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Abstract – As maritime smuggling is being 
combatted more effectively, the criminal “modus 
operandi” consists more frequently of using small 
aircraft and drones for drug transport. To address this 
issue, we report our efforts to develop a system capable 
of accurately tracking suspicious flying objects and 
identifying them on video streams. Our solution 
consists in coupling classical computer vision with 
deep learning to perform tracking and object 
detection. A discrete Kalman filter is used to predict 
the location of each object being tracked while the 
Hungarian algorithm is used to match objects 
between successive frames. Whenever a potential 
target is considered suspicious the input images are 
zoomed and fed into a deep learning pipeline that 
separates images into the classes aircraft, drones, 
birds or clouds. A literature survey indicates that this 
problem with important applications is yet to be fully 
explored. 

Keywords – Object Tracking and Detection; Deep 

learning; Convolutional Neural Networks; Residual 

Networks 

I. INTRODUCTION 

The rising misuse of LSS (Low, Small and Slow) 
manned and unmanned aircraft and drones for illegal 
operations as, drug transport, is an emerging problem. 
These can be launched from almost any location and 
move at low altitude and speed to mask their presence. 
Drones can even autonomously reach any landing site 
even under adverse environmental conditions [1]. The 
work reported in this paper was conducted within the 
framework of the European project “ALFA - Advanced 
Low Flying Aircraft Detection and Tracking” whose 
main objective is to develop a system for timely 
detection, classification and understanding of the 
intentions of suspect air targets. The project combines 
radar technology with video detection methods, with 
the radar providing a direction to look at to an off-the-
shelf camera. Since it is possible to use the video system 
without the radar, the interaction with the radar will not 
be studied here.  

The developed system contains tracking methods 
that maintain a record of potential air targets. Whenever 
the tracking methods find suspicious activity, the 
camera zooms in on the potential target and the 
resulting image is fed into a deep learning pipeline that 

separates images into the classes of aircraft, drones, 
birds or clouds. The explanation for the use of these 
classes comes from the fact that the robust separation of 
birds and clouds is essential to avoid false alarms. Birds 
and clouds cannot be easily eliminated by the tracking 
methods, as other moving targets are, because their 
movement can be similar to that of aircraft. The 
classifier is also able to separate aircrafts from drones 
(of quadcopter type) since this distinction may result in 
different countermeasures. 

To the best of the authors’ knowledge, this is the 
first study applying an advanced type of convolutional 
neural network, a residual neural network, to the current 
problem, as well as a combination of the Hungarian 
algorithm and Kalman filter. Residual neural networks 
won the ILSVRC 2015 [2] competition and are 
appealing because their performance, contrarily to 
standard convolutional neural networks, does not 
degrade when depth increases significantly, allowing 
deeper networks and increased detection efficiency.    

The remaining of this paper is organized as follows. 
Section II reviews related work. Section III introduces 
and explains the used methods. Section IV describes the 
datasets and the experimental setting and Section V 
presents the results. Finally, Section VI concludes the 
paper.  

II. RELATED WORK 

A. Tracking 

Object tracking consists in locating objects 
throughout their moving stages in a sequence of images 
[3]. Object tracking is, in general, a challenging 
problem due to the projection of 3D objects on a 2D 
image, noisy and/or cluttered background, potential 
occlusions, lighting issues as well as real-time 
processing requirements [4]. The tracking of LSS 
objects poses even more significant problems [5]. With 
LSS objects, tracking has to deal with missed detections 
as well as false alarms, and also with the difficulties of 
appearance similarity among multiple objects. 

The majority of existing work on visual tracking 
employs motion tracking methods [6]. Here, objects are 
first detected and then linked into trajectories. The task 
of associating objects with trajectories is typically cast 
as an optimization problem. Given an observation 

mailto:armando.fernandes@inov.pt
mailto:marcia.baptista@inov.pt
mailto:luis.fernandes@inov.pt
mailto:paulo.chaves@inov.pt


(detection) the model attempts to associate the observed 
object with a trajectory. Some classical and 
deterministic approaches to this problem include 
bipartite graph matching, dynamic programming, min-
cost max-flow network flow and conditional random 
field [6]. A method that stands out as a popular 
deterministic approach is the Hungarian algorithm [7], 
which is able to solve the bipartite graph matching 
assignment problem in polynomial time, with time 
complexity O(n3) where n is the number of tracks. In 
contrast with deterministic approaches, probabilistic 
tracking represents states of objects as a distribution 
with uncertainty. This more intuitive approach to 
problem usually relies on filtering techniques such as 
the Kalman filter [8], or particle filter [9]. It is common 
to find works combining the Hungarian algorithm with 
Kalman filter in order to obtain a more comprehensive 
solution.  Examples of works with this combination are 
[10] and [11]. Frequently, this solution is used with 
YOLO for people tracking[12]. Curiously, the authors 
did not find scientific works applying this combination 
to aircraft and drone tracking.  

