Knowledge Graph Conference 2020

Modeling Evolving Data in Graphs
While Preserving Backward Compatibility:
The Power of RDF Quads

Souri Das, Ph.D., Architect
Matt Perry, Ph.D., Consultant Member of Technical Staff
Eugene Chong, Ph.D., Consultant Member of Technical Staff

Oracle Server Technologies
May 05, 2020

- s

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Souripriya Das (Souri)

https://www.linkedin.com/in/souripriva-souri-das-ph-d-48801911/

Architect at Oracle
 RDF Knowledge Graph
* Property Graph

Education

* Ph.D., Rutgers University

« M.S,, Vanderbilt University

« B.Tech., Indian Institute of Technology (lIT), Kharagpur

Standards Activity
« W3C SPARQL 1.0 and 1.1
« W3C RDB2RDF, Editor of RZRML

Publications in SW and Database Area
« |CDE, EDBT, VLDB, CIKM
» Patents in Database and Graph technologies

https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Matthew Perry

Engineer at Oracle
« RDF Knowledge Graph
« PGQL on RDBMS

Ph.D. in Computer Science
« Wright State University
« Geospatial Semantic Web Area

Standards Activity
« W3C SPARQL 11 Working Group
« 0OGC GeoSPARQL

Papers in SW and Database Area
« |CDE, EDBT, ACM-GIS
« Terra Cognita workshop series

Eugene Inseok Chong

Consulting MTS at Oracle

Working on Graph Databases
Developer of Oracle Index Organized Tables, Reference Partitioned Tables, 32K Varchar, and

Domain Indexes

Ph.D. in CS from Northwestern Univ., Evanston, IL

MS in CS from Georgia Tech, Atlanta, GA
BS in CSE from Seoul National Univ., Seoul, Korea

21 Publications including VLDB, SIGMOD, ICDE, and EDBT
Referee for journals and conferences

Specialty in Database Query Processing and Optimization

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing
decisions.

The development, release, timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

5 Copyright © 2020 Oracle and/or its affiliates. E

Agenda

Part 1
« (Backward Compatibility in Evolving Graphs h
« | Distinguishing among Graph Types
e | Brief Intro to RDF

» \Backward Compatibility: An Example and Demo y
Part 2
« (Tntro to SPARQL Query and SPARQL Update)

» | Evolving Data: Movie Review Demo

| PGQL vs SPARQL

* | Graph Analytics on RDF data

« \Demo y
Part 3

* [Intro to RZRML
* | Advanced Modeling using RZRML: An Example and Demo
Baseball Data: A Real-World Example and Demo

6 Copyright © 2020 Oracle and/or its affiliates. E

Agenda

Part 1

. |Backward Compatibility in Evolving Graphs |
« Distinguishing among Graph Types

 Brief Intro to RDF

« Backward Compatibility: An Example and Demo

Part 2

* Intro to SPARQL Query and SPARQL Update

» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

« Advanced Modeling using RZRML: An Example and Demo
» Baseball Data: A Real-World Example and Demo

7 Copyright © 2020 Oracle and/or its affiliates. E

B e S
Backward Compatibility

validity of pre-existing queries as data evolve

Data: John Data (rephrased):
donated to ‘ A donation event occurred where
Top University. the donor was John and
\ the recipient was Top University.
time L N 5 s time,

to * % J\
Query (resdesigned): Who

donated to were the donors for
Top University? ‘ donation events where
the recipient was Top University?

8 Copyright © 2020 Oracle and/or its affiliates. E

Evolving Data

Data changes are frequent, and often unanticipated

Create: Add: Add: Refine:
John Mary, The donation event Bob suspects that
donated to got admitted to helped the donation event
Top University. Top University. the admission event. helped

the admission event.

time time

9 Copyright © 2020 Oracle and/or its affiliates. E

Handling the Changes in Data

Rephrasing the data using events is one way of handling

Create: Add: ‘ ‘ Add: Refine:

John Mary, Th- -~=~%jon event Bob suspects that
donated to got ad the donation event
Top University. Top Ur sion event. helped

the admission event.

time time
Data (rephrased): Datc) (rephrased):

A donation event An admission event A “helping” event

occurred where the occurred where the occurred where the

donor was John and | | student was Mary and | | “helper” was the

the recipient was the recipient was donation event and

Top University. Top University. the “helpee” was

the admission event.

10 Copyright © 2020 Oracle and/or its affiliates. E

Handling the Changes in Data

Naming the events — without any rephrasing — is another way

Create: Add: Add: Refine:

John Mary, The donation event Bob suspects that

donated to got admitted to the donation event

Top University. Top University. the admission event.

time time
Backward

Compatible
Naming is Everything !

« Name the facts.
« Compose new facts with those names.
n Copyright © 2020 Oracle and/or its affiliates.

