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Abstract. Nowadays, the visual information captured by CCTV surveil-
lance and body worn cameras is continuously increasing. Such visual in-
formation is often used for security purposes, such as the recognition
of suspicious activities, including potential crime- and terrorism-related
activities, and violent behaviours. To this end, specific tools have been
developed in order to provide law enforcement with better investigation
capabilities and to improve their crime and terrorism detection and pre-
vention strategies. This work proposes a novel framework for recognis-
ing abnormal activities where the continuous recognition of such activi-
ties in visual streams is carried out using state-of-the-art deep learning
techniques. Specifically, the proposed method is based on an adaptable
(near) real-time image processing strategy followed by the widely-used
3D convolution architecture. The proposed framework is evaluated us-
ing the publicly available diverse dataset VIRAT for activity detection
and recognition in outdoor environments. Taking into account the non-
batch image processing and the advantage of 3D convolution approaches,
the proposed method achieves satisfactory results on the recognition of
human-centred activities and vehicle actions in (near) real-time.

Keywords: Activity recognition · Human activities · Vehicle actions ·
Real-time · 3D convolution · Visual streams.

1 Introduction

The massive streams of visual information captured by CCTV surveillance and
body worn cameras cannot be easily monitored by human operators, particu-
larly in the field of law enforcement. To assist law enforcement officers in their
daily tasks and to improve their operational and investigation capabilities, sev-
eral tools have been developed in order to automatically process and analyse
such video streams, and subsequently alert the human operators when events
of interest, such as any abnormal activities, take place. This work focuses on
such systems that aim to recognise actions of interest performed by humans or
vehicles and categorise each action to one of existing predefined categories.

Leveraging the significant advancements in deep learning neural networks,
state-of-the-art action recognition methods are based on convolutional neural
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networks (CNNs) and recurrent neural networks (RNNs) [10,12]. Moreover, the
architectures of such activity recognition systems typically consist of two parts:
the feature extractor and the classifier.To this end, this work proposes an end-
to-end activity recognition framework that extracts visual features from video
streams and classifies them to predefined activities. The proposed framework
is evaluated using the VIRAT [8] dataset and the activities considered in the
TRECVID Activities in Extended Video (ActEV) evaluation series [3].

The main contributions of this work are the proposal of a complete end-to-
end activity recognition framework based on deep learning neural networks, the
investigation of early and late fusion techniques in the context of this framework,
and the extensive evaluation experiments using the VIRAT dataset. Moreover,
since some of the ActEV activities are rather fine-grained, we grouped similar
activities together so as to consider coarser-grained activities that are likely to
be of more interest to generic activity-based recognition systems; we have thus
performed evaluation experiments using both the finer- and the coarser-grained
activities.

The remainder of the paper is structured as follows. Section 2 discusses re-
lated work and relevant datasets, Section 3 presents the proposed framework,
Section 4 describes the experimental setup and presents the evaluation results,
and Section 5 concludes this work.

2 Related Work

State-of-the-art activity recognition methods are based on deep learning tech-
niques. Simonyan et al. [9] proposed a 2D convolution-based architecture that
takes into account the visual and stacked optical-flow features, and generates a
two-stream neural network that can learn simultaneously the motion and the
appearance of the input video. Ji et al. [5] proposed a 3D convolution-based
approach in order to extract spatio-temporal features, while Tran et al. [12] also
trained a 3D convolutional neural. Hara et al. [4] extended previous works that
make use of 3D convolutional kernels with filter size equal to 3x3x3 by using
varied kernel sizes and very deep convolutional neural networks. They also con-
cluded that the Kinetics [6] dataset, consisting of more than 300, 000 videos
that depict 400 human-related activities, can be widely employed for training
and testing activity recognition systems, similarly to the wide use of the Ima-
geNet [2] dataset for training object detection systems.

Apart from Kinetics, several other datasets have been built for the activity
recognition problem. HMDB-51 [7] is one of such dataset that consists of more
than 6, 766 videos, with a mean duration of approximately 3 seconds, categorised
into 51 human activities extracted from movies. The ActivityNet [1] is another
such dataset consisting of around 20, 000 videos categorised into 200 human
activities. Finally, both the videos of the VIRAT [8] dataset, as well as their
annotations are provided by the National Institute of Standards and Technology
(NIST - https://www.nist.gov/) in the context of the TRECVid Activities in
Extended Video (ActEV - https://actev.nist.gov/) evaluation series.
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3 Activity Recognition Framework

This work follows the supervised learning paradigm for human-related activity
recognition that employs a deep neural network architecture, namely the 3D-
ResNet neural network [4]. This 3D-convolutional-based architecture achieves
faster processing and can thus perform human activity recognition in (near)
real-time, while using simultaneously (batch) frame processing. In particular, the
architectures with 18, 50, and 101 layers as described in [4] have been deployed.