A major issue in tracking systems is how to measure 
similarity between objects in frames. Different authors 
approach this issue differently [6], [7]. For LSS objects 
the extraction of an appearance model is a challenge as 
information such as color, shape and motion may be 
inexistent or limited due to the targets’ small and/or 
varying size.  

B. Identification 

The first works in object detection involved 
handcrafted features which required skill and a 
reasonable amount of time to complete the task. The 
promising results of deep learning in other fields and 
the fact that convolutional neural networks can learn 
their input features encouraged the community to apply 
them to the current problem. To the best of the authors’ 
knowledge, this is the first study applying an advanced 
type of convolutional neural network, a residual neural 
network to the current problem. Some studies in flying 
object detection have used standard convolutional 
neural networks [13]–[18] and also VGG and ZFNet 
[19], that are elaborate convolutional neural networks 
previous to residual networks. Faster R-CNN [19]–[21] 
as well as YOLOv2 from Liu et al. [22], which are 
networks able to find a bounding-box for the objects in 
the images, were also employed. None of these works 
employs the shortcut connections responsible for 
residual networks success. These connections are 
described in detail in the methods section.   

From all the studies in flying object detection only 
a few were found that employ some subset of the classes 
from the present study, namely birds, drones, aircraft or 
clouds. These studies will be analysed below in further 
detail. In fact, no study that employs these four classes 
simultaneously was found. 

In Saqib et al. [19], birds and drones were separated 
using Faster RCNN, ZFNet and VGG. Since the 
objective was to draw a bounding-box around 
interesting objects they report a best mean absolute 
precision (mAP) of 0.66. Even though a 2727 frames 
dataset was mentioned it is unclear if this was a test set 
or if all frames contained drones. Another work, 
Farhadi et al. [21], employed a moving object detection 

system before a Faster-RCNN combined with the VGG 
model to identify birds and drones. The dataset 
contained 2130 frames with drones, but the test set 
dimension is again not clear. They report being able to 
follow the drone trajectory. In Aker et al. [23] a 
convolutional neural network without an independent 
object detection method associated was shown to 
distinguish between drones and birds with precision and 
recall values surpassing 90%. The work used 89 drone 
and 126 bird real images to generate a dataset. It is not 
clear if the test images are real or generated.  

The work in Liu et al. [22] distinguished between 
airplanes, helicopters and drones with classification 
accuracies of 96.03%, 90.47% for the first two classes, 
but only 52.13% for drones, with YOLOv2. Even 
though the total number of images available for this 
work was 30000, the test set had only 300 drone, 100 
helicopter and 100 fixed wing aircraft images which is 
smaller than the approximately 1000 images per class 
in the test sets of the present work. The images were 
partly collected from the internet and partly acquired 
specifically for the study.   

Unlu et al. [13] used a test set with only 221 bird 
and 82 drone images and reached correct detection 
percentages of 93.7% and only 64.6%, respectively, 
with a convolutional neural network. However, for 
other algorithms, they reported better results that seem 
less reliable since the test sets contained less than 50 
images in total. The data was obtained from open 
sources.  

The project SafeShore [24] issued a “drone-vs-bird 
detection challenge” whose goal was to detect a drone 
appearing at some point in a video where birds could 
also be present. The winner of the competition 
Schumann et al. [18] reported 99.2%, 99.1% and 98.9% 
correct identification percentages for UAV, birds, and 
clutter (background), respectively. Even though they 
have gathered a large dataset with 3386 drone, 3500 
bird and 3500 background images, only 10% was used 
as a test set. The system included an object detection 
method before the convolutional neural network, as we 
do, but different from ours. The images were from the 
internet and acquired specifically for the work. Even 
though it is rather similar to the present work, 
Schumann et al. did not train a classifier to distinguish 
drones from larger aircraft as we do. In addition, their 
convolutional neural network is standard and less 
advanced than our residual neural network.  

