
Engineering: An International Journal   Vol. 2, No. 5, (May 2020) 38-52 

 

Engineering: An International Journal 
 

J o u r n a l  H o m e p a g e :  w w w . e n g i j o u r n a l . c o m  
 

 

 

 

 

A New Efficient Approach to Deal With 
Dynamic Optimization Problems 

Michael Abraham  

Abstract: Along with increasing scientific progress, humans are constantly confronted with several new real-world issues. This 

further demonstrates the need for optimization algorithms that can quickly adapt to an uncertain and changing environment over 

time. In such issues, the current conditions lead to an area of optima and worth changed after some time. Therefore, an optimi-

zation calculation must have the option to adjust rapidly to evolving conditions. This paper proposes a new algorithm dependent 

on the PSO calculation, alluded to as a versatile increasing/decreasing PSO calculation. In the optimization procedure, this algo-

rithm can generally adaptively find and track the ideal number changed after some time in nonlinear and dynamic conditions with 

imperceptible changes, by decreasing or expanding the quantity of calculation particles and the successful hunt extend. Also, 

another definition has been presented called the Focused Search Zone, which expects to feature promising spaces to quicken 

the neighborhood search process and forestall untimely combination and achievement file as a paradigm for deciding centered 

pursuit zone conduct toward ecological conditions. The consequences of the proposed calculation are assessed on the moving 

pinnacle benchmark work and hence contrasted and those got from a few legitimate calculations. The outcomes show a benefi-

cial outcome of versatile systems utilized, remembering a reduction or an expansion for particles and search extend on finding 

and following numerous optima contrasted with other multi-populace based streamlining calculations. 

Keywords: Adaptive Search Radius, Dynamic Optimization Problems, Local Search, Multi-Search, Particle Swarm Optimization 

Algorithm 
 

Paper history: Received 13 April 2020; Received in revised form 25 April 2019; Accepted 1 May 2020; Available online 10 May 2020. 

 

1 INTRODUCTION 

 EAL-WORLD issues, such as those that occur in nature, are constantly changing over time. Therefore, nowadays, 
a spotlight has been shown on the use of nature-inspired evolutionary and collective intelligence algorithms to 

solve dynamic optimization problems (DOPs) [1, 2]. Unlike static environments, the location of optima is constantly 
changing as time goes on in dynamic environments. Hence, optimization algorithms not only have to find a globally 
optimal solution in a particular search space but also have to constantly track global changes in optimum and some-
times several optima close to it in different environments with nonlinear changes. Thus, algorithms must be able to 
adapt to changes in the environment. 

Consequently, there is a major difference between dynamic and static environments in terms of goals, challenges, 
performance measurement, and optimization benchmark functions. 

Challenges facing static environments include premature convergence, get stuck in a local optimum, and reconcilia-
tion between exploration and extraction. Dynamic environments, on the other hand, face several other challenges in 
addition to the above. These include detecting changes in the environment, converting local optimum to the global op-
timum and vice versa, losing diversity after a change, obsolete memory after a change, more than an optimum sur-
rounded by a sub-population unaware of the extent and manner of changes in the environment, and changes in the part 
of the environment unaware of the time of change in the environment. 

In recent years, several different methods have been proposed to promote traditional evolutionary algorithms that 
can be used in static environments. They can be divided into 8 groups: 
-Increased diversity after changes in the environment [3-9] 
- Diversity preserved during execution [9-14] 
- Memory allocation schemes [15 and 16] 

R 

———————————————— 

 Corresponding author: Michael Abraham is with the School of Computing, Informatics, and Decision Systems Engineering, Arizona State Universi-
ty. E-mail: michael.abraham@asu.edu 
 

       1933-5857 © 2020 Engineering: An International Journal Personal use is permitted, but republication/redistribution requires Engineering: An International Journal permission 

https://orcid.org/0000-0124-9521-9479


MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

- Multi-population methods [17-23] 

- Hybridization [24-26] 
According to many studies on solving DOPs, locating and tracking a set of optima is more effective than locating 

and tracking a global optimum [27-29]. This is because tracking a global optimum in a set of the best optima is more 
efficient when the environment changes over time. In this regard, the application of multi-population methods seems to 
be more efficient than others in locating and tracking several local optima close to global optima in dynamic problem 
optimization. In this method, the entire search space is divided into a series of sub-spaces. Each sub-space is known as a 
sub-population that covers one or more of the local optima. From now on, the algorithm updates the particles of each 
sub-population separately and searches for a better optimum. In multi-population methods, the process of creating an 
acceptable number of sub-populations and individuals to cover different sub-spaces in the search space is considered a 
challenging issue. For example, in their research, Lee Young used a hierarchical clustering method to automatically di-
vide the search space into sub-populations [29, 30]. 

Another problem faced by dynamic problem optimization is determining the time of change in the environment by 
the algorithm. Many dynamic optimization algorithms have been developed to detect changes in the environment. 
Such algorithms begin to disperse particles and increase diversity in the new environment as soon as they feel a change 
in the environment. Suppose a mode in which only part of the entire search space changes; then, it becomes very diffi-
cult to predict the sub-space or to detect changes, and all algorithm functions are overshadowed. Hence, algorithms 
that do not need to detect changes in the environment perform better in different environments. 

This paper proposes an Adaptive Increasing/decreasing Particle Swarm Optimization (AidPSO) algorithm for effec-
tive use of the multi-population method in nonlinear and time-variable environments. The introduced algorithm is 
based on the PSO algorithm for dynamic environments. Several new solutions have been proposed to solve problems 
such as creating sub-populations, preventing premature convergence, a swarm of individuals and their numbers, and 
adapting people's behavior to environmental conditions. 

The moving peaks problem, one of the most well-known optimization problems in dynamic environments, has been 
employed to evaluate the proposed algorithm [31 and 32]. To evaluate it, a comparison has been made between 
AidPSO and several other algorithms that utilize multi-population methods to solve DOPs. Furthermore, a series of 
experiments have been performed to investigate the adaptive mechanisms that control the behavior of the algorithm 
under different environmental conditions. 

The remainder of this paper is structured as follows. Section II reviews developed multi-population methods for 
solving dynamic problems. Section III describes the structure of the proposed AidPSO algorithm. Section IV presents 
the performance of the algorithm in coping with the moving peak benchmark function with different settings. Finally, 
Section V provides a conclusion and discussion. 

2 OPTIMIZATION USING MULTI-POPULATION-BASED METHODS 

This section reviews several proposed algorithms in this field. 
The clustering PSO (CPSO) algorithm is presented in [29 and 30]. It uses a hierarchical clustering method to divide 

the initial population into several sub-populations to cover different local zones. 
A multi-population PSO algorithm based on the island model is introduced in [33]. In this algorithm, particles mi-

grate regularly between different populations. In [24], the algorithm performs differently, where a connection is estab-
lished between populations only when a change is observed in the environment. 

In [34], the entire population is divided into two categories, the parent population, which is tasked with searching 
the search space, and the child population, which is tasked with tracking local optima. The parent population is con-
stantly studying the situation to create a child population. 

