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1 Introduction

1.1 Background

MP-Opt-Model is a package of Matlab language M-files1 for constructing and solv-
ing mathematical optimization problems. It provides an easy-to-use, object-oriented
interface for building and solving your optimization model. It also includes a unified
interface for calling numerous LP, QP, mixed-integer and nonlinear solvers, with the
ability to switch solvers by simply changing an input option. The MP-Opt-Model
project page can be found at:

https://github.com/MATPOWER/mp-opt-model

MP-Opt-Model is based on code that was developed, primarily by Ray D. Zim-
merman of PSerc2 at Cornell University as part of the Matpower [1, 2] project.

Up until version 7 of Matpower, the code now included in MP-Opt-Model
was distributed only as an integrated part of Matpower. After the release of
Matpower 7, MP-Opt-Model was split out into a separate project, though it is
still included with Matpower.

1Also compatible with GNU Octave [3].
2http://pserc.org/
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1.2 License and Terms of Use

The code in MP-Opt-Model is distributed under the 3-clause BSD license [4]. The
full text of the license can be found in the LICENSE file at the top level of the distribu-
tion or at https://github.com/MATPOWER/mp-opt-model/blob/master/LICENSE

and reads as follows.

Copyright (c) 2004-2020, Power Systems Engineering Research Center

(PSERC) and individual contributors (see AUTHORS file for details).

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
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1.3 Citing MP-Opt-Model

We request that publications derived from the use of MP-Opt-Model explicitly ac-
knowledge that fact by citing the MP-Opt-Model User’s Manual [5]. The citation
and DOI can be version-specific or general, as appropriate. For version 1.0, use:

R. D. Zimmerman. MP-Opt-Model User’s Manual, Verision 1.0. 2020. [Online].
Available: https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
doi: 10.5281/zenodo.3818003

For a version non-specific citation, use the following citation and DOI, with<YEAR>
replaced by the year of the most recent release:

R. D. Zimmerman. MP-Opt-Model User’s Manual. <YEAR>. [Online]. Available:
https://matpower.org/docs/MP-Opt-Model-manual.pdf

doi: 10.5281/zenodo.3818003

A list of versions of the User’s Manual with release dates and version-specific DOI’s
can be found via the general DOI at https://doi.org/10.5281/zenodo.3818003.

1.4 MP-Opt-Model Development

The MP-Opt-Model project uses an open development paradigm, hosted on the
MP-Opt-Model GitHub project page:

https://github.com/MATPOWER/mp-opt-model

The MP-Opt-Model GitHub project hosts the public Git code repository as well
as a public issue tracker for handling bug reports, patches, and other issues and con-
tributions. There are separate GitHub hosted repositories and issue trackers for MP-
Test, MIPS, Matpower, etc., all available from https://github.com/MATPOWER/.
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2 Getting Started

2.1 System Requirements

To use MP-Opt-Model 1.0 you will need:

• Matlab® version 8.6 (R2015b) or later3, or

• GNU Octave version 4.2 or later4

• MIPS, Matpower Interior Point Solver [6, 7]5

• MP-Test, for running the MP-Opt-Model test suite.6

For the hardware requirements, please refer to the system requirements for the
version of Matlab7 or Octave that you are using.

In this manual, references to Matlab usually apply to Octave as well.

2.2 Installation

Note to Matpower users: MP-Opt-Model and its prerequisites, MIPS and MP-
Test, are included when you install Matpower. There is generally no need to install
them separately. You can skip directly to step 3 to verify.

Installation and use of MP-Opt-Model requires familiarity with the basic opera-
tion of Matlab or Octave, including setting up your Matlab path.

Step 1: Clone the repository or download and extract the zip file of the MP-Opt-Model
distribution from the MP-Opt-Model project page8 to the location of your
choice. The files in the resulting mp-opt-model or mp-opt-modelXXX direc-
tory, where XXX depends on the version of MP-Opt-Model, should not need
to be modified, so it is recommended that they be kept separate from your
own code. We will use <MPOM> to denote the path to this directory.

3Matlab is available from The MathWorks, Inc. (https://www.mathworks.com/). Matlab
is a registered trademark of The MathWorks, Inc.

4GNU Octave [3] is free software, available online at https://www.gnu.org/software/octave/.
5MIPS is available at https://github.com/MATPOWER/mips.
6MP-Test is available at https://github.com/MATPOWER/mptest.
7https://www.mathworks.com/support/sysreq/previous_releases.html
8https://github.com/MATPOWER/mp-opt-model
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Step 2: Add the following directories to your Matlab or Octave path:

• <MPOM>/lib – core MP-Opt-Model functions

• <MPOM>/lib/t – test scripts for MP-Opt-Model

Step 3: At the Matlab prompt, type test mp opt model to run the test suite and
verify that MP-Opt-Model is properly installed and functioning.9 The result
should resemble the following:

>> test_mp_opt_model

t_nested_struct_copy....ok

t_have_fcn..............ok

t_mips..................ok

t_mips_pardiso..........ok (60 of 60 skipped)

t_qps_mips..............ok

t_qps_master............ok (100 of 396 skipped)

t_miqps_master..........ok (102 of 288 skipped)

t_nlps_master...........ok

t_opt_model.............ok

All tests successful (1699 passed, 262 skipped of 1961)

Elapsed time 1.51 seconds.

2.3 Sample Usage

Suppose we have the following constrained 4-dimensional quadratic programming
(QP) problem10 with two 2-dimensional variables, y and z, and two constraints, one
equality and the other inequality, along with lower bounds on all of the variables.

min
y,z

1

2

[
yT zT

]
Q

[
y
z

]
(2.1)

subject to

A1

[
y
z

]
= b1 (2.2)

l2 ≤A2

[
y
z

]
(2.3)

ymin ≤y (2.4)

zmin ≤z (2.5)

9The tests require functioning installations of MP-Test and MIPS.
10Based on the one from https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm.
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And suppose the data for the problem is provided as follows.

%% variable initial values

y0 = [1; 0];

z0 = [0; 1];

%% variable lower bounds

ymin = [0; 0];

zmin = [0; 0];

%% constraint data

A1 = [ 1 1 1 1 ]; b1 = 1;

A2 = [ 0.17 0.11 0.10 0.18 ]; l2 = 0.1;

%% quadratic cost coefficients

Q = [ 1003.1 4.3 6.3 5.9;

4.3 2.2 2.1 3.9;

6.3 2.1 3.5 4.8;

5.9 3.9 4.8 10 ];

Below, we will show two approaches to construct and solve the problem. The
first method, based on the the Optimization Model class opt model, allows you to
add variables, constraints and costs to the model individually. Then opt model au-
tomatically assembles and solves the full model automatically.

%%----- METHOD 1 -----

%% build model

om = opt_model;

om.add_var('y', 2, y0, ymin);

om.add_var('z', 2, z0, zmin);

om.add_lin_constraint('lincon1', A1, b1, b1, {'y', 'z'});

om.add_lin_constraint('lincon2', A2, l2, [], {'y', 'z'});

om.add_quad_cost('cost', Q, [], [], {'y', 'z'});

%% solve model

[x, f, exitflag, output, lambda] = om.solve();

The second method requires you to construct the parameters for the full problem
manually, then call the solver function directly.
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%%----- METHOD 2 -----

%% assemble model parameters manually

xmin = [ymin; zmin];

x0 = [y0; z0];

A = [ A1; A2 ];

l = [ b1; l2 ];

u = [ b1; Inf ];

%% solve model

[x, f, exitflag, output, lambda] = qps_master(Q, [], A, l, u, xmin, [], x0);

The above examples are included in <MPOM>lib/t/qp ex1.m along with some
commands to print the results, yielding the output below for each approach:

f = 1.09667 exitflag = 1

x =

0.0000

0.9333

0.0667

0.0000

lambda.lower (var bound shadow price) =

2.2400

0.0000

0.0000

1.7667

lambda.mu_l (constraint shadow price) =

2.1933

0.0000

Both approaches can be applied to each of the types of problems the MP-Opt-Model
handles, namely, LP, QP, MILP, MIQP and NLP.

An options struct can be passed to the solve method or the qps master function
to select a specific solver, control the level of progress output, or modify a solver’s
default parameters.
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2.4 Documentation

There are two primary sources of documentation for MP-Opt-Model. The first is this
manual, which gives an overview of the capabilities and structure of MP-Opt-Model
and describes the formulations behind the code. It can be found in your MP-Opt-Model
distribution at <MPOM>/docs/MP-Opt-Model-manual.pdf and the latest version is al-
ways available at: https://matpower.org/docs/MP-Opt-Model-manual.pdf.

And second is the built-in help command. As with the built-in functions and
toolbox routines in Matlab and Octave, you can type help followed by the name
of a command or M-file to get help on that particular function. Many of the M-
files in MP-Opt-Model have such documentation and this should be considered the
main reference for the calling options for each function. See Appendix A for a list of
MP-Opt-Model functions.
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3 MP-Opt-Model – Overview

MP-Opt-Model11 and its functionality can be divided into two main parts, plus a
few additional utility functions.

The first part consists of interfaces to various numerical optimization solvers and
the wrapper functions that provide a single common interface to all supported solvers
for a particular class of problems. There is currently a common interface provided
for each of the following:

• linear (LP) and quadratic (QP) programming problems

• mixed-integer linear (MILP) and quadratic (MIQP) programming problems

• nonlinear programming problems (NLP)

The second part consists of an optimization model class designed to help the user
construct an optimization problem by adding variables, constraints and costs, then
solve the problem and extract the solution in terms of the individual sets of variables,
constraints and costs provided.

Finally, MP-Opt-Model includes a utlity function that can be used to get infor-
mation about the availability of optional functionality, another to help with copying
nested struct data, and a function that provides version information on the current
MP-Opt-Model installation.

11The name MP-Opt-Model is derived from “Matpower Optimization Model,” referring to
the object used to encapsulate the optimization problem formed by Matpower when solving an
optimal power flow (OPF) problem.
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4 Solver Interface Functions

4.1 LP/QP Solvers – qps master

The qps master function provides a common quadratic programming solver interface
for linear programming (LP) and quadratic (QP) programming problems, that is,
problems of the form:

min
x

1

2
xTHx+ cTx (4.1)

subject to

l ≤ Ax ≤ u (4.2)

xmin ≤ x ≤ xmax. (4.3)

This function can be used to solve the problem with any of the available solvers
by calling it as follows,

[x, f, exitflag, output, lambda] = ...

qps_master(H, c, A, l, u, xmin, xmax, x0, opt);

where the input and output arguments are described in Tables 4-1 and 4-2, respec-
tively, and the options in Table 4-3. Alternatively, the input arguments can be
packaged as fields in a problem struct and passed in as a single argument, where all
fields are (individually) optional.

[x, f, exitflag, output, lambda] = qps_master(problem);

The calling syntax is very similar to that used by quadprog from the Matlab
Optimization Toolbox, with the primary difference that the linear constraints are
specified in terms of a single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed
to separate equality constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions.