III. METHODS 

This section describes how the problem of locating 
and identifying flying objects on a video stream was 
addressed. The overall architecture is represented in 
Figure III-1. As shown in the figure, the proposed 
architecture consists of a classical computer vision 
solution used for object tracking followed by a deep 
learning convolutional model that performs object 
identification. The next subsections describe each of 
these building blocks. 

 

Figure III-1: Architecture proposed for tracking and 
identification of flying objects. 
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A. Tracking  

This section describes how we addressed the 
problem of locating multiple small moving objects in a 
sequence of images, maintaining their unique identities 
and capturing their individual trajectories given an 
input video. As shown in Figure III-1, the system 
receives at each moment an input image corresponding 
to a video frame and attempts to find relevant 
detections. We work with a resolution of 1280×720 
pixels. This represents a considerable amount of 
information to process. It is however, not possible to 
downsample these images, at the risk of losing 
important information such as the location of a relevant 
object. Please note that we aim to detect small targets 
with a minimum size of three pixels in linear resolution. 
A trade-off between sensibility and false positive rate is 
necessary when detecting distant objects in a short 
period of time. Due to the previous restrictions, it is not 
possible to do motion detection [25] with the typical 
preprocessing technique of background subtraction. A 
more suitable alternative is the consecutive frame 
subtraction method [26]. In this method, for a given 
time instant t, the background is assumed to be the 
frame at time t-1. A difference image 𝐷(𝑥, 𝑦, 𝑡)  is 
calculated as follows:  

𝐷(𝑥, 𝑦, 𝑡) = |𝐹(𝑥, 𝑦, 𝑡) − 𝐹(𝑥, 𝑦, 𝑡 − 1)| (1) 

The accuracy of a frame-difference motion detector 
is somewhat limited. Due to its design, missed 
detections and false alarms can occur frequently which 
can provide misleading information to the tracking 
algorithm. Accordingly, it is necessary to have a 
tracking method robust enough to overcome some of 
the possible failures of the motion detector and the 
difficulties caused by the similar appearance of multiple 
small objects. To address the previous issues, an online 
multi-object tracking method based on the Hungarian 
algorithm and Kalman filter was used. The goal was to 
generate a set of reliable object tracks using previous 
information and current detections.  

The Hungarian algorithm assumes the existence of 
two groups of data. The first is the current data and the 
second is the previous data. Current data represents 
each detected moving object in the current video frame 
where this data has no identity yet, and the previous 
data represents the data that have a certain identity set 
by the previous data association process (i.e. the tracks). 
The cost distance of each pair detection/track is 
computed in a cost assignment matrix. The algorithm 
works so that every track is assigned to a detection, and 
every detection is assigned to a track as to minimize the 
total cost of assigning all the tracks to detections. The 
aim is to associate tracks with detections as well as 
initialize tracks and terminate them. 

In this work the focus was on the shape and motion 
features required to calculate the affinity between two 
objects. Having to track small targets with limited or no 
appearance information made it impossible to rely on 
appearance. Consequently, the following two models 
were explored [27]:  

1) Shape Model  
The aspect ratio of the tracked object is expected to 
change over time and, as a result, the average 
height/width of the object over the track cannot be used. 

Instead, the last measurements of the object in the track 
are used as its shape affinity: 

𝑎𝑓𝑓𝑠ℎ𝑎𝑝𝑒(𝑑𝑖 , 𝑡𝑗) =  𝑒
−𝑤1(

|ℎ𝑡−ℎ𝑑|
ℎ𝑡+ℎ𝑑

+ 
|𝑤𝑡−𝑤𝑑|
𝑤𝑡+𝑤𝑑

)
(2) 

where 𝑑 and 𝑡 represent a detection and a track object 

while 𝑤  and ℎ represent the width and height of the 

detection’s bounding box and the factor 𝑤1weights the 

importance of the shape factor in the final cost/affinity 

calculation; 

2) Motion Model 
The current position (𝑥, 𝑦) is used as a motion model:  

𝑎𝑓𝑓𝑚𝑜𝑡𝑖𝑜𝑛(𝑑𝑖 , 𝑡𝑗) =  𝑒
−𝑤2((

|𝑥𝑡−𝑥𝑑|
𝑤𝑑

)
2

+(
|𝑦𝑡−𝑦𝑑|

ℎ𝑑
)

2

)
(3) 

where the factor 𝑤2 weights the importance of the 

motion factor in the final cost/affinity calculation. 
Assuming the independence between the two previous 
models, the affinity between detections/tracks can be 
calculated as: 