It is worth noting that the total number of people is always a fixed amount. The Fast-Multi-Swarm Optimization Al-
gorithm (FMSO) [35] was introduced in which the parent population, as the base population, searches for more feasible 
zones after changes in the environment and child population is used to search locally in these feasible zones, as the only 
difference. A similar idea has been proposed in [36] in which the child population, if ineffective, becomes hibernated 
until a change in the environment is felt. 

Blackwell and Brank have used the properties of atoms and the principle of repulsion between particles of the same 
charge to maintain diversity in populations [37]. Charged populations are introduced to cover optima separately. Two 
innovative rules have been added to its improved version [38] to increase diversity. According to one rule, the number 
of quantum particles increases and the number of particle pathways decreases as the environment changes. According 
to the second rule, particles that have an unacceptable performance are either initialized or stopped. 

Additionally, much of the research that has been done so far [39] on solving dynamic optimization problems based 
on evolutionary algorithms is based on detecting changes in the environment [29, 30, and 37] or predicting changes as-
suming that a specific pattern is being followed [40]. Upon the detection or anticipation of change, a variety of strate-
gies are used to increase diversity. 



40 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

3 PROPOSED ALGORITHM 

The proposed algorithm divides the particles into two groups, i.e., free particles and focus particles, to synchronize 
conventional PSOs for dynamic environments. 

Free particles are required to search permanently throughout the search space. As these particles tend to converge, 
several located in the so-called Focused Search Zone (FSZ), are introduced as focus particles. The FSZ range around the 
best focus particle is determined by a radius called Adaptive Search Radius (ASR). Following the update of focus parti-
cles, if the best particle is recovered, the FSZ center will be transferred to the location of the best focus particle and the 
other focus particles of this FSZ will be forced to deploy and search in this sub-space. At this time, all free particles are 
dispersed in the search space to locate other optima. Free particles are required to do an initial search to find feasible 
sub-spaces. Focus particles, on the other hand, are required to find and improve the optimum and track it while apply-
ing changes to the environment. The number of focus particles and the value of ASR is controlled by a metric called the 
success index. The number of particles is constantly changing adaptively. 

Given the importance of maintained diversity in solving DOPs and their dependence on detecting environmental 
change, the performance of proposed algorithms for dynamic environments should not depend on identifying changes 
in the environment. The proposed algorithm does not need to detect changes in the environment and always adapts 
itself to environmental conditions. 

3.1 Adaptive Increasing/Decreasing PSO Algorithm 

This section introduces a new algorithm called "adaptive increasing/decreasing PSO algorithm (AidPSO)" to optimize 
in dynamic environments (time-variable). Thanks to its short mechanism and rapid adaptation to environmental condi-
tions, this algorithm has acceptable performance in solving DOPs with high-speed changes. Algorithm 1 shows the 
general framework of the algorithm. 

The main loop of the proposed algorithm begins with the initialization of free particles, followed by updating the lo-
cations of these particles with conventional PSO. Afterward, the convergence of free particles is examined. If conver-
gence is likely to be detected, the particles in the FSZ, i.e., in the ASR range, around the best particle, will be recognized 
as focus particles, leading to a new FSZ. Now, the focus particles located in each FSZ are updated separately by the 
PSO; if the optimum located in each FSZ is improved, the FSZ center is transferred to a more suitable detected opti-
mum. FSZs are then examined for superimposition (superposition) after a specific time called “evolution time,” laying 
the groundwork for ASR correction. Next, an upgrade time is allocated to the FSZs that have lost their optimum as a 
result of drastic changes in environmental conditions, to recover their optimum so that they are not deleted immediate-
ly. This upgrade time is allocated because the optimum is transferred to the zones around its previous location follow-
ing a change in the environment, in most cases. 

In this case, following the allocation of upgrade time and an increase in ASR and the number of focus particles, the 
optimum in question can be traced more quickly. Finally, ASR and the number of focus/free particles are calculated for 
the current environmental conditions using the success index.  

 
Algorithm 1. The general framework of the proposed algorithm 

Algorithm 1 AidPSO 

Initialize the free particles 

while stop criteria is not satisfied  

       for free particles do 

             PSO(); 

        end for 

        convergenceChecking (free particles) 

        if FSA exist then 

              for each FSZ[i] do 

                    PSO(FSZ[i]) 

                    Update FSZ centers 

                    Check velocity of focus particles 

              end for 

        end if 

        ASRoverlapChecking (FSZ,ASR) 

       RemoveUselessFSZ 

       CalcASR&NumOfFocusPartc 

       CalcNumOfFreePartc 

end while 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

 

The proposed algorithm divides the particles into two groups: free and focus. In the first step, a predetermined 
number of free particles is initialized. In the second step, their number is always determined by the algorithm. One of 



MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

the features of the proposed algorithm is the number of focus/free particles variable over time, depending on environ-
mental conditions. Thus, during the execution of the algorithm, the total number of particles is always subject to envi-
ronmental conditions. Furthermore, the number of particles decreases proportionally when the algorithm converges 
toward the optimum. Thanks to this feature, the algorithm is separated from the constant update of a large number of 
particles. In the third step, the position of free particles is updated through the PSO algorithm, proposed for the first 
time by Kennedy and Eberhart. Algorithm 2 shows the PSO algorithm implementation process. 

 

Algorithm 2. PSO Algorithm 

Algorithm 2 PSO 

Evaluate the fitness of each particle 

for each particle i do 

      Update particle i according to (1) and (2); 
      If                               

 
     then      

                             
 
       ; 

          If                               
 
     then 

                                  
 
       ; 

          end if 

      end if 

end for 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Each particle i with a velocity vector  and a position vector , is represented, updated by version [42] with inertia 
weight as follows: 

 
   

     
              

    
              

    
   (1) 

   
    

     
  (2) 

 
In the above equation,    

  is the current position,   
  is the previous position,    

  is the current velocity, and   
  is the 

previous velocity of the ith particle at the dth dimension.        
 is the best position of the ith particle so far and       

  is 
the best position among all the particles.  is the inertia weight that determines the degree to which the previ-
ous velocity affects the current velocity of the particle. r1 and r2 are random numbers between 0 and 1. c1 and c2 are 
called acceleration constants, indicating the degree to which the particle follows its best (the cognitive component) and 
collective best (social component), respectively. 

Then, the main loop of the proposed algorithm, i.e., the free particle convergence process, is examined, shown in al-
gorithm 3. The initial convergence condition is met by measuring the changes in the position of free particles and 
their fitness compared to the previous step. If the changes in are less than and the changes in its fitness are 
less than , the algorithm will detect the possibility of free particle convergence. At this stage, the position of the 
best located point is examined. If the point is located in any of the FSZs, with its fitness value better than that of the FSZ 
center in it, the FSZ and subsequent focus particles are removed, leading to the formation of a new FSZ with free parti-
cles located in the ASR range with at the center. Besides, all free particles are dispersed to search for other feasible 
zones throughout the search space. On the other hand, all free particles will disperse if the fitness value is worse 
than the FSZ center in it. 

