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Abstract. Unauthorized drone flying can prompt disruptions in critical facilities 

such as airports or railways. To prevent these situations, we propose a surveil-

lance system that can sense malicious and/or illicit aerial targets. The idea is to 

track moving aerial objects using a static camera and when a tracked object is 

considered suspicious, the camera zooms in to take a snapshot of the target. This 

snapshot is then classified as an aircraft, drone, bird or cloud. In this work, we 

propose the classical technique of two-frame background subtraction to detect 

moving objects. We use the discrete Kalman filter to predict the location of each 

object and the Jonker-Volgenant algorithm to match objects between consecutive 

image frames. A deep residual network, trained with transfer learning, is used for 

image classification. The residual net ResNet-50 developed for the ILSVRC 

competition was retrained for this purpose. The performance of the system was 

evaluated with positive results in real-world conditions. The system was able to 

track multiple aerial objects with acceptable accuracy and the classification sys-

tem also exhibited high performance.  

Keywords: Object Tracking, Deep Learning, Residual Networks. 

1 Introduction 

Unmanned aerial vehicles (UAVs) come with numerous advantages. However, along 

with the positive aspects, drones present some undesirable characteristics, such as the 

possibility of a sudden crash, cyber attacks, and privacy issues, which could prevent the 

technology from developing at a faster pace in the short/mid-term. A major issue here 

is the safety of critical infrastructures such as airports, railways, and other transportation 

networks. As a response to the unauthorized and/or malicious use of drones, work has 

been done with the aim of protecting sensitive areas from the presence of drones [1]. 

One such technique consists in tracking drones within a given perimeter using a video 

surveillance system. Video surveillance systems work by generating alerts to the facil-

ity whenever the trajectory of a drone or other aerial object is considered suspicious. 

Companies such as the Nippon Electric Company [2] are already investing in the de-

velopment of these systems.  In this work, we propose to advance the state of the art in 

the field by evaluating, in real-world challenging conditions, a combination of auto-

mated vision algorithms and deep learning technologies that help detect the presence 

of intruding targets in prohibited airspace. 

mailto:marcia.baptista,%20luis.fernandes,%20paulo.chaves%7d@inov.pt
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Our work is within the scope of the Advanced Low Flying Aircraft Detection and 

Tracking (ALFA) project, sponsored by Horizon2020, which builds on results from a 

number of European Union (EU) sub-projects. The main goal of the project is the de-

velopment of a system for real-time tracking, and classification of suspicious air targets. 

We are currently developing two modules in parallel: the tracking module and the clas-

sification module. The first module is responsible for object tracking. It collects images 

from the vision system and processes them using classical vision algorithms. The sec-

ond module is responsible for object classification. Given a zoomed-in picture of an 

aerial target, it classifies the image as an aircraft, drone, bird or cloud. A deep learning 

pipeline is used for this purpose. The overall idea is that the tracking module should 

generate at each moment a list of items that are hypotheses for the presence of suspi-

cious aerial objects. Hypotheses should be proven or disproven using the classification 

module. This should be done by zooming on the target, taking a snapshot and sending 

the image to the deep learning solution.  

The remaining of this paper is organized as follows. Section 2 reviews related work. 

Section 3 introduces methods. Section 4 describes the datasets and experimental set-

tings and Section 5 presents and discusses the results. Section 6 concludes the paper.  

2 Related Work 

2.1 Object Tracking 

Typically, an object tracker consists of two steps 1) recognizing objects from the back-

ground, and 2) following the trajectory of the detected objects [3]. The first step is usu-

ally accomplished with motion tracking methods. In the second step, the objects de-

tected are linked into trajectories (or tracks). When an object is detected in the current 

frame, the model tries to associate the observed item with an existing trajectory. This 

task of associating objects with trajectories is typically cast as an optimization problem. 