Evolving Graph: The Power of RDF Quads

Use the “graph” component to to hold the (optional) triple name

Create: Add: Add: Refine:
John Mary, The donation event Bob suspects that
donated to got admitted to the donation event
Top University. Top University. the admission event.

time time

" graph | subject | predicate | object

:John :donatedTo :TopUniversity

'Mary :admittedTo :TopUniversity
:suspects :helping

12 Copyright © 2020 Oracle and/or its affiliates. E

Evolving Graph: RDF# - RDF + Fact Naming

piggyback the (optional) triple name on the “predicate” component

See:
Create: Add: Add: Refine:
John Mary, The donation event Bob suspects that
donated to got admitted to the donation event
Top University. Top University. the admission event.
time time
gaph | subject | predicate | __object

:John [:donation] KelelgElt=Iel[o] -TopUniversity

:Mary Kl lnlSS el M:admittedTo :TopUniversity
:Bob :suspects :helping

13 Copyright © 2020 Oracle and/or its affiliates. E

Agenda

Part 1

« Backward Compatibility in Evolving Graphs

. |Distinguishing among Graph Types |
o BriefIntroto RDF

« Backward Compatibility: An Example and Demo

Part 2

* Intro to SPARQL Query and SPARQL Update

» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

« Advanced Modeling using RZRML: An Example and Demo
» Baseball Data: A Real-World Example and Demo

14 Copyright © 2020 Oracle and/or its affiliates. E

Regular Graphs

Expert-Session-Eurowings.pdf

https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/charts-speeches/presentations/LH

Each edge could have distance as an attribute.

Domestic network 2016

——
d Kiel
° Rostock
y »
J‘JNB ur o ¢
: \\ Al sl
._ <_,, 2 k\ \
§
h Y
R -
Berlin

rmg rm_uw.m /

O REresden
\ S
vqmmcm
' ' Czech Ri
. ._C...f:eace_‘w .
Regensburg ©
uttgart § \ \:7
Strasbourg FKB STR //
.
MunichYC . v
A wm_ch_‘W . ;
Basel e o X}/ Austria

Copyright © 2020 Oracle and/or its affiliates.

15

https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/charts-speeches/presentations/LH-Expert-Session-Eurowings.pdf

Types of Graph

Graph in Discrete Math | RDF Triples | Property Graph | RDF Quads

L

Graph in Discrete Math

\

Graph in Discrete Math:

» # of relations: 1

» for each edge
» # attributes: 0 or 1
« #Hedges: 0

RDF Triples:
« # of relations: many
« for each edge

« # attributes: 0
V3 { « #edges:0
@ RDF Triples 1} Property Graph:

16 Copyright © 2020 Oracle and/or its affiliates.

« # of relations: many

« foreach edge
« # attributes: many
« #edges:0

e31: childOf

year = 2010

RDF Quads:

» # of relations: many

+ for each edge
» # attributes: many
» # edges: many

2010

RDF Quads

Types of Graph

In a Nutshell: How many edge-types (or relations) in a graph?

of edge-types

graph type modeled in graph

graph in Math
RDF Triples

Property Graph
RDF Quads

17 Copyright © 2020 Oracle and/or its affiliates.

Types of Graph

In a Nutshell: What can you hang from an edge?

for a given edge’ ...

graph type # of attributes # of outbound # of outbound
associated with it edges: - vertices edges: 2> edges

graph in Math O or 1 (fixed) - -

RDF Triples - - -

Property Graph many - -

RDF Quads many many many

"For RDF Quades, these apply to attribute association as well.

18 Copyright © 2020 Oracle and/or its affiliates. E

Comparing RDF Graph and Property Graph

Distinguishing features

Scope of identifiers Local Global (URIs)
Syntax Rules Proprietary Standards-based
Semantics Embedded in application Standard, declarative rules

19 Copyright © 2020 Oracle and/or its affiliates. E

Comparing RDF Graph and Property Graph

Distinguishing features

| PropertyGraph RDF Graph

Vertex, Edge, Vertex-Property Q=LY Easy

Duplicate Edges Easy use RDF Quad
Edge-Property (KV on edge) Easy use RDF Quad
Multi-valued Attributes Easy (use collection) Easy

20 Copyright © 2020 Oracle and/or its affiliates. E

Comparing RDF Graph and Property Graph

Distinguishing features

Property Graph RDF Graph

Edge as Endpoint for Edge “vertexify” the edge use RDF Quad
Edge-Property as Endpoint “vertexify” edge-property use RDF Quad

AT E M (oo [T aVA T A le [o 11 | I “vertexify” vertex-property use RDF Quad

21 Copyright © 2020 Oracle and/or its affiliates. E

Agenda

Part 1
« Backward Compatibility in Evolving Graphs

* Distinguishing among Graph Types

- [Brief Intro to RDF |
« Backward Compatibility: An Example and Demo

Part 2

* Intro to SPARQL Query and SPARQL Update

» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

« Advanced Modeling using RZRML: An Example and Demo
» Baseball Data: A Real-World Example and Demo

22 Copyright © 2020 Oracle and/or its affiliates. E

23

W3C Standards for Knowledge Graphs

The World Wide Web
Consortium has defined a suite
of standards to support Linked
Data and Knowledge Graphs.

Fundamental Concepts are:

« Resource ldentifiers: IRIs

 Links to other resources

« Standard Data Model (RDF)

 Standard Ontology Language
OWL)

« Standard Query (SPARQL)

Rel. Data as RDF (RDB2RDF)

Copyright © 2020 Oracle and/or its affiliates.

