
hep_tables
G. Watts (UW/Seattle)



Prototype!

• Been building this to explore some highlevel
ideas connected with Analysis Systems, 
interactive analysis, and…



Probably closer to 
this…

• Comments on the ideas obviously welcome

• I’ve made a few design decisions that are wrong
• Some of them I should have known from my LINQ work!



Goal 1: Easy things should be easy
dataset = EventDataset('localds://mc15_13TeV:mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.DAOD_STDM3.e3601_s2576_s2132_r6630_r6264_p2363_tid
df = xaod_table(dataset)
pts = df.Electrons(‘Electrons’).pt/1000.0
np_pts = make_local(pts)

plt.hist(np_pts.flatten(), range=(0, 100), bins=50)
plt.xlabel('Electron $p_T$ [GeV]')
_ = plt.ylabel('PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee')

1

2
3

4

1 Onetime boilerplate to indicate the dataset you want

2 Extract the electrons from the “Electrons” xAOD bank, access the 
𝑝𝑇 property of the object, and turn it from MeV to GeV

3 Get the column of electron 𝑝𝑇 from the dataset using ServiceX.

4 Plot it. np_pts is an JaggedArray when it comes back.
Jupyter Notebook Demo (not binder!)

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html


Where does this fit?

User enters expressions 
in Jupyter notebook or 
in python source files.



Where does this fit?

Builds a DAG

xaod_table

Electrons

pt

/

1000.0

github

https://github.com/gordonwatts/dataframe_expressions


Where does this fit?

Converts the DAG to qastle

(Select data_column_source
(lambda (list Event)

(list (call (attr (attr Event 'Electrons') 'pt'))
(call (attr (attr Event 'Electrons') 'eta'))
(call (attr (attr Event 'Electrons') 'phi'))
(call (attr (attr Event 'Electrons') 'e'))
(call (attr (attr Event 'Muons') 'pt'))
(call (attr (attr Event 'Muons') 'eta'))
(call (attr (attr Event 'Muons') 'phi'))
(call (attr (attr Event 'Muons') 'e')))))

https://github.com/iris-hep/qastle


Where does this fit?

ServiceX fetches the 
datasets, files, etc., 
extracts requested 
data, makes some 
simple cuts, and ships it 
back.



Where does this fit?

Analysis Facility
(coffea, spark, 

ray, etc.)

Analysis Facility or 
DOMA Data Lake 

Facility



Filtering

Pretty much as you’d expect from 
your experience of using array 
slicing with pandas and numpy

notebook

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html


Filter on # of Objects

I’ve been using the “Count()” method to 
count, but if python allows a non-integer return 
from len, that should work just fine too.

notebook

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html


Filter Functions

For when thinking about arrays can get a little messy…

• Single object-like semantics
• No loops, if statements, etc.
• Has to render a DAG, not an 

algorithm that gets translated.
• The “? :” operator is valid (or should 

be).

notebook

https://gordonwatts.github.io/hep_tables_docs/features/01-Plotting-and-Filtering.html


Goal 2: Separate “parsing” of python use 
from implementation

dataframe_expressions • Knows no semantics!!
• Turns what you write into a DAG
• Understands lambda functions an the like
• Can extend the data model (see comming slides) with computed 

columns, a regular expression syntax, and by declaring whole new 
objects.

• Knows what to do with numpy functions (array ufunc)
• Leaky abstractions in the form of backend custom functions can be 

declared

See readme for a description

hep_tables • Turn a dataframe_expressions into a qastle query
• Has a type system (heuristics mostly, with some explicit decl)

https://github.com/gordonwatts/dataframe_expressions
https://github.com/gordonwatts/dataframe_expressions
https://github.com/gordonwatts/hep_tables


Documentation

Not really

https://gordonwatts.github.io/hep_tables_docs


Goal 3: More complex things possible…

Attempting to use a few simple concepts that are composable…

And if you read the code 6 months from now you understand WTF you did…



Everything on the
backend

In Run 4 we will have histograms that can’t be 
built on your laptop.

Can we implement a histogram on the backend 
in this system?

This is a cheat, but it does demonstrate the 
point…

notebook

https://gordonwatts.github.io/hep_tables_docs/features/02-Functions.html


Map Function

This ends up being the same as eles.pt/1000.0

The power comes when you use the ability of a 
python lambda function to capture other 
variables.

notebook

https://gordonwatts.github.io/hep_tables_docs/features/02-Functions.html


Adding computed columns

You could also write:

df.all_ele[‘mypt’] = lambda e: e.pt/1000.0

Single object semantics 
makes this way easier to 
read!

notebook

https://gordonwatts.github.io/hep_tables_docs/features/03-Alias.html


Object Associations

Let's associate all electrons with their MC particles

Setup:

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html


Object Associations
Matching:

Key line: for each good electron, select 
only the very near good MC electrons.

Note the 
lambda 
capture!!!

Filter by all that are near by for 
each electron we are “looking” at!

Build the data model to make life 
easy…

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html


Object Associations

Let's compare at the 𝑝𝑇 of the matched 
and unmatched electrons:

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html


Object Associations

A resolution plot…

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html


Object Associations

A resolution plot…

This is what I’m currently working on…

(note I had to bring the data local to make this plot)

notebook

https://gordonwatts.github.io/hep_tables_docs/features/04-Multiple-Objects.html


Object Associations

Summary:



hl_tables

Our DAG:
ServiceX is meant to do simple streaming of data!

ServiceX can do these operations

But not these operations



Want to write…

1. The histogram function caused all 
the data to be fetched.

2. Operations will occur on servicex 
as well as directly with awkward 
array, depending on their 
capabilities

Design is extensible…

Once a simple version works...



You Made It To The End!

• I’m using a new MC analysis idea I’m 
developing to drive the features here.
• There are lots of gaps
• And you can’t try it out yet (well, you could, 

but servicex setup, etc.)

• It should work for ntuples and for xAOD’s
(nanoAODs) just fine
• But semantics are a little different and it 

hasn’t been tested… yet.

• Challenges for expressing data, etc.

• Goals:
• Feel reasonable about goal 1, goal 2
• Goal 3 – need to use it in more than 

contrived examples

• Prototype: There are some definite 

architecture and design decisions I made 
which are not correct
• Many of them I figured them out only when 

trying to put together more complex 
operations

• So want to continue to “break” this to get a 
better idea.

• What is next?
• See if I can use it to make an analysis on 57 

MC rucio datasets
• Add coffea idioms in as hl_tables gets more 

sophisticated (if my structure can deal with 
it).

• Distributed processing to simulate analysis 
facility?

• What else?