Classical deterministic approaches to this problem include dynamic programming, bi-

partite graph matching, min-cost max-flow network flow and conditional random fields 

[3]. A popular method here is the Hungarian method [4], which is able to solve the 

bipartite graph matching assignment problem in polynomial time, with complexity 

O(n3) where n is the number of trajectories. Despite its popularity, it has been shown 

that the Jonker–Volgenant solver [5] can obtain similar results to the Hungarian method 

in less time, considering both average and maximum time [6] [7]. The solver is reported 

to be ten times faster than a similar coding of the Hungarian code [8]. Probabilistic 

methods such as Kalman filter [9] and Particle filter [10] can also be utilized in tracking. 

Here, the state of each object is represented as a distribution with uncertainty. It is also 

common to find works such as [11] [12], that combine the Hungarian algorithm with 

Kalman filter in order to obtain a more robust tracking framework.   

 

2.2 Object Classification 

Recently, there has been an increased interest in the classification of aerial targets using 

deep convolutional neural networks (CNNs). Some studies have used standard CNNs 
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to address this problem [13] [14] [15]. The advantage of these networks, compared to 

other more complex CNNs, is the optimized use of computational resources. In Aker et 

al. [14],  a CNN was shown to distinguish between drones and birds with precision and 

recall values above 90%. Unlu et al. [13] reached detection percentages of 93.7% and 

64.6%, for birds and drones respectively, with a CNN. The project SafeShore [16] pro-

posed a “drone-vs-bird detection challenge” where the goal was to detect drones in a 

video where birds could also be present. The winner of the competition, Schumann et 

al. [15], reported 99.2%, 99.1% and 98.9% correct identification percentages for UAV, 

birds, and clutter (background) using a CNN.  

Other works have applied more advanced CNNs [17] [18] [19]. Advanced CNNs 

have typically the disadvantage of being harder to tune and require more training data. 

To accelerate the training and improve performance, some works [17] use pre-trained 

models and transfer learning to build the image classification models. In Saqib et al. 

[17], birds and drones were classified using ZFNet, VGG16, and VGG_M_1024 (all 

with Faster-RCNN). Transfer learning was used to help the system converge faster and 

to deal with the sparse dataset used. The authors reported the best mean absolute preci-

sion (mAP) of 0.66 with VGG16. The work in Liu et al. [18] used YOLOv2 to distin-

guish between airplanes, helicopters, and drones with classification accuracies of 

96.03%, 90.47%, and 52.13%. The authors did not report using transfer learning but 

mentioned the use of a comprehensive dataset of about 30,000 images. The work of 

Park et al. [19] compared six convolutional models in their ability to distinguish be-

tween 11 drone models, namely YOLOv2, SSD with MobileNet, SSD with Inception 

V2, R-FCN with Resnet 101, Faster-RCNN with Resnet 101, and Faster-RCNN with 

Inception Resnet. The authors reported an F-measure of 74.3% for the best model 

(Faster-RCNN with Inception Resnet). The authors did not mention the use of transfer 

learning but refer a dataset of  9,525 labeled drone images.  

Despite the positive results, the previous works are, however, not totally adequate 

for airport or railway surveillance, as none of them is all-encompassing of the classes 

of birds, drones, aircraft, and clouds. Perhaps the most suitable work would be that of 

Schumann et al. [15], which distinguished between drones, birds, and clutter. However, 

Schumann et al. did not train the classifier to distinguish drones from aircraft as we do. 

Nevertheless, and especially in airport surveillance, it can be important to differentiate 

between small aircraft and drones as countermeasures can be quite different. In addi-

tion, the convolutional neural network used is standard and less advanced than our pro-

posal. In addition, the authors report on a large dataset, with 3386 drones, 3500 bird, 

and 3500 background images, but only 10% of these data were used as the test set.  

 

2.3 Contributions 

In our previous work [20], in the same line of research, we used a tracker based on the 

Hungarian algorithm. In this work, we instead use the faster method of Jonker–Vol-

genant. Previously, the residual network ResNet-50 was trained and tested using images 

from the Internet. In this work, the network is the same but we train/evaluate it with 

photos acquired in real-world conditions.  
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3 Solution 

This section describes how the overall problem of tracking and classifying aerial objects 

from a video stream was addressed. The proposed architecture is represented in Fig. 1. 