Following a satisfied initial convergence condition, if the best point of free particles is not located in any of the FSZs, 
the total distance between the two free particles with the shortest distance from will be explored. A sum of less 
than indicates that the free particles are converging, and is considered as the center of FSZ. Focus/free parti-
cles located in the ASR range relative to this center are introduced as the focus particles of that FSZ. All free particles 
are dispersed to search for other feasible zones throughout the search space. Moreover, an “evolution time,” during 
which the category is provided with the opportunity to improve its optimum, is considered so that this category is not 
deleted by the algorithm in the next steps as an additional category. 

In the next step, the position of the focus particles of each FSZ is updated separately by the PSO algorithm followed 
by transferring the center of that FSZ to the position of the best particle if the best particle of each FSZ is improved. 
Thus, the location of FSZs in the search space is also updated. The algorithm also monitors the velocity of focus parti-
cles to prevent them from getting caught up in local optimum by dispersing them within their FSZ range whenever 
they get close to zero. 

The proposed algorithm uses a special mechanism to prevent the overlapping of FSZs and focus particle parallelism. 
In this method, the distances between FSZ centers are calculated. Then, two neighboring FSZs with a center distance of 
less than twice the ASR is considered. These categories must have reached the so-called relative stability, meaning that 
they must have spent the evolution time of the new FSZs and the upgrade time of the FSZs that have lost their opti-
mum under the new environmental conditions. Now, to avoid the algorithm being influenced by local optima, the 
mean fitness of optima detected by other FSZs is calculated. If the fitness of the two FSZ centers is better than a factor (



42 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

) of the mean fitness of the centers of other FSZs, the search radius is reduced by half the distance between the 
centers of these two FSZs so that both can encompass and track their optimum. 

 
Algorithm 3. Checking free particle convergence 

Algorithm 3 convergenceChecking () 
If (         

     -          
   < rconv) and (|| (xgbest)t,|| < rconv/5) then 

     If xgbest was within FSZ[i] then 
          if f(xgbest) better than f(centerFSZ[i]) then 
             Replace selected free particles with focus particles in FSZ[i] 

re-initialize the free particles 
          else 
  re-initialize the free particles 
          end if 
     else 
          create a new FSZ with selected free particles as the focus particles 
          re-initialize the free particles 
     end if 

 end if 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 

Now, if the fitness of one or both FSZs is worse than a factor ( ) of the mean fitness of the centers of other FSZs, 
the FSZ with a worse detected optimum fitness with focus particles compared to the other, will be considered as the 
local optimum and will be removed along with focus particles linked to it. Thus, searching for multiple FSZs in a zone 
of the search space and getting caught up in local optima are both prevented, increasing the speed of the algorithm to 
find more optima in the entire search space in less time. Algorithm 4 shows the process of checking the overlapping of 
FSZs. 

 
Algorithm 4. Checking FSZ Overlapping 

Algorithm 4 ASRoverlapChecking (FSZ,ASR) 

if FSZ[i] & FSZ[j] are stable and distance between FSZ[i] center and FSZ[j] center < 2*ASR then  
      fmean(centerFSZ) = Calculation of mean fitness other centers 
     if f(centerFSZ[i]) and f(centerFSZ[j]) beter than Pmean* fmean(centerFSZ) and ASR>1 then  
    ASR = (distance between FSZ[i] center and FSZ[j] center) / 2 
        else 
           delete FSZ with worst fitness between FSZ[i] and FSZ[j] 
        end if 

end if 

1 

2 

3 

4 

5 

6 

7 

8 

 
Another idea used in the proposed algorithm shown in algorithm 5 is to allocate upgrade time to FSZs that no longer 

see the optimal point in their zone or their focus particles are stuck in the local optimum, following drastic changes in 
the environment. Upgrade time allows these FSZs to locate and track their optimum. Furthermore, focus particles stuck 
in local optimum are provided with the opportunity to be released with an increase in speed during the upgrade. Here, 
too, a factor ( ) of the mean fitness of detected optima is introduced as a measurement criterion. At each stage, the 
corresponding FSZs are removed along with their focus particles after the upgrade time, following the comparison of 
the worst optimum in FSZs with the metric above if they have a more unacceptable value. 

 
Algorithm 5. Removal of unnecessary FSZs 

Algorithm 5 RemoveUselessFSZ 

fmean(centerFSZ) = Calculation of mean all fitness centers 
if FSZ[i] is stable and worst f(centerFSZ[i]) > fmean(centerFSZ) then 
     delete FSZ with worst fitness FSZ[i] 

End if 

1 

2 

3 

4 

 
One of the outstanding features of this algorithm, which has led to its increased speed in finding the optimum, is the 

observation of environmental conditions and subsequently adjusting the behavior of the algorithm by managing the 
number of particles and the search range. 

Thus, the success index is defined as a criterion for determining the degree of optimization of the algorithm. Regard-
ing this index, a criterion is obtained for the overall behavior of the categories when faced with environmental condi-
tions according to the optimal mean of the categories by comparing it with the worst optimal value detected (Equation 
3). 

 



MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

             
                   

        
 (3) 

 
Following the determination of a metric for the behavior of the algorithm and environmental conditions, the search 

radius and the number of focus particles of the categories should be adapted to the environmental conditions to opti-
mize the performance of the algorithm as much as possible. If changes are made to the environment, some FSZs will 
lose their optimum and subsequently, the success rate will decrease. As previously mentioned, in this case, an upgrade 
time is allocated for these FSZs to be provided with the opportunity to adapt to new environmental conditions and thus 
detect the optimum under their coverage before being removed by the algorithm as an unnecessary category. To speed 
up the optimization process according to the value of the success index, the algorithm proceeds to increase the ASR and 
the number of focus particles (Num_FP) in FSZ according to the following equations because it is unaware of the de-
gree of changes applied in the environment. 

 
                                                                  (4) 
                                                    (5) 

 
The detected optimum is improved during FSZ upgrades, manifested in an increased success index. In this case, the 

ASR decreases according to Equation (6) to obtain a more focused search. 
 

            
             

               
                                            (6) 

 
Finally, if there is no FSZ in the upgrade period, ARS and the number of focus particles (Num_FP) are reduced to 

achieve a more focused search and increased algorithm speed, according to an improved success index based in the 
following equations. 

 
                                                            (7) 
                                
                                                        (8) 
 

To increase the speed of the algorithm, the number of free particles is determined, always based on the number of 
real optima found. The number of optima is measured when all categories have passed their upgrade period. In this 
case, the measurement criterion is the number of FSZs that are not in the evolution period, reached so-called relative 
stability. According to Equation (9), the number of free particles (Num_FreeP) is calculated to find new feasible zones 
based on the number of optima (Num_optm) detected. 

 
                             (9) 

4  SIMULATION RESULTS 

This section employs the proposed algorithm to solve the MPB problem [31]. First, the MPB problem and the measure-
ment procedure of the performance of dynamic algorithms are introduced. Then, the experiments are divided into two 
parts. The purpose of the first part of the experiments is to investigate the working mechanism of AidPSO adaptive 
parameters when dealing with the MPB problem. The purpose of the second part is to compare AidPSO with several 
algorithms introduced in this field in terms of performance. The results of all the algorithms introduced in this paper 
are derived from the results and suggestions of previous studies. 