The qps master function is simply a master wrapper around corresponding func-
tions specific to each solver, namely, qps bpmpd, qps clp, qps cplex, qps glpk, qps gurobi,
qps ipopt, qps mips, qps mosek, and qps ot. Each of these functions has an interface
identical to that of qps master, with the exception of the options struct for qps mips,
which is a simple MIPS options struct.
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Table 4-1: Input Arguments for qps master†

name description

H (possibly sparse) matrix H of quadratic cost coefficients
c column vector c of linear cost coefficients
A (possibly sparse) matrix A of linear constraint coefficients
l column vector l of lower bounds on Ax, defaults to −∞
u column vector u of upper bounds on Ax, defaults to +∞
xmin column vector xmin of lower bounds on x, defaults to −∞
xmax column vector xmax of upper bounds on x, defaults to +∞
x0 optional starting value of optimization vector x (ignored by some solvers)
opt optional options struct, all fields (shown in Table 4-3) optional
opt optional options struct (all fields optional), see Table 4-3 for details
problem alternative, single argument input struct with fields corresponding to arguments above

† All arguments are individually optional, though enough must be supplied to define a meaningful problem.

Table 4-2: Output Arguments for qps master†

name description

x solution vector x
f final objective function value f(x) = 1

2x
THx+ cTx

exitflag exit flag
1 – converged successfully

≤ 0 – solver-specific failure code
output output struct with the following fields:

alg – algorithm code of solver used
(others) – solver-specific fields

lambda struct containing the Langrange and Kuhn-Tucker multipliers on the constraints, with fields:
mu l – lower (left-hand) limit on linear constraints
mu u – upper (right-hand) limit on linear constraints

lower – lower bound on optimization variables
upper – upper bound on optimization variables

15



Table 4-3: Options for qps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, first available of Gurobi, CPLEX,

MOSEK, Optimization Toolbox (if Matlab),
GLPK (LP only), BPMPD, MIPS

'BPMPD' – BPMPD*

'CLP' – CLP*

'CPLEX' – CPLEX*

'GLPK' – GLPK*(LP only)
'GUROBI' – Gurobi*

'IPOPT' – Ipopt*

'MIPS' – MIPS, Matpower Interior Point Solver, pri-
mal/dual interior point method

'MOSEK' – MOSEK*

'OT' – Matlab Opt Toolbox, quadprog, linprog
verbose 1 amount of progress info to be printed

0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info
3 – print all progress info

bp opt empty options vector for bp*

clp opt empty options vector for CLP*

cplex opt empty options struct for CPLEX*

glpk opt empty options struct for GLPK*

grb opt empty options struct for Gurobi*

ipopt opt empty options struct for Ipopt*

linprog opt empty options struct for linprog*

mips opt empty options struct for MIPS
mosek opt empty options struct for MOSEK*

quadprog opt empty options struct for quadprog*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.
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4.1.1 QP Example

The following code shows an example of using qps master to solve a simple 4-
dimensional QP problem12 using the default solver.

H = [ 1003.1 4.3 6.3 5.9;

4.3 2.2 2.1 3.9;

6.3 2.1 3.5 4.8;

5.9 3.9 4.8 10 ];

c = zeros(4,1);

A = [ 1 1 1 1;

0.17 0.11 0.10 0.18 ];

l = [1; 0.10];

u = [1; Inf];

xmin = zeros(4,1);

x0 = [1; 0; 0; 1];

opt = struct('verbose', 2);

[x, f, s, out, lambda] = qps_master(H, c, A, l, u, xmin, [], x0, opt);

Other examples of using qps master to solve LP and QP problems can be found
in t qps master.m.

12From https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm.
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4.2 MILP/MIQP Solvers – miqps master

The miqps master function provides a common mixed-integer quadratic programming
solver interface for mixed-integer linear programming (MILP) and mixed-integer
quadratic programming (MIQP) problems. The form of the problem is identical to
(4.1)–(4.3), with the addition of two possible additional constraints, namely,

xi ∈ Z, ∀i ∈ I (4.4)

xj ∈ {0, 1}, ∀j ∈ B, (4.5)

where I and B are the sets of indices of variables that are restricted to integer or
binary values, respectively.

This function can be used to solve the problem with any of the available solvers
by calling it as follows,

[x, f, exitflag, output, lambda] = ...

miqps_master(H, c, A, l, u, xmin, xmax, x0, vtype, opt);

[x, f, exitflag, output, lambda] = miqps_master(problem);

The calling syntax for miqps master is identical to that used by qps master with the
exception of a single new input argument, vtype, to specify the variable type, just
before the options struct. The input arguments and options for miqps master are
described in Tables 4-4 and 4-5, respectively. The outputs are identical to those
shown in Table 4-2 for qps master.

Table 4-4: Input Arguments for miqps master

name description

all qps master input args from Table 4-1, with the following additions/modifications

vtype character string of length nx (number of elements in x), or 1 (value applies
to all variables in x), specifying variable type; allowed values are:†

'C' – continuous (default)
'B' – binary
'I' – integer

† CPLEX and Gurobi also include 'S' for semi-continuous and 'N' for semi-integer, but these have not been
tested.

By default, unless the skip prices option is set to 1, once miqps master has found
the integer solution, it constrain the integer variables to their solved values and call
qps matpower on the resulting problem to determine the shadow prices in lambda.
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Table 4-5: Options for miqps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, first available of Gurobi, CPLEX,

MOSEK, Optimization Toolbox (if Matlab,
MILP only), GLPK (MILP only)

'CPLEX' – CPLEX*

'GLPK' – GLPK*(LP only)
'GUROBI' – Gurobi*

'MOSEK' – MOSEK*

'OT' – Matlab Opt Toolbox, intlinprog
verbose 1 amount of progress info to be printed

0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info
3 – print all progress info

skip prices 0 flag that specifies whether or not to skip the price computation
stage, in which the problem is re-solved for only the continu-
ous variables, with all others being constrained to their solved
values

price stage warn tol 10−7 tolerance on the objective function value and primal variable
relative mismatch required to avoid mismatch warning mes-
sage

cplex opt empty options struct for CPLEX*

glpk opt empty options struct for GLPK*

grb opt empty options struct for Gurobi*

intlinprog opt empty options struct for intlinprog*

mosek opt empty options struct for MOSEK*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.

The miqps master function is simply a master wrapper around corresponding
functions specific to each solver, namely, miqps cplex, miqps glpk, miqps gurobi,
miqps mosek, and miqps ot. Each of these functions has an interface identical to that
of miqps master.
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4.2.1 MILP Example

The following code shows an example of using miqps master to solve a simple 2-
dimensional MILP problem13 using the default solver.

c = [-2; -3];

A = sparse([195 273; 4 40]);

u = [1365; 140];

xmax = [4; Inf];

vtype = 'I';

opt = struct('verbose', 2);

p = struct('c', c, 'A', A, 'u', u, 'xmax', xmax, 'vtype', vtype, 'opt', opt);

[x, f, s, out, lam] = miqps_master(p);

Other examples of using miqps master to solve MILP and MIQP problems can
be found in t miqps master.m.

4.3 NLP Solvers – nlps master

The nlps master function provides a common nonlinear programming solver inter-
face for general nonlinear programming (NLP) problems, that is, problems of the
form:

min
x
f(x) (4.6)

subject to

g(x) = 0 (4.7)

h(x) ≤ 0 (4.8)

l ≤ Ax ≤ u (4.9)

xmin ≤ x ≤ xmax (4.10)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp.
This function can be used to solve the problem with any of the available solvers

by calling it as follows,

[x, f, exitflag, output, lambda] = ...

nlps_master(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt);

13From MOSEK 6.0 Guided Tour, section 7.13.1, https://docs.mosek.com/6.0/toolbox/

node009.html.
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where the input and output arguments are described in Tables 4-6 and 4-7, respec-
tively. Alternatively, the input arguments can be packaged as fields in a problem

struct and passed in as a single argument, where all fields except f fcn and x0 are
optional.

[x, f, exitflag, output, lambda] = nlps_master(problem);

The calling syntax for nlps master is nearly identical to that of MIPS and very
similar to that used by fmincon from the Matlab Optimization Toolbox. The
primary difference from fmincon is that the linear constraints are specified in terms
of a single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed to separate
equality constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions. The
functions for evaluating the objective function, constraints and Hessian are identical.

Table 4-6: Input Arguments for nlps master†

name description

f fcn Handle to a function that evaluates the objective function, its gradients and Hessian‡

for a given value of x. Calling syntax for this function:
[f, df, d2f] = f fcn(x)

x0 Starting value of optimization vector x.
A, l, u Define the optional linear constraints l ≤ Ax ≤ u. Default values for the elements of

l and u are -Inf and Inf, respectively.
xmin, xmax Optional lower and upper bounds on the x variables, defaults are -Inf and Inf,

respectively.
gh fcn Handle to function that evaluates the optional nonlinear constraints and their gra-

dients for a given value of x. Calling syntax for this function is:
[h, g, dh, dg] = gh fcn(x)

hess fcn Handle to function that computes the Hessian‡of the Lagrangian for given values
of x, λ and µ, where λ and µ are the multipliers on the equality and inequality
constraints, g and h, respectively. The calling syntax for this function is:

Lxx = hess fcn(x, lam, cost mult),
where λ = lam.eqnonlin, µ = lam.ineqnonlin and cost mult is a parameter used
to scale the objective function

opt Optional options structure with fields, all of which are also optional, described in
Table 4-8.

problem Alternative, single argument input struct with fields corresponding to arguments
above.

† All inputs are optional except f fcn and x0.
‡ If gh fcn is provided then hess fcn is also required. Specifically, if there are nonlinear constraints, the Hessian

information must be provided by the hess fcn function and it need not be computed in f fcn.
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Table 4-7: Output Arguments for nlps master

name description

x solution vector
f final objective function value, f(x)
exitflag exit flag

1 – converged successfully
≤ 0 – solver-specific failure code

output output struct with the following fields:
alg – algorithm code of solver used

(others) – solver-specific fields
lambda struct containing the Langrange and Kuhn-Tucker multipliers on the con-

straints, with fields:
eqnonlin nonlinear equality constraints
ineqnonlin nonlinear inequality constraints
mu l lower (left-hand) limit on linear constraints
mu u upper (right-hand) limit on linear constraints
lower lower bound on optimization variables
upper upper bound on optimization variables

Table 4-8: Options for nlps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, current default is MIPS
'MIPS' – MIPS

'FMINCON' – Matlab Opt Toolbox, fmincon*

'IPOPT' – Ipopt*

'KNITRO' – Artelys Knitro*

verbose 1 amount of progress info to be printed
0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info

mips opt empty options struct for MIPS
fmincon opt empty options struct for fmincon*

ipopt opt empty options struct for Ipopt*

knitro opt empty options struct for Artelys Knitro*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.

The nlps master function is simply a master wrapper around corresponding func-
tions specific to each solver, namely, mips, nlps fmincon, nlps ipopt, and nlps knitro.
Each of these functions has an interface identical to that of qps master, with the ex-
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ception of the options struct for mips, which is a simple MIPS options struct.

