hep tables

G. Watts (UW/Seattle)

ighlevel

ith Analysis Systems,

is to explore some h

ing th

ild

Been bu

deas connected w

and...

is,

ive analys

teract

1

Probably closer to
this...

 Comments on the ideas obviously welcome

* I’'ve made a few design decisions that are wrong
* Some of them | should have known from my LINQ work!

Goal 1: Easy things should be easy

o dataset = EventDataset('localds://mc1l5 13TeV:mcl5 13TeV.361106.PowhegPythia8EvtGen AZNLOCTEQ6L1 Zee.merge.

df = xaod_table(dataset) 166

pts = df.Electrons(‘Electrons’).pt/1000.0
np_pts = make_local(pts)

=
[=]
|

0.8 1

9 plt.hist(np_pts.flatten(), range=(0, 100), bins=50)
plt.xlabel('Electron $p T$ [GeV]")
_ = plt.ylabel('PowhegPythia8EvtGen AZNLOCTEQ6L1 Zee')

0.6 1

L=
s

v

PowhegPythiaBEvtGen AZNLOCTEQGEL1 Zee
=
(]

o Onetime boilerplate to indicate the dataset you want

o
o

9 Extract the electrons from the “Electrons” xAOD bank, access the o 20 40 60 80 100
' i El TG
pr property of the object, and turn it from MeV to GeV ectron pr [GeV]

9 Get the column of electron p; from the dataset using ServiceX.

9 Plot it. np_pts is an JaggedArray when it comes back. Jupyter Notebook Demo (not binder!)

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html

Where does this fit?

hep tables '
Data Lake ServiceX “ Analysis ﬁ

(awkward, coffea)

XRootD gastle dataframe_expressiors

User enters expressions
in Jupyter notebook or
in python source files.

Where does this fit?

hep tables ’
Data Lake “ ServiceX “ Analysis “
(awkward, coffea) ’
XRootD gastle dataframe_expressions
github
Builds a DAG

Electrons

xaod_table

https://github.com/gordonwatts/dataframe_expressions

Where does this fit?

hep tables

Data Lake “ ServiceX “

o

Analysis

(awkward, coffea)

XRootD gastle dataframe_expressions

v
Converts the DAG to gastle

(Select data_column_source
(lambda (list Event)

(list (call (attr (attr Event 'Electrons') 'pt'))
(call (attr (attr Event 'Electrons') ‘'eta'))
(call (attr (attr Event 'Electrons') 'phi'))
(call (attr (attr Event 'Electrons') 'e'))
(call (attr (attr Event 'Muons') 'pt'))
(call (attr (attr Event 'Muons') 'eta'))
(call (attr (attr Event 'Muons') 'phi'))
(call (attr (attr Event 'Muons') 'e')))))

https://github.com/iris-hep/qastle

Where does this fit?

hep tables
Data Lake “ ServiceX “ Analysis
(awkward, coffea)

XRootD gastle dataframe_expressions

ServiceX fetches the
datasets, files, etc.,
extracts requested)
data, makes some :

simple cuts, and ships it R
back.

Where does this fit?

hep tables
Data Lake ServiceX “ Analysis
(awkward, coffea)
XRootD gastle dataframe_expressions
J \ J
f f
Analysis Facility or Analysis Facility
DOMA Data Lake (coffea, spark,

Facility ray, etc.)

Filtering

Pretty much as you’d expect from
your experience of using array
slicing with pandas and numpy

notebook

Filtering Single Objects

What if we only want tc lock at the electrons with a pr above 50 GeV? Then we use
the slice operations that numpy and pandas have gotten us used to. To avoid
repeating ourselves and typing long lines, it is convienient to define a few variables as
short-cuts. We also want a list of good electrons, so lets define that.

L6

Axtime

eles = df.Electrons("Electrons™)

good eles = eles[(eles.pt » Se@ea.a) & (abs(eles.eta) < 1.5)]
]

np_pts_good_short = make_local(good_eles.pt/1888.8)

Wall time: 1.2 s

plt.hist({np _pts good short.flatten(), range=(8, 18a8), bins=58)
plt.xlabel{ "Electron $p_T% with cut [GeV]")
_ = plt.ylabel(' PowhegPythiaBEvtGen_AZNLOCTEQEL1 Zee')

35000 4

30000 A

25000 -

20000

n_AZNLOCTEQGELL Zee

15000

10000 A

PowhegPythiaBEvtGe

5000 -

Q 20 40 (4] 80 100
Electron pr with cut [GeV]

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html

©

Extime ’
good events = df[eles.Count() == 2]

ele per event count = make local(good events.Electrons("Electrons™).Count(})

Filter on # of Objects

Wall time: G686 ms

I’'ve been using the “Count()” method to plt.hist(ele per event count, range=(8,18)) D
Count’ but if python a”ows a non_lnteger return plt.title ('Number of electrons when $N_{ele} = 2%")

. . plt.xlabel('$N {elal%")
from 1en' that should work JUSt flne too. _ = plt.ylabel(PowhegPythiaB8EvtGen AZNLOCTEQSL1 Zee'}

Number of electrons when Nge =2

600000 4

200000 4

400000

300000 -

200000

100000

PowhegPythiaBEvtGen_AZNLOCTEQEL]L Zee

Nc'lc'
notebook

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html

Filter Functions

For when thinking about arrays can get a little messy...