In the PSO algorithm, the acceleration constants  and  indicate the degree to which the particle follows its best 
(the cognitive component) and collective best (the social component), respectively, and changes the inertia weight con-
vergence rate. Due to the different tasks considered for focus/free particles in AidPSO, different acceleration and iner-
tia weight constants have been considered to update free particles, tasked with finding feasible zones in the entire 

search space and focus particles, tasked with locating and tracking the optimum in their FSZ. The values of , , and 
ω are considered to be 2, 2, and 0.4 for free particles with a general search and 3, 1, and 0.5 for focus particles with a 
detailed search, respectively. 

4.1 Moving Peak Benchmark (MPB) Problem 

The MPB function [31] is one of the most well-known optimization problems in dynamic environments, widely used to 
evaluate dynamic optimization algorithms. In the MPB problem, the optimum can be changed by three features: posi-
tion, height, and width of the peaks. This problem is defined in D dimensions as follows: 

             
         

   

                      
  

   

          (10) 



44 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

In Equation (10),      and       are the height and width of the peak i at time t, respectively, and        is the jth el-

ement of the peak location i at time t. The parameter p is mixed through the max function independently for certain 
peaks. Peak displaces along a random direction through vector     as much as a distance s, which represents the sensitiv-

ity of the problem dynamics. The movement of a lone peak is defined by the following equation: 
 

       
 

              
                        (11) 

 
The transfer vector        is a linear combination of the random vector    and the previous transfer vector         , normalized 

relative to the shift length s. The value of the correlation parameter   is considered to be zero, indicating the inconsistency of peak 

movements. The equations of changes in a peak are expressed as follows: 

 

                                (12) 
                               (13) 

                          (14) 

 

where σ is a random number with a normal distribution, mean of 0, and variance of 1. 

As with other studies, the default settings of the benchmark function are shown in this paper in Table 1. The term "change fre-

quency, U" means the change in the environment after U times of fitness function evaluation. The peak location range is the search 

space range in each dimension. The height of the peak changes randomly in the range [30, 70] and its width in the range [1, 12]. 

 

Table 1. Default settings for moving peaks 

Value Parameter 

[1,200] 

5000 

7.0 

1.0 

Cone 

No 

1.0 

5 
0 

[0,100] 

[30,70] 

[1,12] 

50.0 

Number of peaks, p 

Change frequency, U 

Height severity 

Width severity 

Peak shape 

Basic function 

Shift length, s 

Number of dimensions, D 

Correlation coefficient, λ 

Peaks location range 

Peak height, H 

Peak width, W 

Initial value of peaks 

 

4.2 Algorithm Performance Measurement 

Numerous measurement criteria have been introduced to measure the performance of algorithms in dynamic environ-
ments [43]. To yield results comparable to those of other algorithms in this field, the offline error (OE) criterion, defined 
as the mean difference between the optimum value found by the algorithm and the global optimum value in each envi-
ronment, has been used. 
 

   
 

 
 

 
 

   
          (15) 

 
In the above equation,    is the best solution found by the algorithm before the kth change in the environment and    

is the optimum value of the kth environment. OE is the average difference between    and    in the total number of K 
changes in the environment. All reported results are related to more than 50 times the program running for 100 changes 
in the environment. 

4.3 Investigating the Adaptive Parameters of the Algorithm 

A series of experiments have been conducted on MPB with default values to demonstrate the algorithm's decision-
making process for ASR values and the number of focus/free particles under different environmental conditions. 

As previously mentioned, a higher percentage of optimizations change their location around the previous location 
when applying changes to the environment. 

Therefore, optima can be detected with higher speed and accuracy following changes in the environment with a 
simultaneous increase in the search range and number of particles in each FSZ. Figure 1 shows the performance of the 
algorithm in setting ASR values and the number of focus particles located in each FSZ when faced with changes in en-



MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

vironmental conditions. Obviously, when the environment changes, the algorithm attempts to increase the radius and 
number of focus particles in each zone according to the degree of decrease in the success index. Subsequently, the radi-
us and number of focus particles decrease following an improved success index for an increased algorithm speed and 
focus on finding new optima. 

To visualize the behavior of the algorithm before and after the change in the environment, Figure 2 is presented for a 
two-dimensional environment. In this figure, free particles are marked with blue + signs, peak location with black 
squares, focus particles with blue dots, FSZ with blue circles along with its centers with red stars. 

 

 
Fig. 1. Algorithm performance in setting the number of focus particles in each FSZ and ASR. 



46 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

 
Fig. 2. Algorithm process in finding peaks and changes in the number of particles and ASR before and after the change in the 
two-dimensional environment. a) an iteration before a change in the environment, b) a change in the environment, c) an itera-

tion after a change in the environment, d) 17 iterations after a change in the environment. 

 
The optimization process from (a) to (d) suggests that the algorithm gets started with free particles. Upon finding the 

first feasible zone in the seventh iteration of fitness assessment and creating the first FSZ, 5 particles with better fitness 
are recognized as focus particles. Subsequently, all free particles are dispersed, and the same process continues to find 
all the peaks. 

Figure 2 (a) shows a step before the change in the environment in which all peaks are surrounded by FSZs. After a 
change in the environment, the peak location changes and it is decided to increase the search radius and the number of 
focus particles in each FSZ following a decrease in the success index of the algorithm. According to Figure 2 (b), most 
peaks are located in FSZ after a change in the environment by this mechanism and a temporary increase in the number 
of focus particles leads to an increase in the velocity of the corresponding peaks. In Figure 2 (c), ASR increases to 3.66 
and the number of focus particles to 3 for each FSZ. Following a relative enhancement in the success index, ASR values 
and the number of focus particles decrease to 2 and 4, respectively. Ultimately, the values of peaks in none of the FSZs 
are found by the free particles and the FSZs that contain no peaks are removed by the algorithm. The search radius and 
number of focus particles decrease following an improvement in the success index (Figure 2d). 

4.4 Comparison with Other Algorithms 

This part of the experimentation compares the proposed algorithm with other algorithms introduced in this topic, in-
cluding CPSO [29, 30], mCPSO [37], mQSO [37], CESO [43], rSPSO [44], SPSO [28], AmQSO [45], mPSO [46], APSO [47], 
FTMPSO [48], SFA [49], PSO-AQ [50], CDEPSO [51], and CbDE-wCA [52], in solving the MPB problem with different 
settings. Table 2 shows the optimum values of AidPSO parameters to solve the MPB problem with the default values. 
 
 



MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

Table 2: Initial AidPSO settings to solve the MPB problem 
 
 
 
 

 
 
 

The shift length and change frequency in the U-environment on the OE of the proposed algorithm, are offered fol-
lowing the experiments performed to depict the effects of the change in the number of peaks. 

The set of experiments gathered in Table 3 shows how the algorithm deals with a change in the number of peaks for 
the MPB problem. A comparison has been made between the proposed algorithm and 14 additional algorithms in terms 
of OE and standard deviation (SD). The values provided for the other algorithms are derived from the papers by previ-
ous researchers with optimal settings. According to Table 3, the proposed algorithm has yielded better results for the 
total number of peaks compared to other algorithms in terms of solving the MPB problem. 