4.3.1 NLP Example 1

The following code, included as nlps master ex1.m in <MPOM>lib/t, shows a simple
example of using nlps master to solve a 2-dimensional unconstrained optimization
of Rosenbrock’s “banana” function14

f(x) = 100(x2 − x2
1)2 + (1− x1)2. (4.11)

First, create a function that will evaluate the objective function, its gradients
and Hessian, for a given value of x. In this case, the coefficient of the first term is
defined as a paramter a.

function [f, df, d2f] = banana(x, a)

f = a*(x(2)-x(1)^2)^2+(1-x(1))^2;

if nargout > 1 %% gradient is required

df = [ 4*a*(x(1)^3 - x(1)*x(2)) + 2*x(1)-2;

2*a*(x(2) - x(1)^2) ];

if nargout > 2 %% Hessian is required

d2f = 4*a*[ 3*x(1)^2 - x(2) + 1/(2*a), -x(1);

-x(1) 1/2 ];

end

end

Then, create a handle to the function, defining the value of the paramter a to be
100, set up the starting value of x, and call the nlps master function to solve it.

>> f_fcn = @(x)banana(x, 100);

>> x0 = [-1.9; 2];

>> [x, f] = nlps_master(f_fcn, x0)

x =

1

1

f =

0

14https://en.wikipedia.org/wiki/Rosenbrock_function
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4.3.2 NLP Example 2

The second example15 solves the following 3-dimensional constrained optimization,
printing the details of the solver’s progress:

min
x
f(x) = −x1x2 − x2x3 (4.12)

subject to

x2
1 − x2

2 + x2
3 − 2 ≤ 0 (4.13)

x2
1 + x2

2 + x2
3 − 10 ≤ 0. (4.14)

First, create a function to evaluate the objective function and its gradients,16

function [f, df, d2f] = f2(x)

f = -x(1)*x(2) - x(2)*x(3);

if nargout > 1 %% gradient is required

df = -[x(2); x(1)+x(3); x(2)];

if nargout > 2 %% Hessian is required

d2f = -[0 1 0; 1 0 1; 0 1 0]; %% actually not used since

end %% 'hess_fcn' is provided

end

one to evaluate the constraints, in this case inequalities only, and their gradients,

function [h, g, dh, dg] = gh2(x)

h = [ 1 -1 1; 1 1 1] * x.^2 + [-2; -10];

dh = 2 * [x(1) x(1); -x(2) x(2); x(3) x(3)];

g = []; dg = [];

and another to evaluate the Hessian of the Lagrangian.

function Lxx = hess2(x, lam, cost_mult)

if nargin < 3, cost_mult = 1; end %% allows to be used with 'fmincon'

mu = lam.ineqnonlin;

Lxx = cost_mult * [0 -1 0; -1 0 -1; 0 -1 0] + ...

[2*[1 1]*mu 0 0; 0 2*[-1 1]*mu 0; 0 0 2*[1 1]*mu];

15From https://en.wikipedia.org/wiki/Nonlinear_programming#3-dimensional_example.
16Since the problem has nonlinear constraints and the Hessian is provided by hess fcn, this

function will never be called with three output arguments, so the code to compute d2f is actually
not necessary.
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Then create a problem struct with handles to these functions, a starting value for x
and an option to print the solver’s progress. Finally, pass this struct to nlps master

to solve the problem and print some of the return values to get the output below.

function nlps_master_ex2(alg)

if nargin < 1

alg = 'DEFAULT';

end

problem = struct( ...

'f_fcn', @(x)f2(x), ...

'gh_fcn', @(x)gh2(x), ...

'hess_fcn', @(x, lam, cost_mult)hess2(x, lam, cost_mult), ...

'x0', [1; 1; 0], ...

'opt', struct('verbose', 2, 'alg', alg) ...

);

[x, f, exitflag, output, lambda] = nlps_master(problem);

fprintf('\nf = %g exitflag = %d\n', f, exitflag);

fprintf('\nx = \n');

fprintf(' %g\n', x);

fprintf('\nlambda.ineqnonlin =\n');

fprintf(' %g\n', lambda.ineqnonlin);
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>> nlps_master_ex2

MATPOWER Interior Point Solver -- MIPS, Version 1.3.1, 20-Jun-2019

(using built-in linear solver)

it objective step size feascond gradcond compcond costcond

---- ------------ --------- ------------ ------------ ------------ ------------

0 -1 0 1.5 5 0

1 -5.3250167 1.6875 0 0.894235 0.850653 2.16251

2 -7.4708991 0.97413 0.129183 0.00936418 0.117278 0.339269

3 -7.0553031 0.10406 0 0.00174933 0.0196518 0.0490616

4 -7.0686267 0.034574 0 0.00041301 0.0030084 0.00165402

5 -7.0706104 0.0065191 0 1.53531e-05 0.000337971 0.000245844

6 -7.0710134 0.00062152 0 1.22094e-07 3.41308e-05 4.99387e-05

7 -7.0710623 5.7217e-05 0 9.84879e-10 3.41587e-06 6.05875e-06

8 -7.0710673 5.6761e-06 0 9.73527e-12 3.41615e-07 6.15483e-07

Converged!

f = -7.07107 exitflag = 1

x =

1.58114

2.23607

1.58114

lambda.ineqnonlin =

0

0.707107

To use a different solver such as fmincon, assuming it is available, simply specify it
in the alg option.
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>> nlps_master_ex2('FMINCON')

First-order Norm of

Iter F-count f(x) Feasibility optimality step

0 1 -1.000000e+00 0.000e+00 1.000e+00

1 2 -5.718566e+00 0.000e+00 1.230e+00 1.669e+00

2 3 -8.395115e+00 1.875e+00 8.080e-01 8.259e-01

3 4 -7.034187e+00 0.000e+00 3.752e-02 2.965e-01

4 5 -7.050896e+00 0.000e+00 1.890e-02 5.339e-02

5 6 -7.071406e+00 4.921e-04 1.133e-03 2.770e-02

6 7 -7.070872e+00 0.000e+00 1.962e-04 2.332e-03

7 8 -7.071066e+00 0.000e+00 1.958e-06 2.418e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the value of the optimality tolerance,

and constraints are satisfied to within the value of the constraint tolerance.

f = -7.07107 exitflag = 1

x =

1.58114

2.23607

1.58114

lambda.ineqnonlin =

1.08013e-06

0.707107

This example can be found in nlps master ex2.m. More example problems for
nlps master can be found in t nlps master.m, both in <MPOM>lib/t.
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5 Optimization Model Class – opt model

The opt model class provides facilities for constructing an optimization problem by
adding and managing the indexing of sets of variables, constraints and costs. The
model can then be solved by simply calling the solve method which automatically
selects and calls the appropriate master solver function, i.e. qps master, miqps master

or nlps master, depending on the type of problem.
In this manual, and in the code, om is the name of the variable used by con-

vention for the optimization model object, which is typically created by calling the
constructor opt model with no arguments.

om = opt_model;

Variables, constraints and costs can then be added to the model using named
sets. For variables and constraints, each set represents a column vector, and the sets
are stacked in the order they are added to construct the full optimization variable
or full constraint vector. For costs, each set represents a component of a scalar cost,
and the components are summed together to construct the full objective function
value.

5.1 Adding Variables

om.add_var(name, N);

om.add_var(name, N, v0);

om.add_var(name, N, v0, vl);

om.add_var(name, N, v0, vl, vu);

om.add_var(name, N, v0, vl, vu, vt);

om.add_var(name, idx_list, N ...);

A named set of variables is added to the model using the add var method, where
name is a string containing the name of the set17, N is the number n of variables in
the set, v0 is the initial value of the variables, vl and vu are the upper and lower
bounds on the variables, and vt is the variable type. The accepted values for vt are:

• 'C' – continuous
• 'I' – integer
• 'B' – binary, i.e. 0 or 1

17A set name must be a valid field name for a struct.
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The inputs v0, vl and vu are n × 1 column vectors, vt is a scalar or a 1 × n row
vector. The defaults for the last four arguments, which are all optional, are for all to
be continuous, unbounded and initialized to zero. That is, v0, vl, vu, and vt default
to 0, −∞, +∞, and 'C', respectively.

For example, suppose our problem has variables u, v and w, which are vectors of
length nu, nv, and nw, respectively, where u is unbounded, v is non-negative and the
lower and upper bounds on w are given in the vectors wlb and wub. Let us further
suppose that the initial value of w is provided in w0 and the first 3 elements of w are
binary variables. And we will assume that the values of nu, nv, and nw are available
in the variables nu, nv and nw, respectively.

We can then add these variable sets to the model with the names u, v, and w,
as follows:

wtype = repmat('C', 1, nw); wt(1:3) = 'B';

om.add_var('u', nu);

om.add_var('v', nv, [], 0);

om.add_var('w', nw, w0, wlb, wub, wtype);

In this case, then, the full optimization vector is the (nu + nv + nw)× 1 vector

x =

 u
v
w

 . (5.1)

See Section 5.6 for details on indexed named sets and the idx list argument.

5.1.1 Variable Subsets

A key feature of MP-Opt-Model is that each set of constraints or costs can be defined
in terms of the relevant variables only, as opposed to the entire optimization vec-
tor x. This is done by specifying a variable subset, a cell array of the variable names
of interest, in the varsets argument. Besides simplifying the constraint and cost
definitions, another benefit of this approach is that it allows a model to be modified
with new variables after some constraints and costs have already been added.

In the sections to follow, we will use the following two variable subsets for illus-
tration purposes:

• {'v'} corresponding to x1 ≡ v, and

• {'u', 'w'} corresponding to x2 ≡
[
u
w

]
.
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5.2 Adding Constraints

A named set of constraints can be added to the model as soon as the variables
on which it depends have been added. MP-Opt-Model currently supports three
types of constraints, doubly-bounded linear constraints, general nonlinear equality
constraints, and general nonlinear inequality constraints.

5.2.1 Linear Constraints

om.add_lin_constraint(name, A, l, u);

om.add_lin_constraint(name, A, l, u, varsets);

om.add_lin_constraint(name, idx_list, A ...);

In MP-Opt-Model, linear constraints take the form

l ≤ Ax ≤ u, (5.2)

where x here refers to either the full optimization vector (default), or the vector
obtained by stacking the subset of variables specified in varsets. Here A contains
the nA × nx matrix A and l and u are the nA × 1 vectors l and u.18

For example, suppose our problem has the following three sets of linear con-
straints,

l1 ≤A1x1 ≤ u1 (5.3)

l2 ≤A2x2 (5.4)

A3x ≤ u3, (5.5)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Notice that the number of columns in A1 and A2 correspond to nv and
nu + nw, respectively, whereas A3 has the full set of columns corresponding to x.

These three linear constraint sets can be added to the model with the names
lincon1, lincon2, and lincon3, using the add lin constraint method as follows:

om.add_lin_constraint('lincon1', A1, l1, u1, {'v'});

om.add_lin_constraint('lincon2', A2, l2, [], {'u', 'w'});

om.add_lin_constraint('lincon3', A3, [], u3);

See Section 5.6 for details on indexed named sets and the idx list argument.