𝑎𝑖𝑗 =  𝑎𝑓𝑓𝑠ℎ𝑎𝑝𝑒(𝑑𝑖 , 𝑡𝑗) ∗  𝑎𝑓𝑓𝑚𝑜𝑡𝑖𝑜𝑛(𝑑𝑖 , 𝑡𝑗) (4) 

In tracking applications, it is important to predict 
object motion to ensure that the matching of tracks and 
detections is achieved with the least possible error. A 
filter algorithm is used to help establish the tracking 
model, using the existing object information to predict 
future locations. The camera used has a frame rate of 
approximately 6 frames per second, so there is 
relatively little change between two adjacent frames. 
Accordingly, the location of the moving target is 
considered to have little change and a filter solution is 
used to estimate the object’s location in a small range.  

There are many filter algorithms applicable in 
tracking applications, including particle filter, low pass 
filter, and many others. Each filter has its own 
advantages and disadvantages. Per example, in the 
context of sensing multiple objects, the low pass filter 
has the lowest robustness in accuracy and precision but 
requires few computational resources, being a 
considerably efficient solution. Our option was the low 
pass filter, a fast and simple solution. The most 
common implementation of the low pass filter is the 
discrete Kalman filter. At each moment the Kalman 
filter estimates the object position and performs 
parameter correction.  

This section described how the classical image 
processing methods identify a set of potential targets 
that can be imaged with zoom and afterwards processed 
with the deep learning model that will be described in 
the following section.  

B. Identification/Deep Learning 

The present section describes the deep learning 
model. The goal here is to classify images as aircraft, 
drones, birds or clouds. The flow proceeds as follows. 
First, the model receives, as input, images of moving 
objects that were previously considered to be potential 
targets of interest by the tracking system. The criteria 
for triggering the deep learning classification is the 
successful tracking of the same moving object for more 
than 𝜏𝑝 frames. It is assumed that the images are subject 

to considerable zoom before being fed to the deep 
learning model. The output here is a classification in the 



form of an array of probabilities for each considered 
class (aircraft, drones, birds, clouds). Below is 
described the types of deep learning models and 
methods used to accomplish this classification.  

1) Convolutional Neural Networks (CNN) 

A CNN is composed of convolutional, pooling and 

fully connected layers. The objective of these layers in 

the CNN is to create high order features that improve 

the classification efficiency. The convolutional layers 

consist of a set of feature maps with an associated 

receptive field of the size of only a small region of the 

input spectra. Each feature map output corresponds to 

the convolution (dot product) between the receptive 

field weights and all image points. This means that 

contiguous points in the feature map were determined 

in overlapping and contiguous regions of the input 

image. This way, several features are determined over 

the whole image. The big advantage of using 

convolutional layers is that they have much less 

weights to be learned than a fully connected neural 

network. The pooling layer is applied to the feature 

maps and performs a down-sampling. In the present 

work, the feature maps were divided into non-

overlapping regions and their maximum taken. After 

the convolution and pooling layers, a fully connected 

neural network with one hidden layer processes the 

features coming from the previous layers.  

2) Residual Networks (ResNet) 
ResNet, an enhanced type of CNN, was created to 

solve the problem that deeper neural networks were 
providing worse results than shallower networks. They 
also have less parameter to train, than other previous, 
very deep architectures such as Inception, being 
therefore less computationally demanding. The way to 
be able to build deeper networks was the introduction 
of shortcut connections that allow for residual learning. 
The shortcut connection is a direct connection from the 
input to the output of the various (residual) modules that 
compose a ResNet. Residual learning means that 
instead of having to learn a mapping from input to 
output, called H, one can use each module to 
approximate a residual function F = H-x where x is the 
module input. The x is propagated by the shortcut 
connections. Even though the modules are capable of 
learning H or F it is easier to learn the F functions. The 
shortcut also allows for a better propagation of the 
training gradients, which is fundamental to create 
deeper networks. The residual modules that compose 
the ResNet are formed by a 1x1 convolution, followed 
by a 3x3 convolution and another 1x1 convolution. This 
module is said to have a bottleneck design. The 1x1 
convolutions are used for reducing and increasing the 
dimensions of the information flowing though the 
network. The dimensions are reduced before the 
expensive 3x3 convolutions and are increased after. 
The 1x1 convolution corresponds to multiplying a 
single input pixel from various feature maps by the 
values of a filter and passing the result through a 
nonlinearity. This can be seen as applying a perceptron 
to the input.  