From a closer look at the OE values of AidPSO and other algorithms in Table 3, it can be stated that the value of OE 
decreases with an increase in the number of peaks. This is because an increase in the number of detected local optima 
leads to an increase in the probability that the value of the fitness of these optima is closer to that of the global optima. 
Furthermore, more zones are monitored and searched in the search space by focus particles. As a result, the likelihood 
of the presence of global optima in these areas increases further following a change in the environment. 

 Table 4 presents the OE values for the 6 similar algorithms as well as the AidPSO algorithm for four different shift 
lengths. Environmental settings are the same default values and shift length values of 1, 2, 3, and 5. 

 

Table 3. Comparison of OE of algorithms for a different number of peaks in the MPB problem in the change frequency 

range of U = 5000. 

 

Value Parameter 

0.5 

0.3 

20 iteration 

30 iteration 

rconv 

Pmean 

Evolution time 

Upgrade time 

 
Algo-
rithm 

                                                Number of peaks, p                                         

1 5 10 20 30 50 100 200 

CPSO 
mCPS
O 
mQSO(
5,5q) 
CESO 

rSPSO 

SPSO 

AmQS
O 

mPSO 

APSO 

FTMPS
O 

SFA 

PSO-
AQ 

CDEPS
O 

CbDE-
wCA 

AidPS
O 

0.14(0.
11) 

4.93(0.
17) 

2.24(0.
05) 

1.04(0.
00) 

1.42(0.
06) 

2.64(0.
10) 

2.62(0.
10) 

2.42(0.
05) 

0.53(0.
01) 

0.18(0.
01) 

0.42(0.
03) 

0.34(0.
02) 

0.41(0.
00) 

0.14(0.
03) 

0.15(0.
02)e-

10 

0.72(0.
30) 

2.07(0.
08) 

1.82(0.
08) 
- 

1.04(0.
03) 

2.15(0.
07) 

1.01(0.
09) 

1.82(0.
08) 

1.05(0.
06) 

0.47(0.
05) 

0.89(0.
07) 

0.80(0.
12) 

0.97(0.
01) 

0.30(0.
02) 

0.02(0.
01)e-1 

1.06(
0.24) 
2.08(
0.07) 
1.85(
0.08) 
1.38(
0.02) 
1.50(
0.08) 
2.51(
0.09) 
1.51(
0.10) 
1.85(
0.08) 
1.31(
0.03) 
0.67(
0.04) 
1.05(
0.04) 
0.89(
0.03) 
1.22(
0.01) 
0.86(
0.08) 
0.32(
0.05) 

1.59(
0.22) 
2.64(
0.07) 
2.48(
0.09) 
1.72(
0.02) 
2.20(
0.07) 
3.21(
0.07) 
2.00(
0.15) 
2.48(
0.09) 
1.69(
0.05) 
0.93(
0.04) 
1.48(
0.05) 
1.45(
0.06) 
1.54(
0.01) 
0.98(
0.05) 
0.39(
0.03) 

1.58(
0.17) 
2.63(
0.08) 
2.51(
0.10) 
1.24(
0.01) 
2.62(
0.07) 
3.64(
0.07) 
2.19(
0.17) 
2.51(
0.10) 
1.78(
0.02) 
1.14(
0.04) 
1.56(
0.06) 
1.52(
0.04) 
2.62(
0.01) 
1.34(
0.04) 
0.37(
0.04) 

1.54(
0.12) 
2.65(
0.06) 
2.53(
0.08) 
1.45(
0.01) 
2.72(
0.08) 
3.86(
0.08) 
2.43(
0.13) 
2.53(
0.08) 
1.95(
0.02) 
1.32(
0.04) 
1.87(
0.05) 
1.77(
0.05) 
2.20(
0.01) 
1.31(
0.04) 
0.17(
0.01) 

1.41(
0.08) 
2.49(
0.04) 
2.35(
0.06) 
1.28(
0.02) 
2.93(
0.06) 
4.01(
0.07) 
2.68(
0.12) 
2.35(
0.06) 
1.95(
0.01) 
1.61(
0.03) 
2.01(
0.04) 
1.95(
0.05) 
1.54(
0.01) 
1.35(
0.03) 
0.15(
0.02) 

1.24(
0.06) 
2.44(
0.04) 
2.24(
0.05) 

- 

2.79(
0.05) 
3.82(
0.05) 
2.62(
0.10) 
2.24(
0.05) 
1.90(
0.01) 
1.67(
0.03) 
1.99(
0.06) 
1.96(
0.04) 
2.11(
0.01) 
1.29(
0.02) 
0.13(
0.04) 



48 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

As it turns out, the peak location shift increases following a change in the environment with an increase in shift 
length. In other words, as the shift length increases further, the location of optimum shifts to a farther distance after the 
change in the environment, leading to more difficult optimum tracking for the algorithm. Thus, according to Table 4, 
the OE values for the algorithms increase. An incremental limited OE for the increased shift length for the proposed 
algorithm indicates the high stability of the algorithm in locating and tracking the optimum under any circumstances. 

 

Table 4. Comparison of OE of algorithms for different shift lengths in MPB problem 
 

 

 

 

 

 

 

 

 

 

Table 5. Comparison of OE of algorithms for a different number of peaks in the MPB problem at a change frequency of U = 

500 

  

The changed frequency of the “change in the U environment” determines the time spent by the algorithm to locate 
the optimum  

in each environment before any change. Obviously, a lower frequency means a much shorter time to detect the op-
timum. Tables 5-7 present the results of the MPB problem solution or a different number of peaks and environmental 
change frequencies of 500, 1000, and 10000. For example, an OE of 2.53 was obtained for 10 peaks at a change frequency 
of 500. Following an increase in frequency up to 1000, the algorithm is provided with more time and OE reaches 1.18. 
At a change frequency of 10,000, the OE decreases to 0.03. 

 
Table 6. Comparison of OE of algorithms for a different number of peaks in the MPB problem at a change frequency of U = 

100 

 
 

 

 

 
Algorithm 

Shift severity, s 

1 2 3 5 

CPSO 
mCPSO 

mQSO(5,5q) 
CESO 
rSPSO 
SPSO 

AidPSO 

1.06(0.24) 
2.05(0.07) 
1.85(0.08) 
1.38(0.02) 
1.50(0.08) 
2.51(0.09) 
0.32(0.05) 

1.17(0.22) 
2.80(0.07) 
2.40(0.06) 
1.78(0.02) 
1.87(0.05) 
3.78(0.09) 
0.41(0.07) 

 

1.36(0.28) 
3.57(0.08) 
3.00(0.06) 
2.03(0.03) 
2.40(0.08) 
4.96(0.12) 
0.46(0.06) 

 

1.58(0.32) 
4.89(0.11) 
4.24(0.10) 
2.52(0.06) 
3.25(0.09) 
6.76(0.15) 
0.49(0.09) 

 

 
Algorithm 

Number of peaks, p 

1 5 10 20 30 50 100 200 

mQSO(5,5q) 
AmQSO 
mPSO 
APSO 

FTMPSO 
SFA 

AidPSO 

33.67(3.42) 
3.02(0.32) 
8.71(0.48) 
4.81(0.14) 
1.76(0.09) 
4.72(0.12) 
0.35(0.04) 