@ Semantic Web - W3C - Moxilla Firefox

W3 Semantic Web - W3C X T4

€ d Oa

www.w3.org/standar

Views: desktop mobile print

Semantic Web

SEMANTIC WEB

On this page — technology topics news

such as RDF, SPARQL, OWL, and SKOS

Linked Data

The Semantic Web is a Web of data — of dates and
titles and part numbers and chemical properties and
any other data one might conceive of. RDF provides
the foundation for publishing and linking your data
Various technologies allow you to embed data in
documents (RDFa, GRDDL) or expose what you have
in SQL databases, or make it available as RDF files

Inference

Near the top of the Semantic Web stack one finds
inference — reasoning over data through rules. W3C
work on rules, primarily through RIF and OWL, is
focused on translating between rule languages and
exchanging rules among different systems.

STANDARDS PARTICIPATE ~MEMBERSHIP ~ ABOUT W3C

B ¢

upcoming events and talks

Vocabularies

At times it may be important or valuable to organize
data. Using OWL (to build vocabularies, or
“ontologies”) and SKOS (for designing knowledge
organization systems) it is possible to enrich data with
additional meaning, which allows more people (and
more machines) to do more with the data

Vertical Applications

W3C is working with different industries — for example
in Health Care and Life Sciences, eGovernment, and
Energy — to improve collaboration, research and
development, and innovation adoption through
Semantic Web technology. For instance, by aiding
decision-making in clinical research, Semantic Web
technologies will bridge many forms of biological and
medical information across institutions

Skip

In addition to the classic “Web of documents™ W3C is helping to build a technology stack to support a “Web of data,” the sort of data you find in databases. The ultimate goal of the Web of
data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term “Semantic Web" refers to W3C's vision of the Web
of linked data. Semantic Web technologies enable people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by technologies

Query

Query languages go hand-in-hand with databases. If
the Semantic Web is viewed as a global database.
then it is easy to understand why one would need a
query language for that data. SPARQL is the query
language for the Semantic Web.

What is Resource Descript

"Susan"
C "John"
(i::::g%udenHZS
T T rdfitype”

ion Framework (RDF)

An RDF graph is a directed, labeled graph
with following syntactic restrictions

« Source Vertex (subject): URI

« Edge label (predicate): URI

« Target Vertex (object): URI or scalar value
An edge, called a “triple”, is the atomic unit

Resource-Triple: < URI, URI, URI >
Value-Triple: < URI, URI, value >

IlMITlI

Object
(value or

@ s uname
(uerz)
Predicate

-~

. g E‘\
Subject NG
\\namg,’

resource)

)

URI prefix and prefixed name
@prefix : <http://univ.org#> l Y
"RDF does not place any formal restrictions on what resource the graph name may denote ...” RDF Quad

SEE: https://www.w3.org/TR/rdf11-concepts/#section-dataset

24 Copyright © 2020 Oracle and/or its affiliates.

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

SPARQL Graph Pattern

Basic unit of SPARQL queries

univ:student123

univ:student456
foaf:name foaf:gender

foaf:name foaf:gender

"John Green"

vcard:BDAY

"Susan Blue"

vcard:BDAY

"1999-06-15"*"xsd:date

\7
vcard:BDAY "2000-02-10"~Axsd:date

?b

Result 1: {?t=univ:Student, ?p=univ:student123, ?n="John Green", ?g="male", ?b="1999-06-15"*"*xsd:date}

Result 2: {?t=univ:Student, ?p=univ:student456, ?n="Susan Blue", ?g="female", ?b="2000-02-10"*"xsd:date}

25 Copyright © 2020 Oracle and/or its affiliates. E

SPARQL Graph Pattern

Basic unit of SPARQL queries

< m T How do we express this with SPARQL?

rdf:type
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.o0rg/2001/vcard-rdf/3.0#>

foaf:name foaf:gender SELECT ?t ?n ?b ?g
» 5 WHERE
n ’g —
{ ?p rdf:type ?t ; i
vcard:BDAY foaf:name ?n ; BaSIC Graph
o vcard:BDAY ?b ; Pattern (BGP)
' foaf:gender ?g }

26 Copyright © 2020 Oracle and/or its affiliates. E

Introduction to Linked Data Through an Example

@ Window Ai Condtionsr aings - Mozl Firfox

R Window Air Condtiones Ratin: X | 4=

Consumer
Reports

<« Cc @ oa

2 MostVisted @ Getting Sared

Product Type
© Window Air Conditioners

Portable Air Conditioners

Brand >

Unlock to see
our ratings and

compare
products
by side

Become a Member

or, Sign In

Model Name

“+ @ f¥| Q consumerreports -> Yinoe

Indoor nose low
Indoor naise high
Brownout

Eose ofuse

Frigidaire FFRA0811U1
Shop

Frigidaire FFREO533U1
Shop

| | Findthe best
products, the
best value and
the best price

 Unbiased ratings and reviews

8500+ products and services
rated

FGRC0644U1
Shop

 Trusted recommendations
and advice

Make smart choices every
time

Frigidaire Gallery
FGRC1244T1
Shop

ome a Member

or, Sign In

racle and/or its affiliates.