18The A matrix can be sparse.
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5.2.2 General Nonlinear Constraints

om.add_nln_constraint(name, N, iseq, fcn, hess);

om.add_nln_constraint(name, N, iseq, fcn, hess, varsets);

om.add_nln_constraint(name, idx_list, N ...);

MP-Opt-Model allows the user to implement general nonlinear constraints of the
form

g(x) = 0, or (5.6)

g(x) ≤ 0 (5.7)

by providing the handle fcn of a function that evaluates the constraint and its Jaco-
bian and another handle hess of a function that evaluates the Hessian. The number
of constraints in the set is given by N, and iseq is set to 1 to specify an equality
constraint or 0 for an inequality.

The calling syntax for fcn is:

g = fcn(x);

[g, dg] = fcn(x);

Here g is the ng × 1 vector g(x) and dg is the ng × nx Jacobian matrix J(x), where
Jij = ∂gi

∂xj
.

Rather than computing the full three-dimensional Hessian, the hess function
actually evaluates the Jacobian of the vector JT(x)λ for a specified value of the
vector λ. The calling syntax for hess is:

d2g = hess(x, lambda);

For both functions, the first input argument x takes one of two forms. If the
constraint set is added with varsets empty or missing, then x will be the full op-
timization vector. Otherwise it will be a cell array of vectors corresponding to the
variable sets specified in varsets.

There is also the option for name to be a cell array of constraint set names, in
which case N is a vector, specifying the number of constraints in each corresponding
set. In this case, fcn and hess are each still a single function handle, but the
values computed by each correspond to the entire stacked collection of constraint
sets together, as if they were a single set.
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For example, suppose our problem has the following three sets of nonlinear con-
straints,

g1(x1) ≤ 0 (5.8)

g2(x2) = 0 (5.9)

g3(x) ≤ 0, (5.10)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Let my cons fcn1, my cons fcn2, and my cons fcn3 be functions that
evaluate g1(x1), g2(x2), and g3(x) and their gradients, respectively. Similarly, let
my cons hess1, my cons hess2, and my cons hess3 be Hessian evaluation functions
for the same. The variables ng1, ng2, and ng3 contain the number of constraints in
the respective constraint sets.

These three nonlinear constraint sets can be added to the model with the names
nlncon1, nlncon2, and nlncon3, using the add nln constraint method as follows:

fcn1 = @(x)my_cons_fcn1(x, <other_args>);

fcn2 = @(x)my_cons_fcn2(x, <other_args>);

fcn3 = @(x)my_cons_fcn3(x, <other_args>);

hess1 = @(x, lambda)my_cons_hess1(x, lambda, <other_args>);

hess2 = @(x, lambda)my_cons_hess2(x, lambda, <other_args>);

hess3 = @(x, lambda)my_cons_hess3(x, lambda, <other_args>);

om.add_nln_constraint('nlncon1', ng1, 0, fcn1, hess1 {'v'});

om.add_nln_constraint('nlncon2', ng2, 1, fcn2, hess2, {'u', 'w'});

om.add_nln_constraint('nlncon3', ng3, 0, fcn3, hess3);

In this case, the x variable passed to the my cons fcn and my cons hess functions will
be as follows:

• my cons fcn1, my cons hess1 −→ x = {v}
• my cons fcn2, my cons hess2 −→ x = {u,w}
• my cons fcn3, my cons hess3 −→ x = [u; v;w]

See Section 5.6 for details on indexed named sets and the idx list argument.

5.3 Adding Costs

The objective of an MP-Opt-Model optimization problem is to minimize the sum
of all costs added to the model. As with constraints, a named set of costs can be
added to the model as soon as the variables on which it depends have been added.
MP-Opt-Model currently supports two types of costs, quadratic costs and general
nonlinear costs.
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5.3.1 Quadratic Costs

om.add_quad_cost(name, Q, c);

om.add_quad_cost(name, Q, c, k);

om.add_quad_cost(name, Q, c, k, varsets);

om.add_quad_cost(name, idx_list, Q ...);

A quadratic cost set takes the form:

f(x) =
1

2
xTQx+ cTx+ k (5.11)

where x here refers to either the full optimization vector (default), or the vector
obtained by stacking the subset of variables specified in varsets. Here Q contains
the nx × nx matrix Q, c the nx × 1 vector c, and k the scalar k.19

Alternatively, Q can be an nx× 1 vector, in which case f(x) and k are also nx× 1
vectors and the i-th element of f(x) is given by

fi(x) =
1

2
Qix

2
i + cixi + ki. (5.12)

If Q is empty, then f(x) is also an nx × 1 vector, unless k is scalar and non-zero.
For example, suppose our problem has the following three sets of quadratic costs,

q1(x1) =
1

2
x1

TQ1x1 + c1
Tx1 + k1 (5.13)

q2(x2) =
1

2
x2

TQ2x2 + c2
Tx2 + k2 (5.14)

q3(x) =
1

2
xTQ3x+ c3

Tx+ k3, (5.15)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Notice that the dimensions of Q1 and Q2 (and c1 and c2) correspond to
nv and nu + nw, respectively, whereas Q3 (and c3) correspond to the full x.

These three quadratic cost sets can be added to the model with the names qcost1,
qcost2, and qcost3, using the add quad cost method as follows:

om.add_quad_cost('qcost1', Q1, c1, k1, {'v'});

om.add_quad_cost('qcost2', Q2, c2, k2, {'u', 'w'});

om.add_quad_cost('qcost3', Q3, c3, k3);

See Section 5.6 for details on indexed named sets and the idx list argument.

19The Q matrix can be sparse.
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5.3.2 General Nonlinear Costs

om.add_nln_cost(name, N, fcn);

om.add_nln_cost(name, N, fcn, varsets);

om.add_nln_cost(name, idx_list, N ...);

MP-Opt-Model allows the user to implement a general nonlinear cost by providing
the handle fcn of a function that evaluates the cost f(x), its gradient and Hessian
H, as described below. The N parameter specifies the dimension for vector valued
cost functions, which are not yet implemented. Currently N must equal 1 or it will
throw an error.

For a cost function f(x), fcn should point to a function with the following inter-
face:

f = fcn(x)

[f, df] = fcn(x)

[f, df, d2f] = fcn(x)

where f is a scalar with the value of the function f(x), df is the 1 × nx gradient of
f , and d2f is the nx × nx Hessian H, where nx is the number of elements in x.

The first input argument x takes one of two forms. If the constraint set is added
with varsets empty or missing, then x will be the full optimization vector. Otherwise
it will be a cell array of vectors corresponding to the variable sets specified in varsets.

For example, suppose our problem has three sets of nonlinear costs, f1(x1), f2(x2),
f3(x), where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization
vector from (5.1). Let my cost fcn1, my cost fcn2, and my cost fcn3 functions that
evaluate f1(x), f2(x), and f3(x) and their gradients and Hessians, respectively.

These three nonlinear cost sets can be added to the model with the names nl-
ncost1, nlncost2, and nlncost3, using the add nln cost method as follows:

fcn1 = @(x)my_cost_fcn1(x, <other_args>);

fcn2 = @(x)my_cost_fcn2(x, <other_args>);

fcn3 = @(x)my_cost_fcn3(x, <other_args>);

om.add_nln_cost('nlncost1', 1, fcn1 {'v'});

om.add_nln_cost('nlncost2', 1, fcn2, {'u', 'w'});

om.add_nln_cost('nlncost3', 1, fcn3);

In this case, the x variable passed to the my cost fcn functions will be as follows:
• my cost fcn1 −→ x = {v}
• my cost fcn2 −→ x = {u,w}
• my cost fcn3 −→ x = [u; v;w]

See Section 5.6 for details on indexed named sets and the idx list argument.
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5.4 Solving the Model

[x, f, exitflag, output, lambda] = om.solve()

[x, f, exitflag, output, lambda] = om.solve(opt)

After all variables, constraints and costs have been added to the model, the op-
timization problem can be solved simply by calling the solve method. This method
automatically selects and calls, depending on the problem type, one of the mas-
ter solver interface functions from Section 4, namely qps master, miqps master, or
nlps master.

For details on the return values and the input options struct opt, see the descrip-
tions of the individual solver functions in Sections 4.1, 4.2, and 4.3.

5.5 Accessing the Model

5.5.1 Indexing

For each type of variable, constraint or cost, MP-Opt-Model maintains indexing
information for each named set that is added, including the number of elements and
the starting and ending indices. For each set type, this information is stored in a
struct idx with fields N, i1, and iN, for storing number of elements, starting index
and ending index, respectively. Each of these fields is also a struct with field names
corresponding to the named sets.

For example, if vv is the struct of indexing information for variables, and we have
added the u, v, and w variables as in Section 5.1, then the contents of vv will be as
shown in Table 5-1.

Table 5-1: Example Indexing Data

field value description

vv.N.u nu number of u variables
vv.N.v nv number of v variables
vv.N.w nw number of w variables
vv.i1.u 1 starting index of u in full x
vv.i1.v nu + 1 starting index of v in full x
vv.i1.w nu + nv + 1 starting index of w in full x
vv.iN.u nu ending index of u in full x
vv.iN.v nu + nv ending index of v in full x
vv.iN.w nu + nv + nw ending index of w in full x
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get idx

[idx1, idx2, ...] = om.get_idx(set_type1, set_type2, ...);

vv = om.get_idx('var');

[ll, nne, nni] = om.get_idx('lin', 'nle', 'nli');

vv = om.get_idx()

[vv, ll] = om.get_idx()

[vv, ll, nne] = om.get_idx()

[vv, ll, nne, nni] = om.get_idx()

[vv, ll, nne, nni, qq] = om.get_idx()

[vv, ll, nne, nni, qq, nnc] = om.get_idx()

The idx struct of indexing information for each set type is available via the
get idx method. When called with one or more set type strings as inputs, it returns
the corresponding indexing structs. The list of valid set type strings is shown in
Table 5-2. When called without input arguments, the indexing structs are simply
returned in the order listed in the table.

Table 5-2: Example Indexing Data

set type string var name* description

'var' vv variables
'lin' ll linear constraints
'nle' nne nonlinear equality constraints
'nli' nni nonlinear inequality constraints
'qdc' qq quadratic costs
'nlc' nnc general nonlinear costs

* The name of the variable used by convention for this indexing struct.

For the example model built in Sections 5.1–5.3, where x and lambda are return
values from the solve method, we can, for example, access the solved value of v and
the shadow prices on the nlncon3 constraints with the following code.

[vv, nne] = om.get_idx('var', 'nle');

v = x(vv.i1.v:vv.iN.v);

lam_nln3 = lambda.ineqnonlin(nni.i1.nlncon3:nni.iN.nlncon3);

getN

N = om.getN(set_type)

N = om.getN(set_type, name)

N = om.getN(set_type, name, idx_list)
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The getN method can be used to get the number of elements in a particular named
set, or the total for the set type. For example, the number nv of elements in variable
v and total number of elements in the full optimization variable x can be obtained
as follows.

nx = om.getN('var');

nv = om.getN('var', 'v');

See Section 5.6 for details on indexed named sets and the idx list argument.

describe idx

label = om.describe_idx(set_type, idxs)

Given a particular index (or set of indices) for the full set of variables or con-
straints of a particular type, the describe idx method can be used to show which
element of which particular named set the index corresponds to. This can be useful
when a solver reports an issue with a particular variable or constraint and you want
to map it back to the named sets you have added to your model.