The 3D-ResNet-18 architecture consists of basic blocks, with each block con-
sisting of two 3D-convolutional layers followed by batch normalisation and ReLU
(Rectified Linear Unit) activation layers, as depicted on the left part of Fig. 1.
The other two architectures (3D-ResNet-50 and 3D-ResNet-101) follow the bot-
tleneck blocks approach (see right part of Fig. 1), where each bottleneck block
consists of three 3D-convolution layers followed by batch normalisation and
ReLU activation layers, with the convolution kernels being 1x1x1 for the first
and third convolution layers, and 3x3x3 for the middle one.

Fig. 1. 3D-ResNet basic and Bottleneck blocks [4].

Finally, it should be noted that the weights of the Kinetics dataset [6] were
pre-loaded for all architectures. The Kinetics dataset was selected since it covers
a large number of human activity classes (400 classes), and also contains videos
that were not collected from sources in specific domains (e.g., movies, soccer
games etc.), but videos from diverse data sources uploaded on YouTube.

4 Experiments

This section reports on the experimental evaluation of the proposed activity
recognition framework by presenting first the datasets used in our experiments
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(Section 4.1), then the overall experimental setup (Section 4.2), and finally the
evaluation results of our experiments (Section 4.3).

4.1 Dataset

In order to evaluate the proposed method, we selected the dataset provided
by NIST under the ActEV evaluation series. This dataset was selected since it
contains several human activities and vehicle actions that can be considered as
abnormal in particular contexts. In particular, ActEV considers activities where
one or more people generate movements or interact with objects (or groups of
objects), such as other people (P) and vehicles (V). Specifically, ActEV defines
and clearly annotates 18 human activities and vehicle actions listed in Table 1.

Table 1. ActEV activities official declaration.

# Activity Name Objects acts Description

1 Closing (P, V) or (P) A person closing the door to a vehicle or
facility

2 Closing trunk (P,V) A person closing a trunk

3 Entering (P, V) or (P) A person entering (going into or getting
into) a vehicle or facility

4 Exiting (P, V) or (P) A person exiting a vehicle or facility

5 Loading (P,V) An object moving from person to vehicle

6 Open trunk (P,V) A person opening a trunk

7 Opening (P, V) or (P) A person opening the door to a vehicle or
facility

8 Transport heavy carry (P,V) A person or multiple people carrying an
oversized or heavy object

9 Unloading (P,V) An object moving from vehicle to person

10 Vehicle turning left (V) A vehicle turning left or right is determined
from the POV of the driver of the vehicle

11 Vehicle turning right (V) A vehicle turning left or right is determined
from the POV of the driver of the vehicle

12 Vehicle u turn (V) A vehicle making a u-turn is defined as a
turn of 180 and should give the appearance
of a “U”

13 Pull (P) A person exerting a force to cause motion
toward

14 Riding (P) A person riding a “bike”

15 Talking (P) A person talking to another person in a
face-to-face arrangement between n + 1
people

16 Activity carrying (P) A person carrying an object up to half the
size of the person

17 Specialized talking phone (P) A person talking on a cell phone where the
phone is being held on the side of the head

18 Specialized texting phone (P) A person texting on a cell phone
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The ActEV dataset consists of a total of 2, 446 annotated activities in its
training and validation sets extracted from 118 videos of the VIRAT (release
1.0 and 2.0) dataset (http://viratdata.org/). More specifically, ActEV defines
and clearly annotates 18 human activities and vehicle actions. The training set
consists of 64 videos that contain 1, 338 recognised activities, while the validation
set consists of 54 videos that contain 1, 128 recognised activities. The test set will
not be considered as its annotations are not publicly available. The distribution
of the activities both for the training and validation sets is depicted in Fig. 2 As
it can be observed, ActEV is a challenging dataset, as it is highly unbalanced.