| need an air conditioner

r""'"""‘*"“'
{

@ mszon.com vindow sie conditioner - FUGIDARE - Masila Firox

L com: window x [+

23 st Visted @ Geting Sated

©>c e @ @ s/ amazon.comy/s?k=window+air+conditoner8irh=p_ BIXARRIGIDA

amazon
S —

@ | Q smazon > o e

= amazon

At~ wiindow air conditioner

o
© Sdicc your aadress

116 of 113 results for FRIGIDAIRE : “window ar conditioner”

‘Amazon Prime

O vprime .
Elgible for Free Shipping ===

(£ reeShipping by Amazon
Al cusomers gt FREE Shipping on
ordes ver 423 shipped by Amazon

ffeTe]

Department
Home & Kitchen
Window Air Conltioners
+ See more
~ See Al Departments
Avg. Customer Review
Fedrfrdriy avp
Pl fevrr avp
i

H

Brand

FRIGIDAIRE
O

[var

] Koldront

[Ac safe.
] Emerson Quiet Kool

9
] Nature's Cooling Solutions
[squareTrade

Vi

V7
.01 IIIII

E

([riedrich

\Y,

- Account& Lists - &Orders TryPrime - Y7 Cart

g for Valentine’s Day

Sortoy: Feared v

Frigidaire FFRAO512A1 17" Window Air Conditioner with 5000 BTU Cooling Capacity - 115V in White
ey

$184% 524000

FREE Shipping

Frigidaire Energy Star 6,000 BTU 115V Window-Mounted Mini-Compact Air Conditioner with Full-
Function Remote Control, White

P

52439

/prime Getit s soon 2 Thu Feb 20

FREE Shipping by Amazon

Frigidaire FFRAO511R1E 5, 000 BTU 115V Window-Mounted Mini-Compact Air Conditioner with
Mechanical Controls

kAT v 3558

$23997

FREE Shipping

. T
Introduction to Linked Data Through

oy

an Example

Consumer
Reports

amazon
R

criinstall

cr:noise “210.00"

“4-5"

“LRAO87AT7”

e az:price
Frigidaire cr:model_num °

cr:manufacturer “LRAO87AT7”

cr:homepage

cr:name az:user_rating

az:product_num

az:manufacturer

\%
t'fl35// www.frigidaire.com http'// www.frigidaire.com/>

Same URI

“Frigidaire”

az:website az:name

28 Copyright © 2020 Oracle and/or its affiliates.

Introduction to Linked Data Through an Example

— s g - g .
! J-V. ai«’/‘¢4 './A'VV '/ - :ll !

Consumer
Reports

amazon
)

cr:iinstall

cr:noise “210.00"

“4-5"

“LRAO87AT7”

“Frigidaire” az:price

cr:model_num
cr:manufacturer “LRAO87AT7”

cr:homepage

cr:name az:user_rating

az:product_nu

az:manufacturer

“Frigidaire”

<http://www.frigidaire.com/>

az:website daZz:name

Suspect that cr:model_num is the same as az:product_num

cr:model_num owl:equivalentProperty az:product_num

29 Copyright © 2020 Oracle and/or its affiliates. E

Introduction to Linked Data Through an Example

- o (3{"/‘7 4

~

-

s B

Consumer
Reports

amazon
)

criinstall

cr:noise “210.00"

“4-5"

“Frigidaire” az:price

cr:model_num / “LRAOB7AT7”

az:product_num

cr:manufacturer

cr:name az:user_rating

az:product_num
cr:model_num

<http://www.frigidaire.com/>

We suspect that model number is unique

cr:homepage

az:manufacturer
“Frigidaire”

az:website daZz:name

cr:model_num rdf:type owl:inverseFunctionalProperty

30 Copyright © 2020 Oracle and/or its affiliates.

Introduction to Linked Data Through

s’ I'X‘f"" "//‘/’ :

-

an Example

(Fggggkjtrsner am a zo n
” -1 ” u1 ” —]

cr:noise “LRAO87AT7” “210.00”

az:price

cr:model_num
“2” cr:install

“Frigidaire”

az:manufacturer “Frigidaire!

cr:cooling

az:user_rating

—
@anufacturer

<http://www.frigidaire.com/> .

cr:manufacturer owl:equivalentProperty az:zmanufacturer
cr:homepage owl:equivalentProperty az:website

cr:homepage rdf:type owl:inverseFunctionalProperty
cr:name owl:equivalentProperty az:name

31 Copyright © 2020 Oracle and/or its affiliates. E

Introduction to Linked Data Through an Ex

S B I 77 ==

ample

" " “1"
Skl -1
cr:noise “LRAO87AT7” “210.00”
B amazon
cr:model_num az.price
“2” cr:install
AL cr:cooling
az:user_rating
cr:name cr:manufacturer

<http://dbpedia.org/resource/Sweden>

<http://www.frigidaire.com/>
dbpedia:locationCountry

dbpedia:homepage

<http://dbpedia.org/resource/Frigidaire> <http://dbpedia.org/resource/Electrolux>

dbpedia:divisionOf
dbpedia:formationYear dbpediattradedAs
ﬁ Adding more linked data “NASDAQ: ELUXF”