* Single object-like semantics

* No loops, if statements, etc.

* Has to render a DAG, not an
algorithm that gets translated.

 The “?:” operator is valid (or should
be).

notebook

def

central_good_ele(e):
return (e.pt/l1eée8.a » 48) & (abs{e.eta) < 1.5)

central_good_eles = eles[central_good_ele]

hktime ﬂj

np_eta_central_good = make_local(central_good_eles.eta)

Wall time: 1.26 s

plt.hist({np eta all.flatten(), label="2ll', bins=58, range=(-3.8,3.8)) dj

plt.hist{np_eta_central_good.flatten(), label="central good', bins=58, range
plt.hist{np_eta_good.flatten(), label="goecd', bins=58, range=(-3.8,3.8), col
plt.yscale(log')

plt.ylabel(' PowhegPythia8EvtGen AZNLOCTEQGBL1 Zee')

plt.
plt.

xlabel('Electron %η')
legend();

LI
m central good
I good

=
(=]
i

PowhegPythia8EviGen_AZNLOCTEQGELL Zee
5
A

-3 -2 -1 1] 1 2 3
Electron n

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html

Goal 2: Separate “parsing” of python use
from implementation

dataframe expressions

hep tables

Knows no semantics!!

Turns what you write into a DAG

Understands lambda functions an the like

Can extend the data model (see comming slides) with computed
columns, a regular expression syntax, and by declaring whole new
objects.

Knows what to do with numpy functions (array ufunc)

Leaky abstractions in the form of backend custom functions can be
declared

See readme for a description

Turn a dataframe_expressions into a gastle query
Has a type system (heuristics mostly, with some explicit decl)

https://github.com/gordonwatts/dataframe_expressions
https://github.com/gordonwatts/dataframe_expressions
https://github.com/gordonwatts/hep_tables

Documentation

Not really

Design Goals

There are two approaches to analyzing large datasets. One has the physicist dealing
directly with coordinating the backend: scheduling, numbers of parallel processors, etc.
The other has the physicist manipulate the dataset as a whole, and then let the
backend decide how to split the work up.

Each approach has advantages and disadvantages. The first approach means that the
user needs to know details that have nothing to with physics, OTOH, they have
complete control and can really take advantage of their knowledge of the shape of the
data, the layout of the backend they are running on, etc. The latter approach trades
these two - the user manipulates the data, and thinks very little about how the data is
processed, but then it is very hard to really take advantage of the layout of the system.

Further, it should be noted that the second approach will use the tools developed for
the first approach! And any actual solution will almost certainly not be purely one
approach or a second approach.

The combination of hep_tables and dataframe_expressions leans more towards

the second approach.

Where might a prototype end up?

IRL, one would expect the backend to split the query up, the first part would send to
servicex and get the data, and then the second part would run on that returned

data and produce results, something like this:

L‘lata Lalu.a " ServiceX “ Analysis

(awkward, coffea)

A quick description of the various bits:

* [Data Lake: The experiment's data store. Usually backed by rucio.

* XRootD: The wire-level protocol used to move files

» ServiceX: distributed cloud application that extracts columns of data quickly from
experiment's data. Capable of windowing rendered columns with simplified cuts.

https://gordonwatts.github.io/hep_tables_docs

Goal 3: More complex things possible...

Attempting to use a few simple concepts that are composable...

And if you read the code 6 months from now you understand WTF you did...

Eve ryt h I n g O n t h e from hep_tables import histogram @
b a C ke n d good eles = eles[np.abs({eles.eta) < 2Z.5] @
good_ele hist = make_local(histogram{good_eles.eta, bins=58, range=(-3.8,3.8

- 2

- -) plt.plot(good ele hist[1][:-1], good ele hist[@], marker='o0") @
In Run 4 we will have histograms that can’t be plY.ylabel(' PowhegPythiagEvtGen AZNLOCTEQ6L1 Zee')

bUIIt on your Iaptop. plt.xlabel(Electron η')

. . Text(®.5, @, 'Electron $\\eta%')
Can we implement a histogram on the backend
in this system? 160000

