,
to the degree of overlap.

The worst case of RTEC is an extreme case and RTECinc will
usually always lead to better performance. However, the analysis
of this case allows to unravel the factors that influence the most the
performance of incremental evaluation. Ratio n (e+f )

mOV
, according

to inequality (8), has the greater influence on performance. The
lower this ratio is, the more probable is for RTECinc to improve the
performance in terms of processing time.

4.2.2 Worst case for RTECinc . In incremental evaluation, the worst
case is when every time-point in the overlap, mOV, was an initi-
ation/termination point at qi−1, and at qi all these points are re-
tracted. In this case, RTEC is the preferred choice, since the cost of
RTEC is close to zero, as there are no time-points inmOV that can
be promoted to initiation/termination points. Deleting all the initia-
tion/termination points calculated at qi−1 is an inevitable operation
for RTECinc . On the other hand, RTEC by computing everything
from scratch avoids this operation and as a result always leads, in
this case, to better performance.

5 EXPERIMENTAL RESULTS
We evaluate RTECinc empirically on two real-world datasets from
the field of maritime monitoring.

5.1 Experimental Setup
Vessels sailing at sea usually emit messages reporting their posi-
tion, heading, speed, etc., at different points in time. These are the
so-called AIS1 (Automatic Identification System) messages. Tem-
porally sorted AIS messages represent the trajectory of a vessel. A
vessel trajectory may be compressed by retaining only a subset of
the initial position signals, which allow for an accurate reconstruc-
tion. These ‘summary’ or ‘critical’ points include the start/end of
low/high speed, changes in speed/heading, notifications about com-
munication gaps, turns, etc. [26]. Additionally, the critical points
may be spatially processed to determine whether a vessel enters
or leaves an area of interest, such as a protected (Natura) area,
and whether two vessels are close to each other [31]. The critical
points along with the spatial relations constitute the input (SDEs)
to our system. Recall, for example, the initiatedAt and terminatedAt

rules presented in rule-set (2), that are used for the calculation
of the maximal intervals during which a vessel turns off its AIS
equipment. The events gap_start and gap_end are critical points.
withinArea(Vessel, nearPorts) = true is a durative SDE expressing a
spatial relation denoting the time periods in which a vessel is within
a port area.

AIS messages are received by terrestrial or satellite stations be-
fore being forwarded to the CER system. The messages may not
arrive to the CER system on time due to high traffic on the sta-
tions. These delays can be significant and the CER system must
deal with them appropriately. Recall that a fluent interval can be

1http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx

http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx
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(a) Brest, France: Synthetic delays dataset

(b) Europe: Natural delays dataset

Figure 4: Position signals of the two datasets.

asserted/retracted due to delayed SDE arrival. In the analysis that
follows, however, we do not consider the case of SDE retraction.

The two datasets used in our empirical analysis are temporally
sorted. Fortunately, one of the datasets accompanies each AIS mes-
sage with a time-stamp expressing the time that the message left
the station. By using these timestamps it is possible to retain the
natural delays. The other dataset does not provide this information
and the empirical evaluation was achieved by imposing synthetic
delays on the data. The geographical coverage of the datasets is
shown in Figure 4.

The experiments were designed with the goal of highlighting
the gain in performance RTECinc brings in contrast to RTEC. The
tested event description includes 16 fluents expressing various types
of maritime activity, such as the movement of a vessel at a low
speed, anchoring, drifting, trawling, etc [27]. The experiments were
performed on a computer with 8 cores (Intel(R) Core(TM) i7-7700
CPU @ 3.6GHz) and 16 GB of RAM, running Ubuntu 16.04 LTS
64-bit with Linux Kernel 4.8.0-53-generic and YAP Prolog 6.2.2.