As shown, the solution consists in using classical computer vision for object tracking 

and deep learning for object classification. The idea is that when the tracking detects a 

suspicious aerial object a snapshot is taken by the camera and a deep convolutional 

model performs object classification using the zoomed-in image. The following sec-

tions describe the tracking and classification modules in more detail. 

 

 
 

Fig. 1. The architecture proposed for tracking and classification of air targets. 

3.1 Object Tracking 

This section describes the methods used for locating and tracking one or more aerial 

objects in an input video. As shown in Fig. 1, the system receives at each moment a 

video frame and attempts to find relevant object observations (or detections). This is 

done by using a frame-difference motion detector that performs binary thresholding 

using a minimum and maximum threshold values (TheshMin and ThreshMax) [21]. The 

items detected are then dilated in order to optimize the probability of detecting well-

defined targets. The dilating operation expands the found shapes, making them bigger 

according to a kernel (set to a 3x3 matrix) and a number of iterations (DI). The outcome 

of this stage is a set of detections. 

A multi-object tracking method based on the Jonker–Volgenant algorithm and Kal-

man filter is used to generate a set of reliable trajectories (or tracks) using previous 

information and detections in the current frame. The Kalman filter is used to help es-

tablish the tracking model, using the existing object information to predict future loca-

tions. At each moment, the filter estimates the object position and performs parameter 

correction. The Jonker–Volgenant algorithm is based on defining a cost matrix between 

tracks and detections and solving the nodes correspondence through a linear assignment 

method. The core of the Jonker–Volgenant algorithm is the shortest augmenting path 

traversal, as in the Hungarian solver, but it uses heuristics to reduce the execution time. 

The goal of the solver is to associate tracks with detections and also to start and remove 

tracks. A track is removed after a number of continuous frames are skipped (FR) and an 
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association is valid only if the Euclidean distance between the track and the observation 

is less than a certain threshold (DV).  

 

3.2 Object Classification 

This section describes the methods used for classifying an aerial object after it is con-

sidered suspicious by the system. The deep learning model used here is a residual net-

work. This is a state-of-the-art kind of convolutional neural network (CNN) that has 

achieved high classification performance on several datasets, such as ImageNet. The 

residual connections of residual networks make it possible to train deeper networks 

while reducing the probability of having overfitting problems. In addition, since these 

networks work by stacking modules of the same topology there is a reduced number of 

hyper-parameters. This simplicity also reduces the risk of overfitting. Transfer learning 

is used to train the residual network. Transfer learning has the advantage of reducing 

the training time of the neural network while resulting in a lower generalization error. 

The residual network ResNet-50 was the network chosen to be retrained for our da-

taset. ResNet-50 is a network trained on a large set of images with 1000 categories. 

This training allows the network to detect generic features from images. Our re-training 

consisted of doing only small/simple weight adjustments in order to create the network 

for the intended classification. Prior to the re-training, it was necessary to remove the 

top layer of the ResNet-50, that considered the output of 1000 classes, and add a new 

layer with four outputs, one for each of the considered classes: aircraft, drone, bird, and 

clouds. The aircraft class contained both airplane and helicopter as well as military and 

civilian airplanes. The drone class included quadcopters, hexacopters, and octocopters. 

The output of the network was an array of classification probabilities. 

4 Methodology 

In this section, we present the methods and materials used to perform the evaluation of 

the system. We evaluate the system at two different stages: at the first stage we evaluate 

the tracking system and at the second stage we evaluate the deep learning pipeline for 

classification. This evaluation is done independently. In the following text, we describe 

the datasets used, the configuration of the tracking and deep learning solutions as well 

as the evaluation methods.  