32 Copyright © 2020 Oracle and/or its affiliates.

A Big RDF Graph
Linking Many
Data Sources

The Lekes omr ot v o et . 9 _©®

https://lod-cloud.net/ 1,200+ linked datasets

Copyright © 2020 Oracle and/or its affiliates.

https://lod-cloud.net/

Agenda

Part 1

« Backward Compatibility in Evolving Graphs

« Distinguishing among Graph Types

« Brief Intro to RDF

. |Backward Compatibility: An Example and Demo |
Part 2

* Intro to SPARQL Query and SPARQL Update

» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

« Advanced Modeling using RZRML: An Example and Demo
» Baseball Data: A Real-World Example and Demo

34 Copyright © 2020 Oracle and/or its affiliates. E

Resources for Getting Started

« VM image: . https://www.oracle.com /database/technologies/databaseappdev-vm.html

 Qracle Database Docker

Single instance database from
https://sithub.com /oracle /docker-images /tree /master/OracleDatabase

 Qracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

55 Copyright © 2020 Oracle and/or its affiliates.

https://github.com/oracle/docker-images/tree/master/OracleDatabase

Implementing in RDF:
Vertex, Edge, Vertex-Property

John, whose net worth is $1 billion, donated to Top University.
Mary, a child of John, got admitted to Top University.

BEGIN
sem_apis.update_model(‘rdf_demo_graph’,
'PREFIX : <http://demo/>

{

vl :name “John”;
:worth “1Bil”;
:donatedTo :v2.

V2 :name “TopUniv” .

V3 :name “Mary”;
:admittedTo :v2 ;
:childOf v1.

}¢, network_owner=>'." network_name=>"..");

END;

/

‘name “John”
‘worth “1Bil"

Alundoy, saweu:

‘name “Mary”

SPARQL Update RDF Graph

36 Copyright © 2020 Oracle and/or its affiliates. E

Graphs in PG and RDF:
Vertex, Edge, Vertex-Property

John, whose net worth is $1 billion, donated to Top University.
Mary, a child of John, got admitted to Top University.

=C = =_ . ‘e
58 2 £5 S
ale -
non (V2 3 T3 V1) ak
0 C I g < T/ :donatedTo &
€< ; s O
s g 3 Sz z
C O SO 3,
. 3. O 2 <
> < = 15 O
© = e 2
2 >
Il -
()
e £
© c
- Property Graph i RDF Graph

37 Copyright © 2020 Oracle and/or its affiliates. E

Implementing in RDF:
Duplicate Edge

John ... donated twice to Top University. ...

BEGIN
sem_apis.update_model(‘rdf_demo_graph’, = .
'PREFIX : <http://demo/> = (1.3 donatedTo .
{ <@ T 3
graph :12-2 { :v1:donatedTo :v2 } D5 ®
1); v < :donatedTo &
END; 55 3
/ c 3 C
=3
<=
=>~
©
=
(0]
s
SPARQL Update = RDF Graph

38 Copyright © 2020 Oracle and/or its affiliates. E

Graphs in PG and RDF:
Duplicate Edge

John ... donated twice to Top University. ...

- o) ~=~~.:donatedTo
Ly e12-2: donatedTo = o ,\fe12_2\, —
58 2 £E ‘ o

— O
i) Y » o :
v S —’ e12:donatedTo I g < :donatedTo 3
55 || 5 5 9 E
C ; % 6‘0 -% . " qo_ «O g

R S 6‘0\ < 5 = V i

S| | 0 ; 2| S S

> |3 3 '

I y

(0]
= £
S C
Property Graph i RDF Graph

39 Copyright © 2020 Oracle and/or its affiliates. E

e T
Implementing in RDF:
Edge-Property

John ... donated twice to Top University, in the years 2010 and 2012, respectively.
Mary ... got admitted to Top University in 2011.

BEGIN
sem_apis.update_model('rdf_demo_graph’, _
'PREFIX : <http://demoy/> - donatedTo .
{ =g :year 2012 >
v :donatedTo «v2 . # deletes triple ONLY SRl N 3
:v3 :admittedTo :v2 . 2 S 12 y:donatedTo E
. = ~emr?, o
}: { 5 9 [:year 2010 ';Cs
graph :e12 {:v1:donatedTo :v2} <
graph :e32 {:v3:admittedTo :v2 } S
.12 :year 2010. ©
:12-2 :year 2012.. =
:e32 :year 201. Q|
) € [v3
END: SPARQL Update x RDF Graph

/ 40 Copyright © 2020 Oracle and/or its affiliates. E

Graphs in PG and RDF:
Edge-Property

John ... donated twice to Top University, in the years 2010 and 2012, respectively.
Mary ... got admitted to Top University in 2011.