5.2 Synthetic delays
The first dataset is publicly available and concerns approximately
5K vessels sailing in the Atlantic Ocean around the port of Brest,
France, and spans a period from 1 October 2015 to 31 March 2016
(see Figure 4(a)) [30]. The stream consists of approximately 5M in-
put SDEs, i.e. critical and spatio-temporal events. The delays in this
dataset cannot be recovered and an approach of artificially injecting

delays to the stream was adopted. We performed 5 experiments,
each time varying the amount of SDEs being delayed. We selected
uniformly 5%, 10%, 20%, 40% and 80% of the total events to be de-
layed. We used a uniform distribution for selecting events, since
we assume that each event has the same probability to be delayed.
In the maritime domain, delays of a few hours are more probable to
happen, even though delays of over 16 hours have been observed
[8, 29]. In order to mimic reality as much as possible, we used a
Gamma distribution to set the extent of delay. (The Gamma distri-
bution has shape parameter k = 2 and scale parameter θ = 2.) Thus,
a delay small in time has a higher probability to be imposed in a se-
lected event. The average delay time in all settings is approximately
8 hours.

Figures 5(a-e), display the average recognition times for win-
dows ranging from 1 hour to 16 hours and a slide step of 1 hour.
Notice that for a different percentage of delayed events, the average
number of SDEs may be different for the same window size. For
example, when 5% of the SDEs are delayed, the 16-hour window
includes 24K SDEs on average, while when 10% of the SDEs are
delayed, the 16-hour window contains 23.7K SDEs. This is due to
the fact that some of the delayed events arrive to the CER system
too late to be taken into consideration in a window.

As shown in Figures 5(a-e), RTECinc outperforms RTEC in all ex-
periments. The performance improvement becomes more profound
as the window size increases. The experimental results confirm
our complexity analysis which showed that the most important
factor is the ratio of inserted/retracted occurrences of events and
fluent intervals to the size of the overlap, n (e+f )mOV

. The lower this
ratio is the more probable is for RTECinc to exhibit performance
gain. Note also the linear increase in processing time, as the size of
the window increases, that RTECinc achieves as opposed to RTEC.
However, both RTEC and RTECinc , regardless the size of the win-
dow, do not exhibit significant variations in their performance as
the percentage of delayed events increases. This is due to the fact
that the amount of SDEs per window do not change dramatically as
the percentage of delayed events increases, and therefore, changes
in performance are not well profound.

5.3 Natural delays
The second dataset concerns approximately 34K vessels sailing in
the European seas in January 2016 and it was provided to us by
IMIS Global2, our partner in the datAcron project3. Figure 4(b) dis-
plays the geographical coverage of the dataset. The dataset includes
≈ 17M SDEs and retains the natural delays. The greatest delay ob-
served in this dataset is approximately 14 hours. Thus, this dataset
allows to test our engine in real and more demanding conditions.

Figure 5(f) presents the experimental results. Again, we used five
different temporal windows to examine the effect of the overlap on
performance. The amount of SDEs is increased dramatically in each
window as opposed to the Brest dataset. For example, the average
number of SDEs in the 1 hour window (≈ 37.7K ) is higher than the
number of SDEs in all the 16 hours windows of Figures 5(a-e).

Similar to the previous set of experiments, RTECinc outperforms
RTEC. This result highlights the importance of the ratio n (e+f )

mOV
.

2https://imisglobal.com
3http://datacron-project.eu/

https://imisglobal.com
http://datacron-project.eu/
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(a) Synthetic delays (5%)
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Figure 5: Average recognition times, with slide step of 1 hour. Diagrams (a)–(e) concern the Brest dataset, while diagram (f)
concerns the dataset of Europe.

The lower this ratio is, the higher the performance gain. As the size
of the window increases and as a consequence the overlap, the ratio
usually becomes smaller and leads to the significant gains observed.
RTECinc in contrast to RTEC, exhibits a close to linear increase in
processing time as the size of the window increases.

6 RELATEDWORK
RTEC has a formal, declarative semantics that support verifiable
reasoning and the development of succinct CE definitions. Fur-
thermore, by taking advantage of the power of logic programming,
RTEC supports not only complex temporal constraints but also com-
plex atemporal constraints as well as reasoning over background
knowledge. Various CER systems [5, 12, 15] do not offer these types
of reasoning [4]. In [25] the advantages of logic programming in
CER are reported, while in [12] there is a detailed account of the
limitations of existing CER systems. Another feature of RTEC is
the explicit representation of CE intervals. This is in contrast to
other implementations [12, 15] that suffer from the related logical
problems [24].