11.91(0.76) 
5.77(0.56) 
6.69(0.26) 
4.95(0.11) 
2.93(0.18) 
4.88(0.12) 
2.29(0.03) 

9.62(0.34) 
5.37(0.42) 
7.19(0.23) 
5.16(0.11) 
3.91(0.19) 
5.11(0.14) 
2.53(0.04) 

9.07(0.25) 
6.82(0.34) 
8.01(0.19) 
5.81(0.08) 
4.83(0.19) 
5.72(0.13) 
1.89(0.03) 

8.80(0.21) 
7.10(0.39) 
8.43(0.17) 
6.03(0.07) 
5.05(0.21) 
5.97(0.12) 
0.81(0.03) 

8.72(0.20) 
7.75(0.32) 
8.76(0.18) 
5.95(0.06) 
4.95(0.15) 
5.94(0.15) 
1.45(0.01) 

8.54(0.16) 
7.34(0.31) 
8.91(0.17) 
6.08(0.06) 
5.31(0.11) 
6.15(0.08) 
1.11(0.02) 

8.19(0.17) 
7.48(0.19) 
8.88(0.14) 
6.20(0.04) 
5.52(0.21) 
6.18(0.11) 
1.03(0.02) 

pal Number of peaks, p 

1 5 10 20 30 50 100 200 

mQSO(5,5q) 
AmQSO 
mPSO 
APSO 
FTMPSO 
SFA 
AidPSO 

1.90(0.18) 
0.19(0.02) 
0.70(0.10) 
0.25(0.01) 
0.09(0.00) 
0.26(0.03) 
0.1(0.05)e-
13 

1.03(0.06) 
0.45(0.04) 
0.70(0.10) 
0.57(0.03) 
0.31(0.04) 
0.53(0.04) 
0.04(0.00) 
 

1.10(0.07) 
0.76(0.06) 
0.97(0.04) 
0.82(0.02) 
0.43(0.03) 
0.72(0.02) 
0.03(0.00) 
 

1.84(0.09) 
1.28(0.12) 
1.34(0.08) 
1.23(0.02) 
0.56(0.01) 
0.91(0.03) 
0.04(0.00) 
 

2.00(0.09) 
1.78(0.09) 
1.43(0.05) 
1.39(0.02) 
0.69(0.09) 
0.99(0.04) 
0.04(0.00) 
 

1.99(0.07) 
1.55(0.08) 
1.47(0.04) 
1.46(0.01) 
0.86(0.02) 
1.19(0.04) 
0.01(0.00) 
 

1.85(0.05) 
1.89(0.14) 
1.50(0.03) 
1.38(0.01) 
1.08(0.03) 
1.44(0.04) 
0.52(0.02)e-
2 
 

1.71(0.04) 
2.52(0.10) 
1.48(0.02) 
1.36(0.01) 
1.13(0.04) 
1.52(0.03) 
0.58(0.03)e-
2 
 



MICHAEL ABRAHAM: A NEW EFFICIENT APPROACH TO DEAL WITH DYNAMIC OPTIMIZATION PROBLEMS 

 

Table 7. Comparison of OE of algorithms for a different number of peaks in the MPB problem at a change frequency of U= 

10000 

 
Figure 3 shows the “fitness value” graph based on the number of calls, compared to other methods. An environmen-

tal change frequency of 1000 is intended to demonstrate the ability and speed at which the algorithm adapts to changes 
in environmental conditions. Other MPB problem settings are done by default. Compared to other algorithms, particles 
converge to higher values at higher speeds in the proposed algorithm. 

 

 

Fig. 3. Comparing OE with 10 peaks and 1000 frequency. 

 

Table 8 shows the execution speed of the proposed algorithm. The data are presented for a one-time change in a five-
dimensional environment with 10 peaks and a frequency of 1000 for the AidPSO algorithm and five other algorithms. 
The results of this table and those of Table 6 indicate a rapid and accurate performance of the algorithm in achieving a 
more optimal solution. The algorithm has achieved a better OE compared to other algorithms in less time. 
 
 
 
 

 
Algorithm 

Number of peaks, p 

1 5 10 20 30 50 100 200 

mQSO(5,5q) 
AmQSO 
mPSO 

APSO 
FTMPSO 
SFA 
AidPSO                

18.60(1.63) 
2.33(0.31) 
4.44(0.02) 
2.72(0.04) 
0.89(0.05) 
2.45(0.12) 
0.01(0.00) 

6.56(0.35) 
2.90(0.32)  
3.93(0.16) 
2.99(0.09) 
1.70(0.10) 
2.71(0.06) 
1.23(0.04) 

5.71(0.22) 
4.56(0.40) 
4.57(0.18) 
3.87(0.08) 
2.36(0.09) 
3.64(0.04) 
1.18(0.05) 

5.85(0.15) 
5.36(0.47) 
4.97(0.13) 
4.13(0.06) 
3.01(0.12) 
4.01(0.07) 
1.03(0.06) 

5.81(0.15) 
5.20(0.38) 
5.15(0.12) 
4.12(0.04) 
3.06(0.10) 
4.02(0.08) 
0.81(0.03) 

5.87(0.13) 
6.06(0.14) 
5.33(0.10) 
4.11(0.03) 
3.29(0.10) 
4.12(0.07) 
0.76(0.03) 

5.83(0.13) 
4.77(0.45) 
5.60(0.09) 
4.26(0.04) 
3.63(0.09) 
4.40(0.07) 
0.72(0.03) 

5.54(0.11) 
5.75(0.26) 
5.78(0.09) 
4.21(0.02) 
3.74(0.09) 
4.43(0.07) 
0.75(0.05) 



50 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

 

Table 8. Comparison of algorithm run time for MPB problem 

 
 
 
 
 
 

5 CONCLUSION 

These days, we are witnessing the widespread use of evolutionary algorithms to solve optimization problems in opti-
mal dynamic environments that change with time, thanks to the nature-inspired mechanisms of action and the evolving 
natural conditions over time. In this regard, it is important not only to detect the optimum but also to track the detected 
optimum. To achieve this goal, many studies have suggested the use of multi-population methods. 

This paper proposed a new algorithm for optimization in dynamic nonlinear environments. The adaptive increas-
ing/decreasing PSO (AidPSO) algorithm increases or decreases the number of particles adaptively according to envi-
ronmental conditions to locate and track the optimum. This algorithm divides particles into two groups, free particles, 
which are responsible for detecting feasible zones and focus particles, which are responsible for locating and tracking 
the optimum in feasible zones. The total number of particles and the size of the feasible zones are controlled with a 
higher probability of optimum detection by using several mechanisms. 

In dynamic optimization, the reduction of optimization time is important, with a direct relationship with a faster 
convergence of the algorithm to the global optimum. In dynamic problems, this convergence must be accompanied by a 
diversity preserved throughout the search space. Hence, the majority of optimization algorithms used in dynamic prob-
lems get started with a large number of particles, followed by a decrease in the number of particles as the optimization 
process progresses. This means wasting time calculating the fitness of a large number of particles in the early stages of 
optimization. To prevent these useless calculations, the proposed algorithm starts working with a small number of par-
ticles. An increased number of particles is always a function of the environmental conditions, including an increased 
number of optima, the modified environmental conditions, or the reduced success index, indicating the optimal pro-
gress of the algorithm. In contrast, thanks to stable environmental conditions, the algorithm attempts to reduce the 
number of particles, which in turn reduces the computational load and increases the optimization speed. 