:year 2012
s . e12-2: donatedTo . :donatedTo —
== S E= year 2012 8
ok 1 :year 2010 3 S - 3
i \v M = -~
LI) < j/ e12: donatedTo 1] g £ ;e12:,:donatedTo i
% o] c O “==T:year 2010 =
g '\'\.eé g g
=z\ -S 66(0\ 2‘= => 3
=|| s
) |
% % v3
C
< Property Graph i RDF Graph

41 Copyright © 2020 Oracle and/or its affiliates. E

RDF via PG-lens: The Graphs at this point.
Vertex, Edge, Vertex- and Edge-Properties

John, whose net Worth IS $1 bllhon donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

e12-2: donatedTo
—_ : t
year = 2012 <~donatedTo
:year 2012
% Z—E 2010 % ?E 2010 [e12 >
e year = - year e12
1L —_/']\ >/V_2\ > 2 3 - -./:donatedTo %
CIEJ < e12: donatedTo 3 SC_J § "
S (D O ~
22 R g
g =
z 2l | 2
(1°) 3 Z
2 (] |2
| =
(0] ()
S =
< Property Graph = RDF Graph

42 Copyright © 2020 Oracle and/or its affiliates. E

Implementing in RDF:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

Classes and Instances <55 n5tion
e12-2 =<.donatedTo
a2 'year 2012
£ =
:Admission c @ : o Y,
032 D e 2010 E12 ,/:donatedTo %
. aé < I
©c 9 ~
olation |domain [range _ JNIRRE 5
:admittedTo :Person :University g
:childOf :Person :Person = 2;
:donatedTo :Person :University ‘ET?
‘name :Person, :University xsd:string =w
:worth :Person xsd:string g
‘year :Admission, :Donation xsd:decimal = RDF Graph

43 Copyright © 2020 Oracle and/or its affiliates. E

B e S
Implementing in RDF: SPARQL Query
Vertex, Edge, Vertex- and Edge-Properties

John, whose net Worth IS $1 bllhon donated twice to Top University, in the years 2010 and 2012, respectively.

Mary, a child of John, got admitted to Top University in 2011.
Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

SELECT ?paName ?univName ?chName
WHERE {
?child :childOf ?parent.
#
graph ?donEdge { ?parent :donatedTo “univ }
?donEdge :year ?donYear .
#
graph 2admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (7admYear = ?donYear +1)
?child :iame ?chName.

?parent :name ?paName.
2univ. :name ?univName } SPARQL Query RDF Graph

44 Copyright © 2020 Oracle and/or its affiliates. E

=<.donatedTo
:year 2012

a""\

:year 2010 e12

.:donatedTo

‘name “John”
‘worth “1Bil"

Alundoy,, = aweu

:name “Mary”

Implementing in RDF: SPARQL# Query
Vertex, Edge, Vertex- and Edge-Properties

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.
Find names of parent, university, and child where parent

donated to the university during a year and his/her child
got admitted to the university in the following year.

=<.donatedTo

\&12-2" vear 2012

?parent :name ?paName. :
2univ. :name ?univName } SPARQL Query in RDF# RDF Graph

45 Copyright © 2020 Oracle and/or its affiliates. E

SELECT ?paName ?univName ?chName
WHERE { e S
2chil :childOf °? t. S . P
#C i childo P 8 ;\ iy 2010 J_e_?/‘:donatedTo %
?parent [?donEdge]:donatedTo “univ. 1
?donEdge :year ?donYear . S
g
?child [?admEdge]:admittedTo ?univ. =)
?admEdge :year ?admYear . > <
g
FILTER (7admYear = ?donYear +1) S
?child :name ?chName. GE)
©
C

Implementing in RDF:
Edges as Endpoints of Another Edge

... Bob suspects that John’s 2010 donation helped Mary’s admission.

=< donatedTo
BEGIN \&12-2" vear 2012
sem_apis.update_model('rdf_demo_graph’,
'‘PREFIX : <http://demo/> .

{ §0 year 2010 [e12 2
graph :1232 { :e12 :helped :e32 } 2 5T Y .52 s:donatedTo . %
v/ name “Bob”; SC_J < - [

:suspects :e1232 c O -
1 c 3 3
’ C
END; 3,
/ . =
O
=z
()
=
SPARQL Update < RDF Graph

48 Copyright © 2020 Oracle and/or its affiliates. E

Graphs in PG & RDF: Backward-Compatible?
Edges as Endpoints of Another Edge

... Bob suspects that John’s 2010 donation helped Mary’s admission.

e12-2: donatedTo Ol Are all pre-existing ——donatedTo
year = 2012 QUERIES still VALID? (Cel2-2f
. 4 :year 2012
== ear = 2010 = -
f’a é even\’z = “dopatedTo” % @ year 2010 |12 . :
R\ 2 v4 = v2l 3 [LE 5 v -~~~/ :donated o > 3
GE) § - o12a: de‘ e12b: recipient M\ % % g —— :
o g % & ||= c 3 -?C;
IS —]
O)8) =
- > L S . =
= © < > <
© Q, - =3 ©
> year = 2011 < S
I Event = “admittedTo” y
o ~ S ()
c &
S c
< Property Graph i RDF Graph

49 Copyright © 2020 Oracle and/or its affiliates. E

Implementing in RDF:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top UnlverSIty, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University i B b suspects that the 2010 donation helped the 2011 admission.