 

4.1 Datasets 

From 24th to 28th of June 2019 a field experiment of the ALFA project took place in 

Cacela Velha, Portugal. The dates of the experiment were selected to guarantee good 

weather conditions. While different aerial targets were flying overhead (helicopter, 

light airplane, and drones), an off-the-shelf camera followed and recorded the moving 

objects. Some of these videos were collected and used in this study. Overall, they form 

dataset DS-1 and are further described in Table 1. In the scope of this paper, the goal 

of dataset DS-1 was to be used to evaluate the tracking capabilities of the system. 



6 

To evaluate the classification system we had three datasets: DS-2, DS-3, and DS-4. 

A total of 7763 images was collected from the Internet in order to be used to train the 

ResNet-50. This dataset, DS-2, consisted of images of aircraft, drones, birds, and 

clouds, where 2452, 2491, 2545 and 2758 were the number of images for each class, 

respectively. Some image examples are shown in Fig. 2. The aircraft class contained 

helicopters as well as military and civilian airplanes. The drones class included quad-

copters, hexacopters, and octocopters. The images were cropped with the aim of having 

flying objects or birds against the sky. The images were resized to the proper input 

dimensions of the used neural networks. The number of images was augmented several 

times by generating new images from the original ones, which was done applying rota-

tion, shift, shear, zoom, and flip. 

Table 1. Description of videos in dataset DS-1 (videos to evaluate tracking).  

Video Description Frames Frames with Target(s) 

1 Video of a light airplane (Cessna 172)  4187 3069 (73.30%) 

2 
Video of a helicopter (Eurocopter 

AS355F1) 
3225 3045 (94.42%) 

3 Video of a quadcopter 5630 5530 (98.22%) 

 

     
c) aircraft                 b) UAV (drone)           c)   bird       d) clouds 

Fig. 2. Examples of images collected from the internet (DS-2) to train the classification system. 

     
c) aircraft         b)    bird         c)   UAV (drone)   d)   clouds 

Fig. 3. Examples of images from dataset DS-4 used to evaluate the classification system 

The images collected from the Internet had high quality (see Fig. 2). However, our 

previous tests indicated that zoomed-in images of aerial objects from the field do not 

have this same quality (please compare the images in Fig. 2 with Fig. 3). Accordingly, 

and in order to to make our ResNet-50 more capable of handling images collected from 

the field, a new dataset, DS-3, also based on the same set of internet images, was cre-

ated. Here, besides rotation, shear, zoom, and flipping, the object shift was increased, 

the colors were randomly changed and Gaussian blur was added.  

We did several field experiments to collect zoomed-in pictures of aerial objects. The 

purpose here was to test ResNet-50 in real-world conditions. The experiments took 

place in several different places of Portugal (Leiria, Nazaré) and Holland (Monster). 
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This dataset, DS-4, was composed of 582 aircraft, 39 birds, 128 clouds and 1091 drone 

images. To obtain the testing images, the camera zoomed in on different objects and 

took a snapshot for posterior processing. The small number of bird images was in-

creased by using 876 images from a work [22] where images were gathered in a wind 

farm and had relatively low quality due to capturing distant birds. Only images of birds 

with more than 40x40 pixels were used. This resulted in a total of 915 images with 

birds. Some examples of images from this dataset are shown in Fig. 3.  

 

4.2 Configuration  

The object tracking system was configured for each video in the dataset. Generally, in 

the implementation of the Kalman filter, we have set the process noise (Q) high (set to 

10), compared to the measurement noise (R) which was set to 0.001. This allowed us 

to adapt more effectively to the sudden changes in the speed of the aerial objects. We 

also had to set the maximum Euclidean distance traveled (DV=75, 200 and 300) to a 

large value because the objects sometimes moved fast and traveled great distances from 

one frame to the other. By setting the number of dilating iterations (DI) to 15, 30, and 

40 we were able to track both close and distant aerial objects.  To capture significative 

changes but disregard minor alterations we set the parameter ThreshMIN of binary thresh-

olding to 30. The parameter ThreshMAX was set to 255. The maximum number of frames 

that a track could be idle (FS ) was set to 20 frames.  