Fig. 2. ActEV Dataset Activities Distribution

As some of the ActEV activities are rather fine-grained, we have also grouped
similar activities together so as to consider coarser-grained activities that are
likely to be of interest to more generic activity-based recognition systems (e.g.,
recognition of vehicle-relevant activities). Table 2 lists these so-called “super-
activities”, while Fig. 3 depicts the distribution of these super-activities for the
training and validation sets, which is also highly unbalanced, similarly to before.

4.2 Experimental Setup

The aim of the evaluation experiments was to assess the effectiveness of the ac-
tivity recognition system and therefore they focused on processing and analysing
only the parts of the video streams where some form of activity had been ob-
served. To this end, first, the frames from all videos were extracted; to be more
specific, one every four frames was extracted. Then, only the frames that depict
an activity were considered and were stored in a valid format (.png).

The same training strategy was followed for each experiment. Specifically, the
batch size was set to 32, the number of total epochs was set to 200, and Stochastic
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Table 2. ActEV activities grouped to “super-activities”.

# Activity Name ActEV Data-set Activities

1 Vehicle

1. Vehicle turning left
2. Vehicle turning right
3. Vehicle u turn
4. Riding

2 Talking Talking

3 Person exits Exiting

4 Person enters Entering

5 Person carrying activities

1. Loading
2. Transport heavy carry
3. Unloading
4. Activity carrying

6 Person interacts with phone
1. Specialized talking phone
2. Specialized texting phone

The following activities are not taken into account

1 Closing
2 Closing trunk
3 Open trunk
4 Opening
5 Pull

Fig. 3. ActEV Dataset Super-Activities Distribution

Gradient Descent [11] was used as an optimiser with an initial learning rate equal
to 0.1. A ’reduce on plateau’ strategy was applied in order to create a learning
rate schedule with max patience equal to 10 epochs. Furthermore, five different
scale-factors were used for data augmentation: [1.0, 0.84, 0.70, 0.59, 0.49], while
a corner cropping strategy was also applied; this refers to the random selection
of a cropped box from the four corners and the centre.

The training process was monitored for a complete evaluation by utilising the
TensorBoard application downloaded from the TensorFlow1 repository. Fig. 4
presents the accuracy per epoch during training and denotes the 3D-ResNet

1 https://github.com/tensorflow/tensorboard
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architecture consisting of 18, 50, and 101 layers with blue, orange, and red,
respectively. The correspondingly losses during training are depicted in Fig. 5.

Fig. 4. Accuracy during training of ResNet-18 (blue), ResNet-50(orange), and ResNet-
101(red) with respect to the number of epochs.

Fig. 5. Cross-entropy loss during training of ResNet-18(blue), ResNet-50(orange), and
ResNet-101(red) with respect to the number of epochs.

The validation set of the ActEV dataset was used for evaluating the pro-
posed activity recognition framework in order to investigate how the depth of a
3D-ResNet network architecture affects its effectiveness. To this end, we applied
two different experimental settings, one that considers the 18-activities of the
ActEV dataset and one that considers the six super-activities. Regarding the
super-activities, we apply both late and early fusion. For the late fusion, the
accuracy of each super-class comprises the summation of the subclasses’ predic-
tions during testing, whereas for early fusion, the super-activities are merged
during training (i.e., a single training set is created for each super-activity by
merging the training sets of its sub-activities).
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Precision@N is used as basic evaluation criterion which allows us to show
the accuracy of the framework for different numbers of retrieved activities where
N ∈ {1, ..., 18} in the case of ActEV activities and N ∈ {1, ..., 6} in the case
of super-activities. Precision@1 indicates the percentage of videos where the
top prediction by our framework corresponds to the correct activity shown in
the video. Hence, Precision@18 for the ActEV activities and Precision@6 for
the super-activities should always be equal to 1, as the framework is bound
to predict correctly if it simply provides all available activities. In addition,
confusion matrices are also presented.

4.3 Results

This section presents the results for the different ResNet architectures both for
the 18 activities and also for the six super-activities; in the latter case, the results
listed below correspond to the late fusion, whereas the results for the early fusion
are presented at the end of this section.

ResNet-50 results. Fig. 6 presents the Precision@N using the ResNet-50
architecture. Precision@1 equals to 28% when all 18 activities are considered
and 51% in the case of super-activities. As expected, coarser-grained activities
can be more easily identified. Fig 7 and Fig. 8 present the confusion matrices of
the prediction activities both for the 18 activities and the six super-activities. A
detailed examination indicates that the unbalanced characteristics of the ActEV
dataset lead the model to a dominated learning state adapted to the activity
with the highest occurrence (“activity carrying”). On the other hand, in the
super-activities dataset, the number of false negatives and false positives has
been reduced and disengaged from a dominating activity.