How .
. one new class ‘Heloin =<.donatedTo
. Two new relations gy rEy) year 2012
:E ?E a""\ 8
:admittedTo :Person :University DTN iyear 2010 912 _s:donatedTo 3
- 0)
:childOf :Person :Person v C Il
:donatedTo :Person :University E g 5'=
-helped ‘Donation -Admission S 2
-)
:suspects :Person :Helping - <
> 3
‘name :Person, :University xsd:string S
:worth :Person xsd:string ?
‘year :Admission, :Donation xsd:decimal qé
©
Schema for RDF Data < RDF Graph

50 Copyright © 2020 Oracle and/or its affiliates. E

Implementing in RDF:
Resulting RDF Graph, SPARQL query

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

=<.donatedTo

\&12-2" vear 2012

WHERE {
?child :childOf ?parent.
#
graph ?donEdge { ?parent :donatedTo ?univ}
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (7admYear = ?donYear +1)
?child :iame ?chName.

?parent :name ?paName.
2univ. :name ?univName } SPARQL Query RDF Graph

51 Copyright © 2020 Oracle and/or its affiliates. E

—-——s

e12

g S
)

J:donatedTo

‘name “John”
‘worth “1Bil"

Alundoy,, = aweu

:name “Mary”

Agenda

Part 1

« Backward Compatibility in Evolving Graphs

« Distinguishing among Graph Types

 Brief Intro to RDF

« Backward Compatibility: An Example and Demo

Part 2
» (Tntro to SPARQL Query and SPARQL Update)

» | Evolving Data: Movie Review Demo
| PGQL vs SPARQL

* | Graph Analytics on RDF data

« \Demo y
Part 3

* Intro to RZRML

« Advanced Modeling using RZRML: An Example and Demo

» Baseball Data: A Real-World Example and Demo

52 Copyright © 2020 Oracle and/or its affiliates. E

Demo Environment for Tutorial

= Using a freely-available Virtual Machine image with Oracle Database 19.3

= Other Software
= QOracle Graph Server and Client 2011

= QOracle Support for Apache Jena 3.1.0
= Javall

= Using Linked Movie Data Base RDF Data

= From a University of Toronto project
= Detailed setup information is available in a recent Oracle blog post:

https://blogs.oracle.com/oraclespatial /kgc-2020-tutorial3a-modeling-evolving-data-in-graphs-while-preserving-backward-compatibility

53 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

https://blogs.oracle.com/oraclespatial/kgc-2020-tutorial3a-modeling-evolving-data-in-graphs-while-preserving-backward-compatibility

Oracle Spatial and Graph 19c — RDF Knowledge Graph Architecture

Protégé Plgin Endpoint Cytoscape Plugin SISIID_FDSeJSLOoprfr Eﬂgegﬂzer II\)/ISQI_?)%]eSr

1% %/ m|QERQ F[y 3 ¥ 1t

Support for Apache Jena (Java API)

ORACLE SQL and PL/SQL API
DATABASE =
Forward-chaining SPARQL-to-SQL SPARQL Update
RO B et OWL Reasoner Query Translator

Generic Relational Schema for RDE Views of Relational Data

Storing RDF Data

54 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

1 Graph Query Languages

2 Essentials for SPARQL Query & Update
3 Named Graphs for Edge Properties

4 Comparison with PG Query Languages
5 Graph Analytics with RDF Data

55 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

1 Graph Query Languages
Essentials for SPARQL Query & Update
Named Graphs for Edge Properties
Comparison with PG Query Languages
Graph Analytics with RDF Data

56 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Graph Query Languages

RDF Graph Property Graph
PGOL G-CORE
SPARQL 1.1 [DBC$ pegnstr
WS("” <% Semantic .
v . ’ Web Cypher
@neoy
SPARQL 1.2 SQL/PGQ
SPARQL* GOL GsaL
gt:g;al?%?:rifor q; TigerGraph
\@/ anaaraization Grem]in

57 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

Graph Query Languages

2 Essentials for SPARQL Query & Update
Named Graphs for Edge Properties
Comparison with PG Query Languages
Graph Analytics with RDF Data

58 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

59

1 What is SPARQL

SPARQL 1.1 Query Features by Example
Graph Patterns

Property Paths
Named Graphs

Federated Queries

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

What is SPARQL?

= SPARQL Protocol and RDF Query Language

= W3C standard for querying and manipulating RDF content

= Queries/updates and corresponding results are communicated via HTTP
with a SPARQL endpoint

= A SPARQL endpoint implements the SPARQL protocol and serves RDF
data from a RDF triplestore or RDF view

60 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

What is SPARQL?

Components of SPARQL 1.1

* Query Language

= Update

= Protocol

= Service Description

= Query Results JSON Format

= Query Results CSV and TSV Format
= Query Results XML Format

= Federated Query

= Entailment Regimes

= Graph Store HT TP Protocol

61 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

What is SPARQL?

Components of SPARQL 1.1

* Query Language

= Update

= Protocol

= Service Description

= Query Results JSON Format

= Query Results CSV and TSV Format
= Query Results XML Format

= Federated Query

= Entailment Regimes

= Graph Store HTTP Protocol

62 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

A comprehensive query language
for RDF

Many useful constructs: optional

patterns, aggregates, subqueries,
negation, property paths, extensive
function library, etc.

What is SPARQL?

Components of SPARQL 1.1
A comprehensive language for
o Query Language manipUIating RDF graphS
= Update
= Protocol Allows you to create, update and

= Service Description remove RDF graphs

= Query Results JSON Format

= Query Results CSV and TSV Format
= Query Results XML Format

= Federated Query

= Entailment Regimes

= Graph Store HTTP Protocol

63 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

What is SPARQL?