Our work comprised the creation of a ResNet-50 with four output neurons, one for 

each considered class. The activation function was Rectified linear unit (ReLU). The Res-

Net-50 had an input convolutional layer and max pooling, followed by 48 residual mod-

ules. In the end, there was a fully connected network. ResNet was trained with transfer 

learning. The software was implemented in KERAS (https://keras.io/) to run in graph-

ical processing units (GPU). The training algorithm used was Stochastic gradient de-

scent (SGD), the training error was measured by Categorical cross-entropy.  

 

4.3 Evaluation Method 

To perform an evaluation of the tracking system, we developed an automatic tool to 

help annotate video. All videos in dataset DS-1 were annotated with this tool by man-

ually placing bounding boxes around aerial objects and interpolating their trajectories 

between keyframes. All objects were annotated, except in case of total occlusion. Each 

object of interest entering the scene got a unique ID, i.e. if a target left the screen to 

reappear later again, a new identifier would be assigned. Please note that bounding 

boxes were fairly aligned but not always perfectly aligned due to incorrect interpolation 

or mistakes made by the annotator. 

To evaluate the tracking system we used the metrics referred in [23]. We chose this 

work because the authors define tracking performance in terms of tracks. The basis of 

the evaluation is the Intersection over Union (IoU) metric: 

 

𝐼𝑜𝑈𝑘 =  
𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎𝑈𝑛𝑖𝑜𝑛

 (1) 

 

https://keras.io/
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Intersection over Union (IoU) for a given object in frame 𝑘 is a ratio where the numer-

ator is the area of overlap between the predicted bounding box and the ground-truth 

bounding box and the denominator is the area of union. We define the following binary 

variable based on a threshold 𝑇ℎ𝐼𝑜𝑈which in our examples is set to 20%, as in [23]:  

 

𝑂𝑘 =  {
  1, 𝐼𝑜𝑈𝑘 ≥ 𝑇ℎ𝐼𝑜𝑈

0,       𝑐𝑐 
   (2) 

 

The concept of IoU allows classifying tracks as true positive (TP), false positive (FP) 

or false negative (FN). Concretely, a ground truth track 𝐺𝑇 with 𝑁 number of frames 

has been correctly detected if there exists at least one track 𝑇 where:  

 

∑ 𝐼𝑜𝑈𝑘(𝐺𝑇, 𝑇)𝑂𝑘(𝐺𝑇, 𝑇)𝑁
𝑘=1

𝑁
≥ 𝑇ℎ𝑠𝑝𝑎𝑡𝑖𝑎𝑙  (3) 

 

∑ 𝑂𝑘(𝐺𝑇, 𝑇)𝑁
𝑘=1

𝑁
≥ 𝑇ℎ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (4) 

 

The previous conditions mean that coverage (in number of frames) should be larger 

than a predefined overlap threshold which we set to 15% (𝑇ℎ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙), as in [23]. We 

also impose that the system track has sufficient spatial overlap (𝑇ℎ𝑠𝑝𝑎𝑡𝑖𝑎𝑙) with the 

ground truth track, that is set to 20%, as in [23]. A ground truth track is considered to 

have not been detected correctly whenever conditions (3) or (4) do not hold for all sys-

tem tracks. We also measure the number of ground truth track fragmentations (𝑇𝐹) as 

the number of system tracks that fulfill conditions (3) and (4) for a given ground truth 

track. For each of these system tracks, we calculate closeness of track (𝐶𝑇) for a given 

track and a ground truth track 𝐺𝑇 as the ratio of the sum of 𝐼𝑜𝑈 over the number of 

frames where there is a temporal overlap. In a similar way, we compute the track match-

ing error (𝑇𝑀𝐸) as the average distance error between a system track and a ground truth 

track 𝐺𝑇. Distance is measured as the Euclidean distance between the centroids of the 

two tracks. Finally, we use the metric of track completeness (𝑇𝐶) and average track 

completeness as the:  

 

𝑇𝐶 =  
∑ 𝑂𝑘(𝐺𝑇, 𝑇)𝑁

𝑘=1

𝑁
 (5) 