One of the main attractions of RTEC is the ability to deal with
out-of-order and/or retracted SDE streams through its windowing

mechanism. The applications mentioned in [6], as well as the field
of maritime monitoring [2, 26], are but a few examples in which
SDEs arrive in non-chronological order and/or are retracted. The
processing of events under the assumption that the stream is tem-
porally sorted is a serious limitation of several other CER systems
[12–14, 17, 22], since they cannot update, or recognise new, CEs as a
result of delayed arrival or retraction of SDEs. A limitation of RTEC,
however, is the computation from scratch strategy, which results,
in certain circumstances, to inefficiency. In this work, we presented
an incremental version of RTEC, i.e. RTECinc , that overcomes these
issues. We have to mention though, that RTECinc is not always the
preferable choice. In cases where there are significant updates to
the recognized CEs, RTEC is the preferred option (refer to Section
4.2.2)

The presented techniques for incremental reasoning are based
on the incremental maintenance of materialised views in deduc-
tive databases. A deductive database consists of base facts, called
explicit facts, and a set of rules, called the program of the data-
base. A materialised view in a deductive database is the process of
computing the effects of explicit facts on rules of the program and
storing the result [16]. The explicit facts can be updated through
additions or deletions and thus, a new materialisation has to be
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produced. However, the update of explicit facts may or may not
affect the inferences (implicit facts) produced after rule evaluation.
The goal of incremental maintenance is, by using the updates and
the state of the database before the updates, to compute the new
materialisation and as a consequence to minimize the overall cost.
In order for this operation to be efficient, incremental maintenance
has to detect and deal only with those rule instances that require
update. Notice that incremental materialisation is not always prefer-
able over materialisation from scratch, e.g., when large amounts of
explicit facts are inserted and deleted from the database [16, 23].

An update may cause a rule that fired before the update to stop
firing or the opposite. The changes introduced by the updates are
expressed as rules. These rules are rewritings of the original rules
of the program and capture the difference between consecutive
materialisations. In the literature, they are called delta rules and
in Section 3, based on a initiatedAt rule, we provide the delta rules
that compute the changes that have to be made in the initiation
points of a fluent. Different incremental maintenance techniques
have been proposed for the evaluation of the delta rules.

A first approach towards incremental maintenance is the count-
ing algorithm [16]. In counting, every fact (explicit or implicit) is
associated with a counter that denotes the number of times it has
been derived. The counter of each fact is stored in the materialised
view. When an update takes place, the counting algorithm com-
putes the changes that have to be made in the counters of implicit
facts, by using the changes made to the counters of the explicit facts
as well as the previous state of the materialisation. The changes
that have to be performed in the old materialisation are reflected
in the counter of each fact. When a counter becomes zero, the fact
must be deleted from the database. On the other hand, when the
counter is positive, the fact must remain or be inserted in the view.
The advantage of counting is that it only considers rules leading to
the decrement or increment of a fact’s counter. The limitations of
the counting algorithm are the inability to handle recursive rules
and the potential memory overhead caused by storing the counters
[19].

The Delete/Rederive (DRed) [16] algorithm deals with recursion
and does not depend on additional information in order to decide
if a fact has to be removed from or be inserted in the view. DRed
first ‘over-deletes’ all facts that depend on updated facts, that is,
it evaluates all rules whose body contains an updated fact. This is
called the over-deletion step. Then, it follows the re-derivation step
during which the algorithm tries to find alternative derivations for
each deleted fact. The body of each rule, whose head can bematched
to the deleted fact, is evaluated over the new materialisation and if
the evaluation succeeds the fact is inserted again to the view. The
re-derivation step introduces a form of redundancy as a result of
checking rule instances that fire both before and after the update.
The counting algorithm avoids this inefficiency since the counter’s
value determines the presence of a fact in the view [19]. Finally, facts
derived for the first time are inserted to the view at the insertion
step.