E 140000 4
This is a cheat, but it does demonstrate the -
. E 120000 -
point... :
l 9 100000 4
=
(array([@, °, o, o, 85745, 112741, 113874, 112983, E
114508, 114784, 117134, 110956, 01870, 98522, 119778, 122264, 1 BOOOO 4

123661, 124620, 132156, 146337, 152674, 154650, 154280, 151966,
148552, 149257, 152511, 152984, 153445, 153742, 147485, 132846,
125098, 123592, 123053, 120665, 98664, 91761, 111661, 118223,
114385, 114995, 112068, 113957, 112241, 85682, e, e,
e,], dtype=ints4),

array([-3. , -2.88, -2.76, -2.64, -2.52, -2.4 , -2.28, -2.16, -2.94,
-1.92, -1.8 , -1.68, -1.56, -1.44, -1.32, -1.2 , -1.88, -0.96,
-.84, -0.72, -0.6 , -0.48, -0.36, -0.24, -0.12, a. , 0.12,
8.24, ©.36, 0.48, 0.6, 0.72, ©6.84, 8.9, 1.68, 1.2 ,
1.32, 1.44, 1.56, 1.68, 1.8 , 1.92, 2.84, 2.16, 2.28,
2.4, 2.52, 2.64, 2.76, 2.88, 3. 1))

PowhegPythiaBEvtGen
s & B
= = =
= = o
=1 = =

-3 -2 -1 0 1 2 3
Electron n

notebook

https://gordonwatts.github.io/hep_tables_docs/features/02-Functions.html

mapped eles = eles.map(lambda e: e.pt/1666.8)

Map Function

AAtime
mapped eles pt = make local(mapped eles)

This ends up being the same as eles.pt/1000.0 Wall time: 1.83 s

plt.hist({mapped_eles_pt.flatten(), bins=58, range={8, 188.8))
plt.ylabel('PowhegPythiaBEviGen AZNLOCTEQBLL Zee')
_ = plt.xlabel('Electron §%etal')

The power comes when you use the ability of a

python lambda function to capture other 1e6
variables.

= = e =
n o m =]
.

PowhegPythiaBEviGen_AZNLOCTEQ6ELL Zee
[=]
K

=
o

0 20 40 60 80 100
notebook Electron n

https://gordonwatts.github.io/hep_tables_docs/features/02-Functions.html

Adding computed columns

df['all_ele'] = df.Electrons{"Electrons™)
df.all_ele['mypt'] = df.all_ele.pt / 10@8.82

We can then use them as if we had the leaves or collections as reulgar parts of the

event:

You could also write:

sntime

df.all_ele[‘mypt’] = lambda e: e.pt/1000.0 pts = make_local(df.all ele.mypt)

led

|
o
L

e
]
i

Single object semantics
makes this way easier to
read!

e e
£ o
))

PowhegPythiaBEvtGen_AZNLOCTEQGEL1_Zee
=
[%)

e
[=]
|

0 20 40 &0 80 100
Electron pr [GeV]

notebook

https://gordonwatts.github.io/hep_tables_docs/features/03-Alias.html

Object Associations

Let's associate all electrons with their MC particles

mc_part = df.TruthParticles(' TruthParticles')
mc_ele = mc_part[{mc_part.pdgld == 11) | (mc_part.pdgld == -11)]

eles = df.Electrons{ 'Electrons’)
def good e(e):
Setup: "Good electron particle’

return (e.ptgev > 28) & (abs(e.eta) < 1.4)

good eles = eles[good e]
good_mc_ele = mc_ele[good_e]

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html

def associate particles(source, pick from): dﬁ

() [] [] [
O bJ ect ASSOC | at I O n S Associate each particle from source with a close by one from the particl

Args:
Matchlng: source The particles we want to start from
pick from For each partcile from source, we'll find a close
name Naming we can use when we extend the data model.
Returns:
with assoc The source particles that had a close by match

def dr{pl, p2):
‘short hand for calculating DR between two particles.’
return DeltaR({pl.eta(), pl.phi{), p2.eta(), p2.phi())}
Key line: for each good electron, select

only the very near good MC electrons. def very_near(picks, p):

‘Return all particles in picks that are DR less than €.1 from p°
return picks[lambda ps: dr(ps, p) < ©.1]

source[f'all'] = lambda source p: wvery near{pick_from, source p)

Filter by all that are near by for source[f'has_match’'] = lambda e: e.all.Count() » @ Note the

each electron we are “looking” at! LA EeE o sl e s e B lambda
with_assoc['mc'] = lambda e: e.all.First()
capturel!l

Build the data model to make life return with_assoc

€asy... . .
matched = associate particles(good eles, good mc_ele)

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html

matched ele pt = make local{good =les[good eles.has match].ptgev) Ej
unmatched ele pt = make local(good eles[~good eles.has match].ptgev)