Consider an example in which element 38 of the linear constraints corresponds
to the 11th row of lincon3 and elements 15 and 23 of the optimization vector x
correspond to element 7 of v and element 4 of w, respectively. The describe idx

method can be used to return this information as follows:

>> lin38 = om.describe_idx('lin', 38)

lin38 =

'lincon3(11)'

>> vars15_23 = om.describe_idx('var', [15; 23])

vars15_23 =

2x1 cell array

{'v(7)'}

{'w(4)'}
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5.5.2 Variables

params var

[v0, vl, vu] = om.params_var()

[v0, vl, vu] = om.params_var(name)

[v0, vl, vu] = om.params_var(name, idx_list)

[v0, vl, vu, vt] = params_var(...)

The params var method returns the initial value v0, lower bound vl and upper
bound vu for the full optimization variable vector x, or for a specific named variable
set. Optionally also returns a corresponding char vector vt of variable types, where
'C', 'I' and 'B' represent continuous integer and binary variables, respectively.

Examples:

[x0, xmin, xmax] = om.params_var();

[w0, wlb, wub, wtype] = om.params_var('w');

See Section 5.6 for details on indexed named sets and the idx list argument.

5.5.3 Constraints

params lin constraint

[A, l, u] = om.params_lin_constraint()

[A, l, u] = om.params_lin_constraint(name)

[A, l, u] = om.params_lin_constraint(name, idx_list)

[A, l, u, vs] = om.params_lin_constraint(...)

[A, l, u, vs, i1, in] = om.params_lin_constraint(...)

With no input parameters, the params lin constraint method assembles and
returns the parameters for the aggregate linear constraints from all linear constraint
sets added using add lin constraint. The values of these parameters are cached for
subsequent calls. The parameters are A, l, and u, where the linear constraint is of
the form

l ≤ Ax ≤ u. (5.16)

If a name is provided then it simply returns the parameters for the corresponding
named set. An optional 4th output argument vs indicates the variable sets used
by this constraint set. The size of A will be consistent with vs. Optional 5th and
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6th output arguments i1 and iN indicate the starting and ending row indices of the
corresponding constraint set in the full aggregate constraint matrix.

Examples:

[A, l, u] = om.params_lin_constraint();

[A, l, u, vs, i1, iN] = om.params_lin_constraint('lincon2');

See Section 5.6 for details on indexed named sets and the idx list argument.

eval nln constraint

[g, dg] = om.eval_nln_constraint(x, iseq)

Builds a full set of nonlinear equality constraints g(x) or inequality constraints h(x)
and their gradients for a given value of the optimization vector x, based on constraints
added by add nln constraint, where g(x) = 0 and h(x) ≤ 0.

Examples:

[g, dg] = om.eval_nln_constraint(x, 1);

[h, dh] = om.eval_nln_constraint(x, 0);

eval nln constraint hess

d2G = om.eval_nln_constraint_hess(x, lam, iseq)

Builds the Hessian of the full set of nonlinear equality constraints g(x) or inequality
constraints h(x) for given values of the optimization vector x and dual variables lam,
based on constraints added by add nln constraint, where g(x) = 0 and h(x) ≤ 0.

Examples:

d2G = om.eval_nln_constraint_hess(x, lam, 1)

d2H = om.eval_nln_constraint_hess(x, lam, 0)
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5.5.4 Costs

params quad cost

[Q, c] = om.params_quad_cost()

[Q, c] = om.params_quad_cost(name)

[Q, c] = om.params_quad_cost(name, idx_list)

[Q, c, k] = om.params_quad_cost(...)

[Q, c, k, vs] = om.params_quad_cost(...)

With no input parameters, the params quad cost method assembles and returns
the parameters for the aggregate quadratic cost from all quadratic cost sets added
using add quad cost. The values of these parameters are cached for subsequent calls.
The parameters are Q, c, and optionally k, where the quadratic cost is of the form

f(x) =
1

2
xTQx+ cTx+ k. (5.17)

If a name is provided then it simply returns the parameters for the corresponding
named set. In this case, Q and k may be vectors, corresponding to a cost function
f(x) where the i-th element takes the form

fi(x) =
1

2
Qix

2
i + cixi + ki, (5.18)

depending on how the constraint set was initially specified.
An optional 4th output argument vs indicates the variable sets used by this cost

set. The size of Q and c will be consistent with vs.

Examples:

[Q, c, k] = om.params_quad_cost();

[Q, c, k, vs, i1, iN] = om.params_quad_cost('qcost2');

See Section 5.6 for details on indexed named sets and the idx list argument.

eval quad cost

f = om.eval_quad_cost(x ...)

[f, df] = om.eval_quad_cost(x ...)

[f, df, d2f] = om.eval_quad_cost(x ...)

[f, df, d2f] = om.eval_quad_cost(x, name)

[f, df, d2f] = om.eval_quad_cost(x, name, idx_list)
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The eval quad cost method evaluates the cost function and its derivatives for
an individual named set or the full set of quadratic costs for a given value of the
optimization vector x, based on costs added by add quad cost.

Examples:

[f, df, d2f] = om.eval_quad_cost(x);

[f, df, d2f] = om.eval_quad_cost(x, 'qcost3');

See Section 5.6 for details on indexed named sets and the idx list argument.

eval nln cost

f = om.eval_nln_cost(x)

[f, df] = om.eval_nln_cost(x)

[f, df, d2f] = om.eval_nln_cost(x)

[f, df, d2f] = om.eval_nln_cost(x, name)

[f, df, d2f] = om.eval_nln_cost(x, name, idx_list)

The eval nln cost method evaluates the cost function and its derivatives for an
individual named set or the full set of general nonlinear costs for a given value of the
optimization vector x, based on costs added by add nln cost.

Examples:

[f, df, d2f] = om.eval_quad_cost(x);

[f, df, d2f] = om.eval_quad_cost(x, 'nlncost2');

See Section 5.6 for details on indexed named sets and the idx list argument.

5.6 Indexed Sets

A variable, constraint or cost set is typically identified simply by a name, but it is
also possible to used indexed names. For example, an optimal scheduling problem
with a one week horizon might include a vector variable y for each day, indexed from
1 to 7, and another vector variable z for each hour of each day, indexed from (1, 1)
to (7, 24).

In this case, we case use a single indexed named set for y and another for z.
The dimensions are initialized via the init indexed name method before adding the
variables to the model.20

20The same is true for indexed named sets of constraints or costs.
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init indexed name

om.init_indexed_name(set_type, name, dim_list)

Examples:

[f, df, d2f] = om.init_indexed_name('var', 'y', {7});

[f, df, d2f] = om.init_indexed_name('var', 'z', {7, 24});

After initializing the dimensions, indexed named sets of variables, constraints
or costs can be added by supplying the indices in the idx list argument follow-
ing the name argument in call to the corresponding add var, add lin constraint,
add nln constraint, add quad cost, or add nln cost method. The idx list argu-
ment is simply a cell array containing the indices of interest.

Examples:

for d = 1:7

om.add_var('y', {d}, ny(d), y0{d}, yl{d}, yu{d}, yt{d});

end

for d = 1:7

for h = 1:24

om.add_var('z', {d, h}, nz(d), z0{d}, zl{d}, zu{d});

end

end

Other Methods

All of the methods that take a name argument to specify a simple named set, can
also take an idx list argument immediately following name to handle the equivalent
indexed named set. The idx list argument is simply a cell array containing the
indices of interest. This includes getN and the methods that begin with add , params ,
and eval .21

For an indexed named set, the fields under the N, i1 and iN fields in the index
information struct returned by get idx are now arrays of the appropriate dimension,
not just scalars as in Table 5-1. For example, to find the starting index of the z
variable for day 2, hour 13 in our example you would use vv.i1.z(2, 13). Similarly
for the values returned by getN when specifying only the set type and name.

21Currently, eval nln constraint and eval nln constraint hess are only implemented for the
full aggregate set of constraints and do not yet support evaluation of individual constraint sets.
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Variable Subsets

A variable subset for a simple named set, usually specified by the variable varsets

or else vs, is a cell array of variable set names. For indexed named sets of variables,
on the other hand, it is a struct array with two fields name and idx. For each element
of the struct array the name field contains the name of the variable set and the idx

field contains a cell array of indices of interest.
For example, to specify a variable subset consisting of the y variable for day 3

and the z variable for day 3, hour 7, the variable subset could be defined as follows.

vs = struct('name', {'y', 'z'}, 'idx', {{3}, {3,7}});

5.7 Miscellaneous Methods

5.7.1 Public Methods

copy

om2 = om.copy()

The copy method can be used to make a copy of an MP-Opt-Model object.

display

om

The display method displays the variable, constraint and cost sets that make up the
model, along with their indexing data.

get userdata

data = om.get_userdata(name)

MP-Opt-Model allows the user to store arbitrary data in fields of the userdata prop-
erty, which is a simple struct. The get userdata method returns the value of the
field specified by name, or an empty matrix if the field does not exist in om.userdata.
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is mixed integer

TorF = om.is_mixed_integer()

Returns 1 if any of the variables are binary or integer, 0 otherwise.

problem type

prob_type = om.problem_type()

Returns a string identifying the type of mathematical program represented by the
current model. The string is one of the following:

• 'LP' – linear program
• 'QP' – quadratic program
• 'NLP' – nonlinear program
• 'MILP' – mixed-integer linear program
• 'MIQP' – mixed-integer quadratic program
• 'MINLP' – mixed-integer nonlinear program22

varsets cell2struct

varsets = om.varsets_cell2struct(varsets)

Converts variable subset varsets from a cell array to a struct array, if necessary.

varsets idx

k = om.varsets_idx(varsets)

Returns a vector of indices into the full optimization vector x corresponding to the
variable sets specified by varsets.

varsets len

nv = om.varsets_len(varsets)

Returns the total number of elements in the optimization sub-vector specified by
varsets.

22MP-Opt-Model does not yet implement solving MINLP problems.
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varsets x

x = om.varsets_x(x, varsets)

x = om.varsets_x(x, varsets, 'vector')

Returns a cell array of sub-vectors of x specified by varsets, or the full optimization
vector x, if varsets is empty.

If a 3rd argument is present (value is ignored) the returned value is a single
numeric vector with the individual components stacked vertically.

5.7.2 Private Methods

def set types

om.def_set_types()

The def set types method is a private method that assigns a struct to the set types

property of the object. The fields of the struct correspond to the valid set types listed
in Table 5-2.

init set types

om.init_set_types()

Initializes the base data structures for each set type.

5.8 Matpower Index Manager Base Class – mp idx manager

Most of the functionality of the opt model class related to managing the indexing
of the various set types is inherited from the Matpower Index Manager base class
named mp idx manager. The properties and methods implemented in this base class
and inherited or overridden by opt model are listed in Table 5-3.