𝑇𝐶𝑀 =  
∑ max (𝑇𝐶(𝐺𝑇, 𝑇))

𝑁𝐺𝑇
𝐺𝑇=1

𝑁𝐺𝑇

 (6) 

 

In order to evaluate the classification capabilities of ResNet-50, three datasets were 

used for training (DS-2 and DS-3) and three datasets (DS-2, DS-3, and DS-4) were used 

for testing. Concretely, the dataset DS-2 was split into three sets for training, validation, 

and testing. The training set was used to adjust the network weights, while the valida-

tion set was used to select the best hyperparameters. The network performance was 

evaluated on the testing set in order to serve as a baseline. The split used for each class 

was 1000 images for training, 500 for validation and the remaining for the testing which 
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resulted in a total of 4000, 2000 and 4246 images for training, validation, and testing, 

respectively.  A similar procedure was used for dataset DS-3. Even though the testing 

sets of DS-2 and DS-3 were used for evaluating the models created, we also run tests 

using the data of DS-4, which consists of 582, 915, 128, and 1091 images of aircraft, 

birds, clouds, and drones, respectively. Here, we were interested in investigating how 

the models worked under real-world conditions.  

To evaluate the ResNet-50 models we use the metric of recall, i.e. the number of 

items correctly identified as positive out of the total actual positives for a given class 

— TP/(TP+FN). We also compute the metric of precision, i.e. the number of items 

correctly identified as positive out of all instances where the algorithm declared the 
class — TP/(TP+FP). We analyze recall/precision for each class of interest. The macro-

average F-Score is considered, i.e. the harmonic mean of the average recall and average 

precision.  

5 Results 

This section presents the results of evaluating the tracking system and evaluating the 

system classification methods. The goal here was to show that we can attain reasonable 

performance in a real-world scenario.  

 

5.1 Tracking  

Table 2. Evaluation results for DS-1.  

Video   Video 1 Video 2 Video 3 

Correctly detected tracks (TP) (%)   83.33% 83.33% 100% 

Incorrectly detected tracks (FN) (%)   16.67% 16.67% 0% 

Average track fragmentations (𝑇𝐹)    1.17±0.4 1.20±0.4 1 

Average of track closeness (𝐶𝑇) (%)   54.02±18.8 54.03±20.2 59.82±16.1 

Average track matching error (𝑇𝑀𝐸)    6.66±3.7 18.44±14.3 27.70±9.6 

Average track completeness (𝑇𝐶) (%)   66.63±19.3 61.44±30.0 55.23±27.8 

 

We investigated the performance of the tracking system in each of the three videos of 

dataset DS-1. As shown in Table 2, the percentage of correctly detected tracks was 

consistently high. Almost all tracks were covered both spatially and temporally. In re-

gards to tracking completeness, our results were also positive, showing that the ground 

truth tracks had considerable temporal overlap with their longest corresponding system 

tracks. Concretely, ground truth tracks were able to be covered by their longest system 

tracks by a considerable percentage – up to 55%. In regards to tracking closeness, the 

results were positive. 

The track closeness was high, above 54%, meaning that the spatial coverage was on 

average reasonably good. It would be difficult to reach larger values in this respect. 

This can be explained by the fact that the bounding boxes annotated are usually larger 

than the bounding boxes detected, which results in low Intersection over Union (IoU) 
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values. Moreover, the results in terms of track closeness suggest that detection by frame 

subtraction is a method not always robust to slow object movements or very rapid object 

movements. In the case of slow movement, only a small part of the object may be de-

tected. In the case of rapid movement, the object detected may encompass the location 

of the object in the previous frame and in the current frame. More sophisticated object 

detection techniques could be used to improve the metrics of track closeness.  

The metric of track matching error showed that the predicted trajectories and the real 

trajectories were consistently close. Please consider that the average Euclidean dis-

tances correspond to images with 1280x720 pixels. Accordingly, the TMEs obtained 

are considerably low, a promising result.  