Object Associations

plt.hist(matched ele pt.flatten(), bins=538, range=(@,288), label='|‘~1atc’|eo@

Let'S Compare at the pT Of the matched plt.hlst{unrll1atched_ele_pt.Flatten{}J If:1n5=5~'3, range=(8,288), label="Unmatche
plt.xlabel('Reco Electron %p T% [GeV]")

and unmatched electrons: plt.ylabel('PowhegPythia8EvtGen AZNLOCTEQGL1 Zee')
plt.legend()

<matplotlib.legend.lLegend at Bx21367e67b08>

. Matched
B Unmatched

200000 1

1175000

150000

AZNLOCTEQELL fee

e
B
un
2
o
[=]

1

100000

73000

30000 1

PowhegPythiaBEvtGen

25000 1

nOtEbOOk 0 25 50 75 100 125 150 175 200
Reco Electron pr [GeV]

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html

Object Associations g me i)
J pt matched reco = make local({matched.ptgev)

plt.hist({pt_matched mc-pt_matched reco).flatten(), bins=1g@a, “ar"ge=|:—2t3,|g9
A reSO|Uti0n plOt plt.ylabel('PowhegPythiadEvtGen AZNLOCTEQELL Zea')
_ = plt.xlabel("Resolution (truth-reco) [GaV]")

200000 o

175000

150000 -

125000

100000

75000 A

50000 1

PowhegPythia8EviGen AZNLOCTEQGEL1 Zee

25000 - [L

=20 =15 =10 =5 0 5 10 15 20
Resolution (truth-reco) [GeV]

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html

O b » e Ct ASSOC i ati O n S pt_matched mc = make local{matched.mc.ptgev) @
J pt matched reco = make local({matched.ptgev)

plt.hist({pt_matchad _matched reco).flatten(), bins=1ga, “ar"ge=|:—2t3,@9
A resolution plot... plt.ylabel(' PowhegBythIZ8EvtGen AZNLOCTEQBLL Zea')
_ = plt.xlabe Resolution (truth-reco) [GeV]")

200000

175000

This is what I’'m currently working on... 150000 1

125000

(note | had to bring the data local to make this plot)

100000

75000 A

50000 1

PowhegPythia8EviGen AZNLOCTEQGEL1 Zee

25000

0 e .
=20 =15 =10 =5 0 5 10 15 20
Resolution (truth-reco) [GeV]

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html

Object Associations

Summary:

hl tables

Our DAG:

ServiceX is meant to do simple streaming of data! _
But not these operations

ServiceX can do these operations

Want to write...

1. The histogram function caused all
the data to be fetched.

2. Operations will occur on servicex
as well as directly with awkward
array, depending on their
capabilities

Design is extensible...

Once a simple version works...

In [7]:

In [8]:

In [12]:

In [13]:

dataset = EventDataset(f'localds://mcl6_13TeV:{ds[“RucioDSName"”].values[@]}")
df = xaod table(dataset)

truth = df.TruthParticles(' TruthParticles")
11p truth = truth[truth.pdgld == 35]

11p good_truth = 1llp_truth[llp_truth.hasProdvtx & 1llp_truth.hasDecayVtx]

1 prod = a_3v({1llp good truth.prodvVtx)
1 decay = a_3v({llp good truth.decayVix)
lxy = (1 decay-1 prod).xy

histogram(lxy, bins=58, range=(8,28))
x_prod = make_Local(llp good truth.prodvitx.x)

L
Ly prod = make_local{lLlp good truth.prodvtx.y)
Lz prod = make_local{llp good truth.prodvtx.z)

a MC Sample

105 -

10¢

1|]3 _

107 4

0.0 25 5.0 5 1oo 125 150 175 200
Liy [m]

You Made It To The End!

T & R PR

* I’'m using a new MC analysis idea I’'m architecture and design decisions | made
developing to drive the features here. which are not correct
* There are lots of gaps * Many of them | figured them out only when
« And you can’t try it out yet (well, you could, trying to put together more complex
but servicex setup, etc.) operations .) o
* |t should work for ntuples and for xAOD’s) ﬁgtvtvear”igte‘;_c"”t'”“e to "break” this to get a
(nanoAQODs) just fine . N
* But semantics are a little different and it * What 'S_neXt' _ _
hasn’t been tested... yet. e See if | can use it to make an analysis on 57

, MC rucio datasets
Challenges for expressing data, etc. * Add coffea idioms in as hl_tables gets more

Goals: sc;phisticated (if my structure can deal with
' it).

* Feel reasonable abou.t 803' 1, goal 2 * Distributed processing to simulate analysis
* Goal 3 —-need to use it in more than facility?

contrived examples
* What else?

Prototype: There are some definite