Multiple derivations of a fact are common in RTEC, since a CE
may have multiple definitions. For example, the initiation points
of a fluent may depend on more than one initiatedAt rules, each of
them giving rise to the same initiation point. If at query time qi ,
one of these rules stops firing due to an update, DRed will delete

the initiation point and then will search for other definitions that
restore it. In RTECinc we do not search for alternative derivations
of initiation/termination points. If an initiation/termination point
is retracted in the deletion phase, this may only be produced again
in the addition phase. RTECinc can handle multiple derivations of
initiation/termination points by associating, as in the counting al-
gorithm [16], each point with a counter that denotes the number of
derivations. The CE definitions from the field of maritime monitor-
ing used in the experimental evaluation do not result in multiple
derivations of initiation/termination points, and thus, the use of a
counter was omitted. However, in other applications this is not the
case and the use of a counter is necessary to assure correctness.

Motik et al. [23] presented the Backward/Forward (BF) algorithm
which in certain cases overcomes the redundancy introduced during
the re-derivation step of DRed. If a fact is considered for deletion,
BF searches for alternative derivations and only if one cannot be
found it proceeds with the deletion. Hu et al. [19] proposed two
hybrid approaches, the first combining DRed with counting and
the second combining BF with counting.

The approaches presented so far refer to databases which are
usually static. Our work transfers these ideas to a streaming envi-
ronment, which is dynamic in nature and the underlying facts, i.e.,
SDEs, are constantly changing. The ideas of DRed and rewriting of
rules have been implemented in a stream reasoning framework by
Barbieri et al. [7]. These researchers associate each fact, explicit or
implicit, with an expiration time according to the size of the tempo-
ral window. Then, with the use of incremental maintenance rules,
they compute the facts that have to be inserted in the materialisa-
tion. However, deletion of facts depends solely on the expiration
time that accompanies each fact. If a fact expires, i.e. it is no longer
valid in the current temporal window, the fact is simply dropped. In
our implementation, delayed arrivals and/or retractions of events
as well as intervals of fluents computed and/or retracted at the cur-
rent query time can also lead to retraction of initiation/termination
points. Moreover, Barbieri et al. [7] do not incorporate negation in
the body literals of the original rules.

An automaton-based method for out-of-order streams, called
AFA (Augmented Finite Automaton) operator, achieving high
throughput has been proposed in [9]. AFA produces speculative
results and corrects them at the arrival of out-of-order events. The
evaluation concerns one pattern and it is not clear how the proposed
operator will behave in a multi-pattern context, where the patterns
form hierarchies. In contrast, our solution performs multi-pattern
matching in out-of-order streams and supports CE dependencies.
Windowing techniques to deal with out-of-order streams have been
employed in [33] with a high throughput as well as in [32], where
the algorithm achieves a time complexity better than O (logn). Nev-
ertheless, these approaches are not closely related to ours since
they focus on aggregation operations.

A work that is closely related to ours, is the Cached Event Calcu-
lus (CEC) [10]. In CEC, when the intervals of a fluent are modified,
the changes are propagated to fluents that rely on it. Consider for
example that an event modifies the intervals of a fluent. This change
is propagated to higher order fluents that depend on it. Then, an-
other event cancels out the previous modification and the fluent
intervals return to their initial state. Again, CEC considers this as a
change and propagates it. The cost of this operation is very high,
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especially in applications where the program includes many rules
with several fluents that depend on several other fluents. On the
contrary, our implementation, as in [16, 19, 23], propagates changes
stratum by stratum and as a consequence evaluates higher order
fluents only with the necessary changes, avoiding redundant com-
putations. If the change in a predicate is propagated immediately
to predicates of higher strata, derivations and deletions of pred-
icates can be repeated [16]. This is the limitation in the work of
Küchenhoff [21].

7 SUMMARY AND FUTUREWORK
We presented an incremental version of the Event Calculus for
Run-Time reasoning (RTECinc), a formal computational framework
for composite event recognition which deals efficiently with the de-
layed arrival and retraction of events. RTECinc avoids unnecessary
calculations and improves performance, by using techniques remi-
niscent of the incremental maintenance of deductive databases. Our
empirical evaluation on two large, real-word datasets confirmed
our theoretical analysis, and illustrated the conditions in which
RTECinc is preferable. Besides performing a series of optimizations
that can boost performance, we intend to extend our method in
order to handle recursive definitions. Moreover, we aim to compare
our techniques against other approaches, such as those based on
automata [1, 18].
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