Fig. 6. Precision@N, ActEV and super-activities trained using ResNet-50

ResNet-18 results. Fig. 9 presents the Precision@N using ResNet-18 ar-
chitecture. Precision@1 has decreased to 25%, compared to the 28% achieved by
the ResNet-50 architecture for the 18 activities. Regarding the super-activities,
Precision@1 has also decreased from 51% to 47%.
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Fig. 7. Confusion matrix using ActEV dataset trained on ResNet-50

Fig. 8. Confusion matrix using Super-activities dataset trained on ResNet-50
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Fig. 9. Precision@N, ActEV and super-activities trained using ResNet-18

ResNet-101 results. Finally, the results of the experiments for the ResNet-
101 neural network architecture are depicted in Fig. 10. As the results indicate,
a higher capacity neural network can learn more accurately the classification
problem. Specifically, the ResNet-101 architecture outperforms the previous ones
when considering the super-activities, but the results for the 18 activities dataset
are even lower than the ResNet-50 architecture. A detailed examination indicates
that many of these 18 activities are closer (in terms of visual content) to each
other and thus, a higher capacity neural network which tries to differentiate
between them aggressively results in lower Precision@1, even though the Preci-
sion@5 remains similar to the ResNet-50 results.

Fig. 10. Precision@N, ActEV and super-activities trained using ResNet-101

Early vs. late fusion. In addition to the late fusion experiments pre-
sented above, we also carried out early fusion experiments for the case of super-
activities. To compare the effectiveness of the two approaches, we select the
ResNet-101 architecture as it achieves the best performance in the case of super-
activities. Fig. 11 depicts the Precision@N both for early and late fusion. Specif-
ically, early fusion increases the system performance for all N except for Pre-
cision@1. Furthermore, Fig. 12 compares the confusion matrices for early and
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late fusion and indicates that although the Precision@1 is lower when apply-
ing early fusion, the value of the error of misclassified activities is smaller and
Precision@N for N > 1 is higher.

Fig. 11. Precision@N both for early and late fusion using ResNet-101.

Fig. 12. Confusion matrices both for early and late fusion using ResNet-101.

5 Conclusions

This work presented a framework for recognising activities in video streams.
Specifically, the framework makes use of 3D-convolutional filters in order to learn
the spatio-temporal representation of activities. The framework was evaluated
using the challenging ActEV dataset and also a second dataset that was created
using the same data and which merges the ActEV activities into super-activities
in order to evaluate the proposed framework in a more generic activity-based
recognition domain. The experimental results indicate that our framework can
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capture coarse level representations as it performs satisfactorily in the super-
activities dataset. Finally, the early fusion approach proved to be advantageous
in contrast to the late fusion when more than 1 activities were retrieved.

Acknowledgements

This work was supported by the project CONNEXIONs (H2020-786731) funded
by European Commission.

References

1. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A
large-scale video benchmark for human activity understanding. In: Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition (CVPR). pp.
961–970. IEEE (2015)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR). pp. 248–255. IEEE (2009)

3. Godil, A., Lee, Y., Fiscus, J.: TRECVID 2019 ActEV evaluation plan (2019),
https://actev.nist.gov/pub/ActEV TRECVID EvaluationPlan 081219.pdf

4. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet? In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6546–6555. IEEE (2018)

5. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human ac-
tion recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 35(1), 221–231 (2012)

6. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017)

7. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video
database for human motion recognition. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). pp. 2556–2563. IEEE (2011)

8. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee,
S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for
event recognition in surveillance video. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR). pp. 3153–3160. IEEE (2011)

9. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Proceedings of the International conference of Advances in
Neural Information Processing Systems (NIPS). pp. 568–576 (2014)

10. Singh, D., Merdivan, E., Psychoula, I., Kropf, J., Hanke, S., Geist, M., Holzinger,
A.: Human activity recognition using recurrent neural networks. In: Proceedings of
the International Cross-Domain Conference for Machine Learning and Knowledge
Extraction (CD-MAKE). pp. 267–274. Springer (2017)

11. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proceedings of the International Conference
on Machine Learning (ICML). pp. 1139–1147 (2013)

12. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV). pp. 4489–4497. IEEE (2015)