3) Transfer learning 
The present work used transfer learning meaning 

that a ResNet-50 developed for ILSVRC competition 

was retrained for our problem. The ILSVRC consists of 
classifying images into 1000 different classes that are 
not those of the present problem. The reason to use the 
ResNet-50 trained for ILSVRC comes from the fact that 
it has learned to extract a large number of high-level 
features that are useful for the current task. 
Consequently, the training requires smaller/simpler 
weight adjustments in order to create the network for 
the desired task. With this procedure it was necessary 
to remove the top layer of the ResNet, which had a 1000 
classes output, and add a new top layer with four 
outputs, one for each of our classes. Transfer learning 
has the advantage of allowing to successfully training 
deep networks, such as ResNet, using a smaller number 
of training patterns when compared to having to train 
them from random weights or other types of weight 
initialization. 

IV. DATASETS AND EXPERIMENTAL SETTING 

A. Data Collection 

Two datasets were employed. The first, to evaluate 
the tracking, consisted of a video of a drone flying over 
an open field in Leiria, Portugal. While the drone was 
flying over, an off-the-shelf camera automatically 
tracked potential moving objects. This dataset was not 
used for testing the deep learning algorithms because 
there were no images of birds and aircrafts. The second 
dataset, for deep learning, consisted of images of 
aircraft, drones, birds and clouds, collected from the 
internet. By doing this it was assumed that, in the future, 
with the constant technological evolution, the video and 
tracking systems are capable of providing images of 
comparable quality to those gathered in the internet. 
Some image examples are shown in Figure IV-1. The 
aircraft class contained both airplane and helicopter as 
well as military and civilian airplanes. The drones class 
included quadcopters, hexacopters and octocopters. 
The images were cropped with the aim of having flying 
objects or birds against the sky, even though in many 
cases this was not possible. In this situation, the 
presence of other elements in the image was minimized. 
The total number of images for the classes aircraft, 
drones, birds and clouds were 2452, 2491, 2545 and 
2758, respectively. The dimensions of images found in 
internet were variable, but they were mostly large 
images with more than 100x100 pixels. The images 
were resized to the proper input dimensions of the used 
neural networks. The number of images was augmented 
29 times by generating new images from the original 
ones, which was done applying rotation, shift, shear, 
zoom and flip.  

  

  

Figure IV-1: Images of the four classes. 



B. Evaluation Method 

To have a rough sketch of the tracking system 
capabilities, 1 minute and 32 seconds of video with two 
flying drones, acquired with the system processing six 
frames per second (fps), were analyzed in terms of 
detection accuracy, average length of correctly tracked 
trajectory, average length of not tracked trajectory and 
false positives. To train and evaluate the deep learning 
classifiers, the data were split into three sets for training, 
validation and testing. The training set was used to 
adjust the CNN or ResNet weights, while the validation 
set was used to choose the hyper parameters providing 
the best results. Once the best hyper parameters were 
chosen, the final network generalization ability was 
assessed on the test set. The split used for each class 
was 1000 images for training, 500 for validation and the 
remaining for test which resulted in a total of 4000, 
2000 and 4246 images for training, validation and test, 
respectively. Only the training images were augmented. 

C. Configuration of Deep Learning Models 

The work comprised the creation of CNN and 
ResNet-50 with four output neurons, one for each class. 
The software was implemented in KERAS 
(https://keras.io/) to run in graphical processing units. 
The training error was categorical cross entropy and the 
training algorithm the stochastic gradient descent. The 
used activation functions were rectified linear units 
except for the output neurons that had a softmax. The 
CNN was composed of four modules, with a 
convolution layer and a max pooling each, followed by 
a fully connected network and an output layer. The 
input images had 50x50 pixels and were grayscale or 
color. The ResNet-50 had an input convolutional layer 
and max pooling, followed by 48 residual modules. On 
top there was a fully connected network. The ResNet 
input images had 50x50 and 101x101 pixels and three 
colors. ResNet were trained with transfer learning while 
CNN were not. Aircraft, drone, birds and clouds have 
the same apparent size for the CNN and ResNet which 
is typical in ILSVRC; however, their shapes and 
remaining features are different which allows proper 
classification.  