The Matpower Index Manager base class initializes and manages the data that
is common across all set types. Table 5-4 illustrates for an example 'var' set type,
such as defined in opt model, what the data structure looks like, but it is the same
for any other set types defined by child classes, such as opt model.
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Table 5-3: Matpower Index Manager (mp idx manager) Properties and Methods

name description

Properties
set types struct whose fields define the valid set types*

userdata struct for storing arbitrary user-defined data

Public Methods
mp idx manager constructor for mp idx manager class
copy makes a copy of an existing mp idx manager object
describe idx identifies indices of a given set type

E.g. variable 361 corresponds to w(68)

display set displays indexing for a particular set type
get access (possibly nested) fields of the object
get idx returns index structure(s) for specified set type(s), with start-

ing/ending indices and number of elements for each named (and
optionally indexed) block

get userdata retreives values of user data stored in the object
getN returns the number of elements of any given set type†

init indexed name initializes dimensions for a particular indexed named set

Private Methods‡

add named set adds indexing information for new instance of a given set type
init set types initializes the data structures for each set type
valid named set type returns label for given named set type if valid, empty otherwise

* This value is initialized automatically by the def set types method of the sub-class.
† For all, or alternatively, only for a named (and possibly indexed) subset.
‡ For internal use only.
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Table 5-4: Matpower Index Manager (mp idx manager) Object Structure

name description

obj

.set types struct whose fields define the valid set types

.var data for 'var' set type, e.g. variable sets that make up the full
optimization variable x

.idx

.i1 starting index within x

.iN ending index within x

.N number of elements in this variable set
.N total number of elements in x
.NS number of variable sets or named blocks
.data additional set-type-specific data for each block†

.order struct array of names/indices for variable blocks in the order they
appear in x

.name name of the block, e.g. z

.idx indices for name, {2,3} → z(2,3)

.<other-set-types> with structure identical to var

.userdata struct for storing arbitrary user-defined data

† For the 'var' set type in opt model, this is a struct with fields v0, vl, vu, and vt for storing initial value,
lower and upper bounds, and variable type. For other set types
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5.9 Reference

5.9.1 Properties

The properties in opt model consist of those inherited from the base class, plus one
corresponding to each set type.

Table 5-5: opt model Properties

name description

set types† struct whose fields define the valid set types*

var‡ data for 'var' set type, variables
lin‡ data for 'lin' set type, linear constraints
nle‡ data for 'nle' set type, nonlinear equality constraints
nli‡ data for 'nli' set type, nonlinear inequality constraints
qdc‡ data for 'qdc' set type, quadratic costs
nlc‡ data for 'nlc' set type, general nonlinear costs
userdata† struct for storing arbitrary user-defined data

* This value is initialized automatically by the def set types method of the sub-
class.

† Inherited from Matpower Index Manager base class, mp idx manager.
‡ See var field in Table 5-4 for details of the structure of this field. The only

difference between set types is the structure of the data sub-field.

5.9.2 Methods
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Table 5-6: opt model Methods

name description

Public Methods
add lin constraint add linear constraint set, see Section 5.2.1
add nln constraint add general nonlinear constraint set, see Section 5.2.2
add nln cost add general nonlinear cost set, see Section 5.3.2
add quad cost add quadratic cost set, see Section 5.3.1
add var add variable set, see Section 5.1
copy† makes a copy of an existing opt model object
describe idx† identifies indices of a given set type, see Section 5.5.1
display displays variable, constraint and cost sets, see Section 5.7.1
display set† displays indexing for a particular set type, called by display

eval nln constraint builds full set of nonlinear equality or inequality constraints and
their gradients for given value of x, see Section 5.5.3

eval nln constraint hess builds Hessian for full set of nonlinear equality or inequality con-
straints for given value of x, see Section 5.5.3

eval nln cost evaluates nonlinear cost function and its derivatives‡ for given
value of x, see Section 5.5.4

eval quad cost evaluates quadratic cost function and its derivatives‡ for given
value of x, see Section 5.5.4

get† access (possibly nested) fields of the object
get idx† returns index structures for specified set types, see Section 5.5.1
get userdata† retreives values of user data stored in the object
getN† returns the number of elements of any given set type‡

init indexed name† initializes dimensions for a particular indexed named set
is mixed integer returns 1 if any of the variables are binary or integer, 0 otherwise
params lin constraint assembles and returns parameters for linear constraints‡

params quad cost assembles and returns parameters for quadratic costs‡

params var assembles and returns inital values, bounds, types for variables‡

problem type type of mathematical program represented by current model
solve solves the model, see Section 5.4
varsets cell2struct converts variable subset varsets from cell array to struct array
varsets idx returns vector of indices into x corresponding to varsets

varsets len returns number of elements in sub-vector specified by varsets

varsets x returns cell array of sub-vectors of x specified by varsets

Private Methods*

add named set§ adds information for new instance of a given set type
def set types initializes the set types property
init set types§ initializes the data structures for each set type
valid named set type† returns label for given named set type if valid, empty otherwise

* For internal use only.
† Inherited from Matpower Index Manager base class, mp idx manager.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.
§ Overrides and augments method inherited from Matpower Index Manager base class, mp idx manager.
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6 Utility Functions

6.1 have fcn

TorF = have_fcn(tag)

TorF = have_fcn(tag, toggle)

ver_str = have_fcn(tag, 'vstr')

ver_num = have_fcn(tag, 'vnum')

rdate = have_fcn(tag, 'date')

info = have_fcn(tag, 'all')

The have fcn function provides a unified mechanism for testing for optional func-
tionality, such as the presence of certain solvers, or to detect whether the code is
running under Matlab or Octave. Since its results are cached they allow for a very
quick way to check frequently for functionality that may initially be a bit more costly
to determine. For installed functionality, have fcn also determines the installed ver-
sion and release date, if possible. The optional second argument, when it is a string,
defines which value is returned, as follows:

• empty – 1 if optional functionality is available, 0 if not available

• 'vstr' – version number as a string (e.g. '3.11.4')

• 'vnum' – version number as numeric value (e.g. 3.011004)

• 'date' – release date as a string (e.g. '20-Jan-2015')

• 'all' – struct with fields named av (for “availability”), vstr, vnum and date,
and values corresponding to each of the above, respectively.

Alternatively, the optional functionality specified by tag can be toggled OFF or
ON by calling have fcn with a numeric second argument toggle with one of the
following values:

• 0 – turn OFF the optional functionality

• 1 – turn ON the optional functionality (if available)

• −1 – toggle the ON/OFF state of the optional functionality
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6.2 mpomver

mpomver

v = mpomver

v = mpomver('all')

Prints or returns MP-Opt-Model version information for the current installation.
When called without an input argument, it returns a string with the version number.
Without an input argument it returns a struct with fields Name, Version, Release,
and Date, all of which are strings. Calling mpomver without assigning the return value
prints the version and release date of the current installation of MP-Opt-Model.

6.3 nested struct copy

ds = nested_struct_copy(d, s)

ds = nested_struct_copy(d, s, opt)

The nested struct copy function copies values from a source struct s to a desti-
nation struct d in a nested, recursive manner. That is, the value of each field in s

is copied directly to the corresponding field in d, unless that value is itself a struct,
in which case the copy is done via a recursive call to nested struct copy. Certain
aspects of the copy behavior can be controled via the optional options struct opt,
including the possible checking of valid field names.

6.4 Matpower-related Functions

The following two functions are related specifically to Matpower, and are used for
extracting relevant solver options from a Matpower options struct.

6.4.1 mpopt2nlpopt

nlpopt = mpopt2nlpopt(mpopt)

nlpopt = mpopt2nlpopt(mpopt, model)

nlpopt = mpopt2nlpopt(mpopt, model, alg)

The mpopt2nlpopt function returns an options struct suitable for nlps master

or one of the solver specific equivalents. It is constructed from the relevant por-
tions of mpopt, a Matpower options struct. The final alg argument allows the
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solver to be set explicitly (in nlpopt.alg). By default this value is taken from
mpopt.opf.ac.solver.

When the solver is set to 'DEFAULT', this function currently defaults to MIPS.

6.4.2 mpopt2qpopt

qpopt = mpopt2qpopt(mpopt)

qpopt = mpopt2qpopt(mpopt, model)

qpopt = mpopt2qpopt(mpopt, model, alg)

The mpopt2qpopt function returns an options struct suitable for qps master,
miqps master or one of the solver specific equivalents. It is constructed from the
relevant portions of mpopt, a Matpower options struct. The model argument spec-
ifies whether the problem to be solved is an LP, QP, MILP or MIQP problem to
allow for the selection of a suitable default solver. The final alg argument allows
the solver to be set explicitly (in qpopt.alg). By default this value is taken from
mpopt.opf.dc.solver.

When the solver is set to 'DEFAULT', this function also selects the best available
solver that is applicable23 to the specific problem class, based on the following prece-
dence: Gurobi, CPLEX, MOSEK, Optimization Toolbox, GLPK, BPMPD, MIPS.

23GLPK is not available for problems with quadratic costs (QP and MIQP), BPMPD and MIPS
are not available for mixed-integer problems (MILP and MIQP), and the Optimization Toolbox is
not an option for problems that combine the two (MIQP).
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Appendix A MP-Opt-Model Files, Functions and

Classes

This appendix lists all of the files, functions and classes that MP-Opt-Model pro-
vides. In most cases, the function is found in a Matlab M-file in the lib directory
of the distribution, where the .m extension is omitted from this listing. For more
information on each, at the Matlab/Octave prompt, simply type help followed by
the name of the function. For documentation and other files, the filename extensions
are included.