Environmental changes in dynamic environments are not always detectable. For example, only one zone of the en-
tire search space may change, or changes in noisy environments may not be easily detected. In this case, the perfor-
mance of environmental change detection algorithms is fundamentally impaired. To address this shortcoming, the 
AidPSO algorithm is designed so that there is no need to detect changes in the environment and always adapt to envi-
ronmental conditions. 

The performance of the proposed algorithm in solving the MPB problem has been investigated as one of the most 
famous benchmark functions in dynamic environments. Extensive experiments for different MPB problem settings, 
including a different number of peaks and the length/frequency of the modified environment, indicate the acceptable 
performance of the algorithm compared to other algorithms in the field of dynamic optimization. 

For future research, it is recommended to employ the proposed algorithm to optimize real-world problems. Fur-
thermore, the use of the proposed algorithm in dynamic clustering such as web data is considered. Using self-adaptive 
mechanisms for the structural parameters of the algorithm can lead to the ability of the method to adapt more quickly 
to environmental conditions. 

REFERENCES 

[1] Mavrovouniotis, Michalis, Changhe Li, and Shengxiang Yang. "A survey of swarm intelligence for dynamic optimization: Algorithms 

and applications." Swarm and Evolutionary Computation 33 (2017): 1-17. 

[2] Nguyen, Trung Thanh, Shengxiang Yang, and Juergen Branke. "Evolutionary dynamic optimization: A survey of the state of the art." 

Swarm and Evolutionary Computation 6 (2012): 1-24. 

[3] Mavrovouniotis, Michalis, and Shengxiang Yang. "Adapting the pheromone evaporation rate in dynamic routing problems." In Europe-

an Conference on the Applications of Evolutionary Computation, pp. 606-615. Springer, Berlin, Heidelberg, 2013. 

[4] Baykasoğlu, Adil, and Fehmi Burcin Ozsoydan. "An improved firefly algorithm for solving dynamic multidimensional knapsack prob-

lems." Expert Systems with Applications 41, no. 8 (2014): 3712-3725. 

[5] Wy, Juyoung, and Byung-In Kim. "A hybrid metaheuristic approach for the rollon–rolloff vehicle routing problem." Computers & Opera-

tions Research 40, no. 8 (2013): 1947-1952. 

[6] Demirtaş, Yonca Erdem, Erhan Özdemir, and Umut Demirtaş. "A particle swarm optimization for the dynamic vehicle routing prob-

lem." In 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), pp. 1-5. IEEE, 2015. 

Algorithm Time, s 

CPSO 
mCPSO 

mQSO(5,5q) 
CESO 
rSPSO 

AidPSO 

79.2394 
81.8219 
80.3029 
81.2834 
78.3975 
65.8952 



VIJAY SHARMA:  OPTIMIZATION OF RELIABILITY IN COMPLEX SYSTEMS USING AN ARTIFICIAL NEURAL NETWORK APPROACH 

 51 

 

[7] Khouadjia, Mostepha R., Briseida Sarasola, Enrique Alba, Laetitia Jourdan, and El-Ghazali Talbi. "A comparative study between dynam-

ic adapted PSO and VNS for the vehicle routing problem with dynamic requests." Applied Soft Computing 12, no. 4 (2012): 1426-1439. 

[8] Okulewicz, Michał, and Jacek Mańdziuk. "Application of particle swarm optimization algorithm to dynamic vehicle routing problem." 

In International Conference on Artificial Intelligence and Soft Computing, pp. 547-558. Springer, Berlin, Heidelberg, 2013. 

[9] Mavrovouniotis, Michalis, and Shengxiang Yang. "Applying ant colony optimization to dynamic binary-encoded problems." In Europe-

an Conference on the Applications of Evolutionary Computation, pp. 845-856. Springer, Cham, 2015. 

[10] Boryczka, Urszula, and Łukasz Strąk. "Diversification and entropy improvement on the DPSO algorithm for DTSP." In Asian Conference 

on Intelligent Information and Database Systems, pp. 337-347. Springer, Cham, 2015. 

[11] Mavrovouniotis, Michalis, and Shengxiang Yang. "Ant colony optimization with self-adaptive evaporation rate in dynamic environ-

ments." In 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 47-54. IEEE, 2014. 

[12] Mavrovouniotis, Michalis, and Shengxiang Yang. "Memory-based immigrants for ant colony optimization in changing environments." 

In European Conference on the Applications of Evolutionary Computation, pp. 324-333. Springer, Berlin, Heidelberg, 2011. 

[13] Mavrovouniotis, Michalis, and Shengxiang Yang. "Interactive and non-interactive hybrid immigrants schemes for ant algorithms in 

dynamic environments." In 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1542-1549. IEEE, 2014. 

[14] Gao, Shangce, Yirui Wang, Jiujun Cheng, Yasuhiro Inazumi, and Zheng Tang. "Ant colony optimization with clustering for solving the 

dynamic location routing problem." Applied Mathematics and Computation 285 (2016): 149-173. 

[15] Mavrovouniotis, Michalis, and Shengxiang Yang. "Ant colony optimization with memory-based immigrants for the dynamic vehicle 

routing problem." In 2012 IEEE Congress on Evolutionary Computation, pp. 1-8. IEEE, 2012. 

[16] Mavrovouniotis, Michalis, and Shengxiang Yang. "Ant colony optimization with immigrants schemes for the dynamic travelling sales-

man problem with traffic factors." Applied Soft Computing 13, no. 10 (2013): 4023-4037. 

[17] Mavrovouniotis, Michalis, Shengxiang Yang, and Xin Yao. "Multi-colony ant algorithms for the dynamic travelling salesman problem." 

In 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 9-16. IEEE, 2014. 

[18] Van Veen, Barry, Michael Emmerich, Zhiwei Yang, Thomas Bäck, and Joost Kok. "Ant colony algorithms for the dynamic vehicle rout-

ing problem with time windows." In International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 1-10. 

Springer, Berlin, Heidelberg, 2013. 

[19] Yang, Zhiwei, Michael Emmerich, and Thomas Bäck. "Ant based solver for dynamic vehicle routing problem with time windows and 

multiple priorities." In 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2813-2819. IEEE, 2015. 

[20] Melo, Leonor, Francisco Pereira, and Ernesto Costa. "Multi-caste ant colony algorithm for the dynamic traveling salesperson problem." 

In International Conference on Adaptive and Natural Computing Algorithms, pp. 179-188. Springer, Berlin, Heidelberg, 2013. 

[21] Melo, Leonor, Francisco Pereira, and Ernesto Costa. "Extended experiments with ant colony optimization with heterogeneous ants for 

large dynamic traveling salesperson problems." In 2014 14th International Conference on Computational Science and Its Applications, pp. 171-

175. IEEE, 2014. 

[22] Boryczka, U., & Strąk, Ł. (2015). Heterogeneous DPSO algorithm for DTSP. In Computational Collective Intelligence (pp. 119-128). Springer, 

Cham.  