V. RESULTS 

The drones were tracked with an accuracy of ~81% 
on the 553 frames of the video. The identified tracks 
had an average length of ~35 ± 20 continuous frames. 
The trajectory parts that were not correctly identified 
had an average length of ~42 ± 11 frames. Moreover, it 
was possible to track small targets of ~3 pixels, see 
Figure V-1a, as well as larger objects, see Figure V-1b. 
The motion and shape models allowed to distinguish 
the drone, and its distinct movements from most of the 
background artifacts in the sky. However, there were 7 
false targets that were persistently detected and tracked 

for more than 30 frames. These were caused by cloud 
movement and image noise. The previous values 
regarding the tracking system are only indicative since 
final values would require more extensive testing.  

The results obtained with the deep networks are 
shown in Table 1. A good indication of the 
generalization ability of the models is the small 
difference in results between the validation and the test 
results. In Table 1 the worse results were obtained with 
the relatively shallow convolutional neural network 
number 1, with grayscale input images. In this situation, 
the classes aircraft and birds exhibit classification 
efficiencies smaller than 90% in test. In CNN number 
2, keeping the image size and changing to three colors 
has the largest impact in the birds and clouds classes in 
test but is still insufficient to make birds class pass the 
90% threshold. When looking at the ResNet-50, 
number 3, with images of input size 50x50 pixels and 
with three colors, the lowest classification efficiency in 
test is 94.7% for birds, which means a significant 
improvement with respect to the CNN. In fact, the 
smallest improvement in test when changing from CNN 
to ResNet-50 with 50x50 color images was 3.3 
percentage points (p.p.) in the clouds class and reached 
5.3 p.p. in birds. Finally, when increasing the size of the 
input images from 50x50 pixels, in ResNet number 3, 
to 101x101 pixels, in ResNet number 4, while keeping 
three colors, test results larger than 98% were obtained. 
It is interesting to observe that clouds are the easiest 
class to separate, with 100% classification efficiency, 
probably due to the absence of well-defined shapes in 
images. The second best class is birds with 98.6% 
efficiency, followed closely by drones and aircrafts 
with 98.2% and 98.1%, respectively. In the 4246 test 
images only 51 were misclassified making it hard to 
find misclassification causes, however, there are some 
candidates such as the objects being blurred, off-center 
or occupying a small percentage of the image area. 

a)  b)  

Figure V-1: Images of tracking a quadcopter in video. 

VI. CONCLUSIONS 

The present work advances the state-of-the-art by, 
to the authors’ knowledge, being the first to present a 
system capable of tracking and classifying aircraft, 
birds and drones. We were also the first to use residual 
neural networks for the classification system. The 
correct classification percentages larger than 98%, in 
test, for all classes, surpass those of the work of Liu et 
al. and Unlu et al. and are comparable to those of 
Schumann et al., even though these results were 

TABLE I.  PERCENTAGE OF CORRECTLY CLASSIFIED IMAGES (RECALL), IN VALIDATION AND TEST SETS, FOR EACH CLASS. THE BEST 

RESULT IS SHOWN IN GREY. 
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1 CNN 50x50x1 88.4 87.6 92.2 88.2 89.8 85.0 90.7 92.6 

2 CNN 50x50x3 91.4 91.2 96.2 91.8 90.5 89.4 96.1 92.8 

3 ResNet-50 50x50x3 96.6 96.4 99.8 96.4 95.3 94.7 99.4 96.5 

4 ResNet-50 101x101x3 98.0 99.3 100 97.9 98.1 98.6 100 98.2 

 

https://keras.io/


obtained with different datasets. Moreover, we have a 
more encompassing model that distinguishes birds from 
aircraft and drones. Liu et al. does not separate birds, 
while Unlu et al. and Schumann et al. do not identify 
aircrafts. In addition, the three works employ 
significantly smaller test sets than the present work. The 
use of residual networks allowed to improve the 
detection efficiency in all classes, by at least 3.3 
percentage points, with respect to a standard 
convolution neural network with four convolution 
layers. The preliminary results from the simple 
evaluation of the tracking methods open up good 
perspectives for the future use of these methods. 

As future work we intend to perform field tests 
where all the components of the project will be tested 
simultaneously (camera, tracking system and deep 
learning). It will be relevant to compare the quality of 
the images provided by the system camera and those 
used to create the ResNet because large differences 
might have an impact on the system identification 
performance. Finally, we would like to point out that 
the developed detector can also be used in airport 
surveillance where drones and birds pose a serious 
safety risk. 
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