 

5.2 Classification 

The results of evaluating the classification system are presented in Table 3. We were 

first interested in investigating the performance of the ResNet-50 trained with the orig-

inal images from the Internet (dataset DS-2). When testing this ResNet-50 using the 

dataset of the images that the authors collected from the field (dataset DS-4), the F-1 

score decreased significantly, from 98.7% to 73.5% compared to the same ResNet-50 

tested on the DS-2 testing set. This was due to a decrease in both precision and recall. 

Concretely, the drone class decreased from a recall of 98.7%, with internet obtained 

images, down to 70.0%, with images from the field. The performance reduction was 

even more significative for the aircraft class, from 98.1% down to 45.5%. The bird class 

had the lowest F1-score of all the classes due to its very low precision (38.0%). This 

overall performance decrease was probably due to the lower quality of the images in 

the new test set (from dataset DS-4), namely the sky color not being from a vibrant blue 

and due to some blur that originated less defined shapes.  

Table 3. Recall (R) (%), Precision (P) (%) and F-1 Score for different ResNet-50.  

Net 
Input 

Size 

Data Classes 

F-1 

Score 
Train 

Da-

taset 

Testing  

Da-

taset A
ir

cr
a

ft
 

B
ir

d
s 

C
lo

u
d

s 

D
r
o

n
e
s 

R P R P R P R P 

1 101x101 DS-2 DS-2 98.1 97.4 98.6 98.8 100 100 98.2 98.7 98.7 

2 71x71 DS-3 DS-3 94.9 95.6 96.7 99.0 99.7 100 97.8 94.3 97.2 

3  101x101 DS-3 DS-4 45.5 70.9 95.7 71.0 100 38.0 70.0 99.0 73.5 

4 71x71 DS-4 DS-4 83.0 84.4 88.3 97.3 100 97.0 99.5 91.8 92.7 

 

In order to try to make the ResNet-50 more capable of handling lower quality im-

ages, a new training set (from dataset DS-3), which consisted of internet images that 

were subject to blur, color change and object shift in addition to the operations of rota-

tion, shear, zoom, and flipping, was used to make a new model. This new ResNet-50, 
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had a high F1-score when tested on the same dataset. The F-1 score of 97.2% is com-

parable to the score of 98.8% obtained by the ResNet-50 trained and tested with only 

high-quality images from the internet (dataset DS-2). The small difference that we 

found is probably a consequence of the more demanding training set and also of de-

creasing the image sizes from 101x101 pixels to 71x71 pixels in order to limit the 

amount of memory necessary to create and use the datasets.  

When the new ResNet-50, trained with data from dataset DS-3, was applied to the 

test set of images collected from the field, dataset DS-4, the F1-Score increased to 

92.7%. This result suggests that this model is suitable to be used in real-world condi-

tions. The model’s recall of 83% for aircraft and 99.5% for drones is a significant im-

provement with respect to the previous figures of 45.5% and 70.0%, indicating that, as 

expected, training with different colors and blur brings robustness to classification.  

6 Conclusions 

The widespread use of amateur drones and other aircraft poses various safety, security 

and privacy threats. To address these challenges, drone surveillance is an important but 

not totally explored topic. In this paper, we were interested in evaluating in real-world 

conditions a tracking and classification system that targets drones, birds and other air-

craft. This kind of methods can be integrated into surveillance systems used in airports 

or can be used to secure other intelligent transportation systems, such as railways or the 

metro network. 

This paper comes from a line of work [20] in which we used a tracker based on the 

Hungarian algorithm and trained/evaluated a ResNet-50 for classification with images 

from the Internet. In this work, we use the Jonker–Volgenant for tracking and train the 

same network with photos acquired in real-world conditions. Our results are positive 

showing that we can attain reasonable performance in tracking and classifying multiple 

aerial targets.  

As future work, we intend to improve the detection methods of close objects as we 

found out that by using movement subtraction to detect aerial objects we were not al-

ways able to fully detect the true boundaries of the object in the frame. Rapid and slow 

movements made the detection bounding box encompass both the previous and the next 

location of the object in the frame.  
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