Table A-1: MP-Opt-Model Files and Functions

name description

AUTHORS list of authors and contributors
CHANGES MP-Opt-Model change history
CITATION info on how to cite MP-Opt-Model
CONTRIBUTING.md notes on how to contribute to the MP-Opt-Model project
LICENSE MP-Opt-Model license (3-clause BSD license)
README.md basic introduction to MP-Opt-Model
docs/

MP-Opt-Model-manual.pdf MP-Opt-Model User’s Manual
src/MP-Opt-Model-manual/

MP-Opt-Model-manual.tex LaTeX source for MP-Opt-Model User’s Manual
lib/ MP-Opt-Model software (see Tables A-2, A-3, A-4 and A-5)
t/ MP-Opt-Model tests (see Table A-6)
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Table A-2: LP, QP & NLP Solver Functions

name description

clp options default options for CLP solver†

cplex options default options for CPLEX solver†

glpk options default options for GLPK solver†

gurobi options default options for Gurobi solver†

gurobiver prints version information for Gurobi/Gurobi MEX
ipopt options default options for Ipopt solver†

miqps master Mixed-Integer Quadratic Program Solver wrapper function, provides a unified
interface for various MIQP/MILP solvers

miqps cplex MIQP/MILP solver API implementation for CPLEX (cplexmiqp and
cplexmilp)†

miqps glpk MILP solver API implementation for GLPK†

miqps gurobi MIQP/MILP solver API implementation for Gurobi†

miqps mosek MIQP/MILP solver API implementation for MOSEK (mosekopt)†

miqps ot QP/MILP solver API implementation for Matlab Opt Toolbox’s
intlinprog, quadprog, linprog

mosek options default options for MOSEK solver†

mosek symbcon symbolic constants to use for MOSEK solver options†

mpopt2nlopt create nlps master options struct from Matpower options struct
mpopt2qpopt create mi/qps master options struct from Matpower options struct
nlps master Nonlinear Program Solver wrapper function, provides a unified interface for

various NLP solvers
nlps fmincon NLP solver API implementation for Matlab Opt Toolbox’s fmincon

nlps ipopt NLP solver API implementation for Ipopt-based solver†

nlps knitro NLP solver API implementation for Artelys Knitro-based solver†

qps master Quadratic Program Solver wrapper function, provides a unified interface for
various QP/LP solvers

qps bpmpd QP/LP solver API implementation for BPMPD MEX†

qps clp QP/LP solver API implementation for CLP†

qps cplex QP/LP solver API implementation for CPLEX (cplexqp and cplexlp)†

qps glpk QP/LP solver API implementation for GLPK†

qps gurobi QP/LP solver API implementation for Gurobi†

qps ipopt QP/LP solver API implementation for Ipopt-based solver†

qps mosek QP/LP solver API implementation for MOSEK (mosekopt)†

qps ot QP/LP solver API implementation for Matlab Opt Toolbox’s quadprog,
linprog

deprecated functions
miqps matpower use miqps master instead
qps matpower use qps master instead

† Requires the installation of an optional package. See Appendix B for details on the corresponding package.
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Table A-3: Optimization Model Class

name description

@opt model/ optimization model class (subclass of mp idx manager)
opt model constructor for the opt model class
add lin constraint adds a named subset of linear constraints to the model
add named set† adds a named subset of costs, constraints or variables to the model
add nln constraint adds a named subset of nonlinear constraints to the model
add nln cost adds a named subset of general nonlinear costs to the model
add quad cost adds a named subset of quadratic costs to the model
add var adds a named subset of optimization variables to the model
display called to display object when statement not ended with semicolon
eval nln constraint returns full set of nonlinear equality or inequality constraints and

their gradients
eval nln constraint hess returns Hessian for full set of nonlinear equality or inequality con-

straints
eval nln cost evaluates general nonlinear costs and derivatives
eval quad cost evaluates quadratic costs and derivatives
get idx returns the idx struct for vars, lin/nln constraints, costs
init indexed name initializes dimensions for indexed named set of costs, constraints

or variables
is mixed integer indicates whether any of the variables are binary or integer
params lin constraint returns individual or full set of linear constraint parameters
params nln cost returns individual general nonlinear cost parameters
params quad cost returns individual or full set of quadratic cost coefficients
params var returns initial values, bounds and variable type for optimimization

vector x̂‡

problem type indicates type of mathematical program (e.g. LP, QP, MILP,
MIQP, or NLP)

solve solves the optimization model
varsets cell2struct† converts variable set list from cell array to struct array
varsets idx returns vector of indices into opt vector x̂ for variable set list
varsets len returns total number of optimization variables for variable set list
varsets x assembles cell array of sub-vectors of opt vector x̂ specified by

variable set list
nlp consfcn§ evaluates nonlinear constraints and gradients for opt model

nlp costfcn§ evaluates nonlinear costs, gradients, Hessian for opt model

nlp hessfcn§ evaluates nonlinear constraint Hessians for opt model

† Private method for internal use only.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.
§ Ideally should be implemented as a method of the opt model class, but a bug in Octave 4.2.x and earlier prevents

it from finding an inherited method via a function handle, which MP-Opt-Model requires.
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Table A-4: Matpower Index Manager Class

name description

@mp idx manager/ Matpower Index Manager abstract class used to manage index-
ing and ordering of various sets of parameters, etc. (e.g. variables,
constraints, costs for OPF Model objects).

mp idx manager constructor for the mp idx manager class
add named set† add named subset of a particular type to the object
describe idx identifies indices of a given set type

E.g. variable 361 corresponds to Pg(68)

get idx returns index structure(s) for specified set type(s), with start-
ing/ending indices and number of elements for each named (and
optionally indexed) block

get userdata retreives values of user data stored in the object
get returns the value of a field of the object
getN returns the number of elements of any given set type‡

init indexed name initializes dimensions for a particular indexed named set
valid named set type† returns label for given named set type if valid, empty otherwise

† Private method for internal use only.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.

Table A-5: Utility Functions

name description

have fcn checks for availability of optional functionality
mpomver prints version information for MP-Opt-Model
nested struct copy copies the contents of nested structs

Table A-6: MP-Opt-Model Examples & Tests

name description

lib/t/ MP-Opt-Model examples & tests
nlps master ex1 code for NLP Example 1 (see Section 4.3.1) for nlps master

nlps master ex2 code for NLP Example 2 (see Section 4.3.2) for nlps master

qp ex1 code for QP example from Section 2.3
test mp opt model runs full MP-Opt-Model test suite
t have fcn runs tests for have fcn

t miqps master runs tests for miqps master

t nested struct copy runs tests for nested struct copy

t nlps master runs tests for nlps master

t opt model runs tests for opt model objects
t qps master runs tests for qps master
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Appendix B Optional Packages

There are a number of optional packages, not included in the MP-Opt-Model distri-
bution, that MP-Opt-Model can utilize if they are installed in your Matlab path.

B.1 BPMPD MEX – MEX interface for BPMPD

BPMPD MEX [8,9] is a Matlab MEX interface to BPMPD, an interior point solver
for quadratic programming developed by Csaba Mészáros at the MTA SZTAKI,
Computer and Automation Research Institute, Hungarian Academy of Sciences, Bu-
dapest, Hungary. It can be used by MP-Opt-Model’s QP/LP solver interface.

This MEX interface for BPMPD was coded by Carlos E. Murillo-Sánchez, while
he was at Cornell University. It does not provide all of the functionality of BPMPD,
however. In particular, the stand-alone BPMPD program is designed to read and
write results and data from MPS and QPS format files, but this MEX version does
not implement reading data from these files into Matlab.

The current version of the MEX interface is based on version 2.21 of the BPMPD
solver, implemented in Fortran. Builds are available for Linux (32-bit), Mac OS
X (PPC, Intel 32-bit) and Windows (32-bit) at http://www.pserc.cornell.edu/

bpmpd/.
When installed BPMPD MEX can be used to solve general LP and QP problems

via MP-Opt-Model’s common QP solver interface qps master with the algorithm
option set to 'BPMPD', or by calling qps bpmpd directly.

B.2 CLP – COIN-OR Linear Programming

The CLP [10] (COIN-OR Linear Programming) solver is an open-source linear pro-
gramming solver written in C++ by John Forrest. It can solve both linear program-
ming (LP) and quadratic programming (QP) problems. It is primarily meant to be
used as a callable library, but a basic, stand-alone executable version exists as well.
It is available from the COIN-OR initiative at https://github.com/coin-or/Clp.

To use CLP with MP-Opt-Model, a MEX interface is required24. For Microsoft

24According to David Gleich at http://web.stanford.edu/~dgleich/notebook/2009/03/

coinor_clop_for_matlab.html, there was a Matlab MEX interface to CLP written by Jo-
han Lofberg and available (at some point in the past) at http://control.ee.ethz.ch/~joloef/

mexclp.zip. Unfortunately, at the time of this writing, it seems it is no longer available
there, but Davide Barcelli makes some precompiled MEX files for some platforms available here
http://www.dii.unisi.it/~barcelli/software.php, and the ZIP file linked as Clp 1.14.3 con-
tains the MEX source as well as a clp.m wrapper function with some rudimentary documentation.
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Windows users, a pre-compiled MEX version of CLP (and numerous other solvers,
such as GLPK and Ipopt) are easily installable as part of the OPTI Toolbox25 [11]

With the Matlab interface to CLP installed, it can be used to solve general LP
and QP problems via MP-Opt-Model’s common QP solver interface qps master with
the algorithm option set to 'CLP', or by calling qps clp directly.

B.3 CPLEX – High-performance LP, QP, MILP and MIQP
Solvers

The IBM ILOG CPLEX Optimizer, or simply CPLEX, is a collection of optimization
tools that includes high-performance solvers for large-scale linear programming (LP)
and quadratic programming (QP) problems, among others. More information is
available at https://www.ibm.com/analytics/cplex-optimizer.

Although CPLEX is a commercial package, at the time of this writing the full
version is available to academics at no charge through the IBM Academic Initia-
tive program for teaching and non-commercial research. See http://www.ibm.com/

support/docview.wss?uid=swg21419058 for more details.
When the Matlab interface to CPLEX is installed, it can also be used to

solve general LP, QP problems via MP-Opt-Model’s common QP solver interface
qps master, or MILP and MIQP problems via miqps master, with the algorithm
option set to 'CPLEX', or by calling qps cplex or miqps cplex directly.

B.4 GLPK – GNU Linear Programming Kit

The GLPK [12] (GNU Linear Programming Kit) package is intended for solving
large-scale linear programming (LP), mixed-integer programming (MIP), and other
related problems. It is a set of routines written in ANSI C and organized in the form
of a callable library.

To use GLPK with MP-Opt-Model, a MEX interface is required26. For Microsoft
Windows users, a pre-compiled MEX version of GLPK (and numerous other solvers,
such as CLP and Ipopt) are easily installable as part of the OPTI Toolbox27 [11].

When GLPK is installed, either as part of Octave or with a MEX interface for
Matlab, it can be used to solve general LP problems via MP-Opt-Model’s com-

25The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.
26The http://glpkmex.sourceforge.net site and Davide Barcelli’s page http://www.dii.

unisi.it/~barcelli/software.php may be useful in obtaining the MEX source or pre-compiled
binaries for Mac or Linux platforms.

27The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.
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mon QP solver interface qps master, or MILP problems via miqps master, with the
algorithm option set to 'GLPK', or by calling qps glpk or miqps glpk directly.

B.5 Gurobi – High-performance LP, QP, MILP and MIQP
Solvers

Gurobi [13] is a collection of optimization tools that includes high-performance solvers
for large-scale linear programming (LP) and quadratic programming (QP) problems,
among others. The project was started by some former CPLEX developers. More
information is available at https://www.gurobi.com/.

Although Gurobi is a commercial package, at the time of this writing their is a free
academic license available. See https://www.gurobi.com/academia/for-universities
for more details.

When Gurobi is installed, it can be used to solve general LP and QP problems
via MP-Opt-Model’s common QP solver interface qps master, or MILP and MIQP
problems via miqps master, with the algorithm option set to 'GUROBI', or by calling
qps gurobi or miqps gurobi directly.

B.6 Ipopt – Interior Point Optimizer

Ipopt [14] (Interior Point OPTimizer, pronounced I-P-Opt) is a software package
for large-scale nonlinear optimization. It is is written in C++ and is released as
open source code under the Common Public License (CPL). It is available from the
COIN-OR initiative at https://github.com/coin-or/Ipopt. The code has been
written by Carl Laird and Andreas Wächter, who is the COIN project leader for
Ipopt.