[23] Okulewicz, Michał, and Jacek Mańdziuk. "Two-phase multi-swarm PSO and the dynamic vehicle routing problem." In 2014 IEEE Sym-

posium on Computational Intelligence for Human-like Intelligence (CIHLI), pp. 1-8. IEEE, 2014. 

[24] Mavrovouniotis, Michalis, and Shengxiang Yang. "A memetic ant colony optimization algorithm for the dynamic travelling salesman 

problem." Soft Computing 15, no. 7 (2011): 1405-1425. 

[25] Mavrovouniotis, Michalis, and Shengxiang Yang. "Dynamic vehicle routing: A memetic ant colony optimization approach." In Automat-

ed scheduling and planning, pp. 283-301. Springer, Berlin, Heidelberg, 2013. 

[26] Mavrovouniotis, Michalis, Felipe M. Müller, and Shengxiang Yang. "Ant colony optimization with local search for dynamic traveling 

salesman problems." IEEE transactions on cybernetics 47, no. 7 (2016): 1743-1756. 

[27] Li, Changhe, and Shengxiang Yang. "A comparative study on particle swarm optimization in dynamic environments." In Evolutionary 

Computation for Dynamic Optimization Problems, pp. 109-136. Springer, Berlin, Heidelberg, 2013. 

[28] Parrott, Daniel, and Xiaodong Li. "Locating and tracking multiple dynamic optima by a particle swarm model using speciation." IEEE 

Transactions on Evolutionary Computation 10, no. 4 (2006): 440-458. 

[29] Yang, Shengxiang, and Changhe Li. "A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic envi-

ronments." IEEE Transactions on Evolutionary Computation 14, no. 6 (2010): 959-974. 

[30] Li, Changhe, and Shengxiang Yang. "A clustering particle swarm optimizer for dynamic optimization." In 2009 IEEE congress on evolu-

tionary computation, pp. 439-446. IEEE, 2009. 

[31] Branke, Jürgen. "Memory enhanced evolutionary algorithms for changing optimization problems." In Proceedings of the 1999 Congress on 

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1875-1882. IEEE, 1999.4. 

[32] Jin, Yaochu, and Jürgen Branke. "Evolutionary optimization in uncertain environments-a survey." IEEE Transactions on evolutionary com-

putation 9, no. 3 (2005): 303-317. 

[33] Bonilla-Vera, José Alberto, Jaime Mora-Vargas, Miguel González-Mendoza, Iván Adrian López-Sánchez, and César Jaime Montiel-

Moctezuma. "Brief review of techniques used to develop adaptive evolutionary algorithms." The Open Cybernetics & Systemics Journal 11, 

no. 1 (2017). 



52 ENGINEERING: AN INTERNATIONAL JOURNAL 

 

[34] Branke, Jürgen, Thomas Kaußler, Christian Smidt, and Hartmut Schmeck. "A multi-population approach to dynamic optimization prob-

lems." In Evolutionary design and manufacture, pp. 299-307. Springer, London, 2000. 

[35] Du, Weilin, and Bin Li. "Multi-strategy ensemble particle swarm optimization for dynamic optimization." Information sciences 178, no. 15 

(2008): 3096-3109. 

[36] Liu, Xiao-Fang, Yu-Ren Zhou, Xue Yu, and Ying Lin. "Dual-archive-based particle swarm optimization for dynamic optimization." Ap-

plied Soft Computing 85 (2019): 105876. 

[37] Blackwell, Tim, and Jürgen Branke. "Multiswarms, exclusion, and anti-convergence in dynamic environments." IEEE transactions on 

evolutionary computation 10, no. 4 (2006): 459-472. 

[38] Del Amo, Ignacio G., David A. Pelta, and Juan R. González. "Using heuristic rules to enhance a multiswarm PSO for dynamic environ-

ments." In IEEE congress on evolutionary computation, pp. 1-8. IEEE, 2010. 

[39] Simões, Anabela, and Ernesto Costa. "Evolutionary algorithms for dynamic environments: Prediction using linear regression and Mar-

kov chains." In International Conference on Parallel Problem Solving from Nature, pp. 306-315. Springer, Berlin, Heidelberg, 2008. 

[40] Kennedy, James, and Russell Eberhart. "Particle swarm optimization." In Proceedings of ICNN'95-International Conference on Neural Net-

works, vol. 4, pp. 1942-1948. IEEE, 1995. 

[41] Shi, Yuhui, and Russell Eberhart. "A modified particle swarm optimizer." In 1998 IEEE international conference on evolutionary computation 

proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), pp. 69-73. IEEE, 1998. 

[42] Lung, Rodica Ioana, and Dumitru Dumitrescu. "A collaborative model for tracking optima in dynamic environments." In 2007 IEEE 

Congress on Evolutionary Computation, pp. 564-567. IEEE, 2007. 

[43] Bird, Stefan, and Xiaodong Li. "Using regression to improve local convergence." In 2007 IEEE Congress on Evolutionary Computation, pp. 

592-599. IEEE, 2007. 

[44] Blackwell, Tim, Jürgen Branke, and Xiaodong Li. "Particle swarms for dynamic optimization problems." In Swarm Intelligence, pp. 193-

217. Springer, Berlin, Heidelberg, 2008. 

[45] Rossi, Claudio, Mohamed Abderrahim, and Julio César Díaz. "Tracking moving optima using Kalman-based predictions." Evolutionary 

computation 16, no. 1 (2008): 1-30. 

[46] Kumar, Priyadarshi Biplab, Dayal R. Parhi, and Chinmaya Sahu. "An approach to optimize the path of humanoid robots using a hybrid-

ized regression-adaptive particle swarm optimization-adaptive ant colony optimization method." Industrial Robot: the international jour-

nal of robotics research and application (2019). 

[47] Liu, Xiao-Fang, Yu-Ren Zhou, Xue Yu, and Ying Lin. "Dual-archive-based particle swarm optimization for dynamic optimization." Ap-

plied Soft Computing 85 (2019): 105876. 

[48] Liu, Xiao-Fang, Yu-Ren Zhou, Xue Yu, and Ying Lin. "Dual-archive-based particle swarm optimization for dynamic optimization." Ap-

plied Soft Computing 85 (2019): 105876. 

[49] Jana, Bappaditya, Moumita Chakraborty, and Tamoghna Mandal. "A task scheduling technique based on particle swarm optimization 

algorithm in cloud environment." In Soft Computing: Theories and Applications, pp. 525-536. Springer, Singapore, 2019. 

[50] Zhu, Zhen, Long Chen, Chaochun Yuan, and Changgao Xia. "Global replacement-based differential evolution with neighbor-based 

memory for dynamic optimization." Applied Intelligence 48, no. 10 (2018): 3280-3294. 

[51] Mukherjee, Rohan, Gyana Ranjan Patra, Rupam Kundu, and Swagatam Das. "Cluster-based differential evolution with crowding ar-

chive for niching in dynamic environments." Information Sciences 267 (2014): 58-82. 

 