MP-Opt-Model requires the Matlab MEX interface to Ipopt, which is included
in some versions of the Ipopt source distribution, but must be built separately.
Additional information on the MEX interface is available at https://projects.

coin-or.org/Ipopt/wiki/MatlabInterface. Please consult the Ipopt documen-
tation, web-site and mailing lists for help in building and installing the Ipopt Mat-
lab interface. This interface uses callbacks to Matlab functions to evaluate the
objective function and its gradient, the constraint values and Jacobian, and the
Hessian of the Lagrangian.

Precompiled MEX binaries for a high-performance version of Ipopt, using the
PARDISO linear solver [15, 16], are available from the PARDISO project28. For
Microsoft Windows users, a pre-compiled MEX version of Ipopt (and numerous

28See https://pardiso-project.org/ for the download links.
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other solvers, such as CLP and GLPK) are easily installable as part of the OPTI
Toolbox29 [11].

When installed, Ipopt can be used by MP-Opt-Model to solve general LP, QP
and NLP problems via MP-Opt-Model’s common QP and NLP solver interfaces
qps master and nlps master with the algorithm option set to 'IPOPT', or by calling
qps ipopt or nlps ipopt directly.

B.7 Artelys Knitro – Non-Linear Programming Solver

Artelys Knitro [17] is a general purpose optimization solver specializing in nonlinear
problems, available from Artelys. As of version 9, Knitro includes a native Matlab
interface, knitromatlab30. More information is available at https://www.artelys.

com/solvers/knitro/ and https://www.artelys.com/docs/knitro/.
Although Artelys Knitro is a commercial package, at the time of this writing

there is a free academic license available, with details on their download page.
When installed, Knitro’s Matlab interface function, knitromatlab or ktrlink,

can be used by MP-Opt-Model to solve general NLP problems via MP-Opt-Model’s
common NLP solver interface nlps master with the algorithm option set to 'KNITRO',
or by calling nlps knitro directly.

B.8 MOSEK – High-performance LP, QP, MILP and MIQP
Solvers

MOSEK is a collection of optimization tools that includes high-performance solvers
for large-scale linear programming (LP) and quadratic programming (QP) problems,
among others. More information is available at https://www.mosek.com/.

Although MOSEK is a commercial package, at the time of this writing there is a
free academic license available. See https://www.mosek.com/products/academic-licenses/
for more details.

When the Matlab interface to MOSEK is installed, it can be used to solve gen-
eral LP and QP problems via Matpower’s common QP solver interface qps master,
or MILP and MIQP problems via miqps master, with the algorithm option set to
'MOSEK', or by calling qps mosek or miqps mosek directly.

29The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.
30Earlier versions required the Matlab Optimization Toolbox from The MathWorks, which

included an interface to the Knitro libraries called ktrlink, but the libraries themselves still had
to be acquired directly from Ziena Optimization, LLC (subsequently acquired by Artelys).
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B.9 Optimization Toolbox – LP, QP, NLP and MILP Solvers

Matlab’s Optimization Toolbox [18, 19], available from The MathWorks, provides
a number of high-performance solvers that Matpower can take advantage of.

It includes fmincon for nonlinear programming problems (NLP), and linprog and
quadprog for linear programming (LP) and quadratic programming (QP) problems,
respectively. For mixed-integer linear programs (MILP), it provides intlingprog.
Each solver implements a number of different solution algorithms. More information
is available from The MathWorks, Inc. at https://www.mathworks.com/.

When available, the Optimization Toolbox solvers can be used to solve general
LP and QP problems via Matpower’s common QP solver interface qps master,
or MILP problems via miqps master, with the algorithm option set to 'OT', or by
calling qps ot or miqps ot directly. It can also be used to solve general NLP problems
via MP-Opt-Model’s common NLP solver interface nlps master with the algorithm
option set to 'FMINCON', or by calling nlps fmincon directly.
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Appendix C Release History

The full release history can be found in CHANGES.md or online at https://github.

com/MATPOWER/mp-opt-model/blob/master/CHANGES.md.

C.1 Version 0.7 – Jun 20, 2019

This release history begins with the code that was part of the Matpower 7.0 release.

C.2 Version 0.8 – Apr 29, 2020 (not released publicly)

This version consists of functionality moved directly from Matpower.31 There is
no User’s Manual yet.

New Features

• New unified interface nlps master() for nonlinear programming solvers MIPS,
fmincon, Ipopt and Artelys Knitro.

• New functions:

– mpopt2nlpopt() creates an options struct for nlps master() from at Mat-
power options struct.

– nlps fmincon() provides implementation of unified nonlinear program-
ming solver interface for fmincon.

– nlps ipopt() provides implementation of unified nonlinear programming
solver interface interface for Ipopt.

– nlps knitro() provides implementation of unified nonlinear programming
solver interface interface for Ipopt.

– nlps master() provides a single wrapper function for calling any of Mat-
power’s nonlinear programming solvers.

Other Improvements

• Significant performance improvement for some problems when constructing
sparse matrices for linear constraints or quadratic costs. Thanks to Daniel
Muldrew.

31From the current master branch in the Matpower GitHub repository at the time.
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• Significant performance improvement for CPLEX on small problems by elimi-
nating call to cplexoptimset(), which was a huge bottleneck.

• Add four new methods to opt model class:

– copy() – works around issues with inheritance in constructors that was
preventing copy constructor from working in Octave 5.2 and earlier (see
also https://savannah.gnu.org/bugs/?52614)

– is mixed integer() – returns true if the model includes any binary or
integer variables

– problem type() – returns one of the following strings, based on the char-
acteristics of the variables, costs and constraints in the model:

∗ 'LP' – linear program

∗ 'QP' – quadratic program

∗ 'NLP' – nonlinear program

∗ 'MILP' – mixed-integer linear program

∗ 'MIQP' – mixed-integer quadratic program

∗ 'MINLP' – mixed-integer nonlinear program

– solve() - solves the model using qps master(), miqps master(), or nlps master(),
depending on the problem type ('MINLP' problems are not yet imple-
mented)

Bugs Fixed

• Artelys Knitro 12.1 compatibility fix.

• Fix CPLEX 12.10 compatibility issue #90.

• Fix issue with missing objective function value from miqps mosek() and qps mosek()

when return status is “Stalled at or near optimal solution.”

• Fix bug orginally in ktropf solver() (code now moved to nlps knitro())
where Artelys Knitro was still using fmincon options.

Incompatible Changes

• MP-Opt-Model has renamed the following functions and modified the order of
their input args so that the MP-Opt-Model object appears first. Ideally, these
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would be defined as methods of the opt model class, but Octave 4.2 and earlier
is not able to find them via a function handle (as used in the solve() method)
if they are inherited by a sub-class.

– opf consfcn() → nlp consfcn()

– opf costfcn() → nlp costfcn()

– opf hessfcn() → nlp hessfcn()

C.3 Version 1.0 – released May 8, 2020

This is the first public release of MP-Opt-Model as its own package. The MP-Opt-Model
1.0 User’s Manual is available online.32

New Documentation

• Add MP-Opt-Model User’s Manual with LATEX source code included in docs/src.

Other Improvements

• Refactor opt model class to inherit from new abstract base class mp idx manager

which can be used to manage the indexing of other sets of parameters, etc. in
other contexts.

32https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
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[15] O. Shenk and K. Gärtner, “Solving unsymmetric sparse systems of linear
equations with PARDISO,” Journal of Future Generation Computer Systems,
20(3):475–487, 2004. B.6

[16] A. Kuzmin, M. Luisier and O. Shenk, “Fast methods for computing selected
elements of the Greens function in massively parallel nanoelectronic device sim-
ulations,” in F. Wolf, B. Mohr and D. Mey, editors, Euro-Par 2013 Parallel Pro-
cessing, Vol. 8097, Lecture Notes in Computer Science, pp. 533–544, Springer
Berlin Heidelberg, 2013. B.6

[17] R. H. Byrd, J. Nocedal, and R. A. Waltz, “KNITRO: An Integrated Package for
Nonlinear Optimization”, Large-Scale Nonlinear Optimization, G. di Pillo and
M. Roma, eds, pp. 35–59 (2006), Springer-Verlag. doi: 10.1007/0-387-30065-1 4
B.7

[18] Optimization Toolbox, The MathWorks, Inc. [Online]. Available: https://www.
mathworks.com/products/optimization/. B.9

[19] Optimization Toolbox Users’s Guide, The MathWorks, Inc., 2016. [On-
line]. Available: https://www.mathworks.com/help/releases/R2016b/pdf_

doc/optim/optim_tb.pdf. B.9

66

https://www.gnu.org/software/glpk/
https://www.gurobi.com/
https://doi.org/10.1007/0-387-30065-1_4
https://www.mathworks.com/products/optimization/
https://www.mathworks.com/products/optimization/
https://www.mathworks.com/help/releases/R2016b/pdf_doc/optim/optim_tb.pdf
https://www.mathworks.com/help/releases/R2016b/pdf_doc/optim/optim_tb.pdf

	Introduction
	Background
	License and Terms of Use
	Citing MP-Opt-Model
	MP-Opt-Model Development

	Getting Started
	System Requirements
	Installation
	Sample Usage
	Documentation

	MP-Opt-Model – Overview
	Solver Interface Functions
	LP/QP Solvers – qps_master
	QP Example

	MILP/MIQP Solvers – miqps_master
	MILP Example

	NLP Solvers – nlps_master
	NLP Example 1
	NLP Example 2


	Optimization Model Class – opt_model
	Adding Variables
	Variable Subsets

	Adding Constraints
	Linear Constraints
	General Nonlinear Constraints

	Adding Costs
	Quadratic Costs
	General Nonlinear Costs

	Solving the Model
	Accessing the Model
	Indexing
	Variables
	Constraints
	Costs

	Indexed Sets
	Miscellaneous Methods
	Public Methods
	Private Methods

	Matpower Index Manager Base Class – mp_idx_manager
	Reference
	Properties
	Methods


	Utility Functions
	have_fcn
	mpomver
	nested_struct_copy
	Matpower-related Functions
	mpopt2nlpopt
	mpopt2qpopt


	Appendix MP-Opt-Model Files, Functions and Classes
	Appendix Optional Packages
	BPMPD_MEX – MEX interface for BPMPD
	CLP – COIN-OR Linear Programming
	CPLEX – High-performance LP, QP, MILP and MIQP Solvers
	GLPK – GNU Linear Programming Kit
	Gurobi – High-performance LP, QP, MILP and MIQP Solvers
	Ipopt – Interior Point Optimizer
	Artelys Knitro – Non-Linear Programming Solver
	MOSEK – High-performance LP, QP, MILP and MIQP Solvers
	Optimization Toolbox – LP, QP, NLP and MILP Solvers

	Appendix Release History
	Version 0.7 – Jun 20, 2019
	Version 0.8 – Apr 29, 2020 (not released publicly)
	Version 1.0 – released May 8, 2020

	References