Components

of SPARQL 11

= Query Language

= Update
= Protocol

= Service Description

= Query Resul
= Query Resul

= Query Resul

ts JSON Format
ts CSV and TSV Format
ts XML Format

= Federated Query
= Entailment Regimes
= Graph Store HTTP Protocol

64 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Defines a protocol for sending
queries or updates to SPARQL
endpoint and returning the results
via HTTP

What is SPARQL?

Components

of SPARQL 11

= Query Language

= Update
= Protocol

= Service Description

= Query Resul
= Query Resul

= Query Resul

ts JSON Format
ts CSV and TSV Format
ts XML Format

= Federated Query
= Entailment Regimes
= Graph Store HTTP Protocol

65 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Defines a mechanism and RDF
vocabulary for describing the

features supported by a SPARQL
endpoint

What is SPARQL?

Components of SPARQL 1.1
Alternative formats used to
» Query Language serialize and exchange answers to
= Update SPARQL queries
= Protocol

= Service Description

= Query Results JSON Format

= Query Results CSV and TSV Format
= Query Results XML Format

= Federated Query

= Entailment Regimes

= Graph Store HTTP Protocol

66 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

What is SPARQL?

Components of SPARQL 1.1

SPARQL extension for executing
= Query Language queries distributed over different
= Update SPARQL endpoints
= Protocol

= Service Description

= Query Results JSON Format

= Query Results CSV and TSV Format
= Query Results XML Format

= Federated Query

= Entailment Regimes

= Graph Store HTTP Protocol

67 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

What is SPARQL?

Components

of SPARQL 11

= Query Language

= Update
= Protocol

= Service Description

= Query Resul
= Query Resul

= Query Resul

ts JSON Format
ts CSV and TSV Format
ts XML Format

= Federated Query
= Entailment Regimes
= Graph Store HTTP Protocol

68 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Extends SPARQL so that logically
entailed RDF triples (hidden edges
in RDF Graphs) are matched in
addition to directly asserted RDF

triples

What is SPARQL?

Components

of SPARQL 11

= Query Language

= Update
= Protocol

= Service Description

= Query Resul
= Query Resul

= Query Resul

ts JSON Format
ts CSV and TSV Format
ts XML Format

= Federated Query
= Entailment Regimes
= Graph Store HT TP Protocol

69 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Simple alternative to SPARQL 1.1
Update that describes HTTP
operations for managing a

collection of RDF graphs outside of
a SPARQL 1.1 graph store

Agenda

70

What is SPARQL

2 SPARQL 11 Query Features by Example
3 Graph Patterns

Property Paths

Named Graphs

Federated Queries

SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Graph Pattern pw—

Basic unit of SPARQL queries rdfitype

rdf:type
univ:student123
univ:student456
foaf:name foaf:gender
foaf: foaf: d
"John Green" "male" oarname oat.gender
foaf:name vcard:-BDAY "female"
"Susan Blue"
?n vcard:BDAY
"1999-06-15"~"xsd:date V

vcard:BDAY "2000-02-10"~Axsd:date

?b

Result 1: {?t=univ:Student, ?p=univ:student123, ?n="John Green", ?g="male", ?b="1999-06-15"*"*xsd:date}

Result 2: {?t=univ:Student, ?p=univ:student456, ?n="Susan Blue", ?g="female", ?b="2000-02-10"*"xsd:date}

71 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL Graph Pattern

Basic unit of SPARQL queries

< m T How do we express this with SPARQL?

rdf:type
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.o0rg/2001/vcard-rdf/3.0#>

foaf:-name foaf:gender SELECT ?t ?n ?b ?g
N WHERE
’n ’g —
{ ?p rdf:type ?t . _
vcard:BDAY ?P foaf:name ?n . BaSIC Graph

. ?°p vcard:BDAY ?b . | Pattern (BGP)
: ?p foaf:gender ?g }

72 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL SELECT Modifiers

Find all DISTINCT genres of movies starring Keanu Reeves

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT DISTINCT ?gname

WHERE { ?movie movie:actor ?actor
?actor movie:actor name "Keanu Reeves"
?movie movie:genre ?genre
?genre movie:film genre name ?gname

73 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL FILTER: Restricting Solutions

74

Find movies starring Matt Damon that are more than 150 min long

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT ?title
WHERE {
?movie movie:actor ?actor
?actor movie:actor name ?aname
?movie movie:runtime ?rt
?movie dcterms:title ?title
FILTER (?aname = "Matt Damon" && xsd:decimal (?rt) > 150)

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

g S
SPARQL 1.1 Built-in Functions

Extensive library of functions to use

= Basic: arithmetic, comparisons, boolean connectors

= RDF-related: isLiteral(), isURI(), isBlank(), datatype(), lang(), BOUND(), ...
= String Functions: SUBSTR(), STRSTARTS(), STRENDS(), REGEX(), ...

= Numerics: abs(), floor(), ceil(), ...

= Dates and Times: now(), year(), month(), day(), ...

= Miscellaneous: IN(), NOT IN(), IF(), COALESCE(), ...

= Constructors: xsd:int(), xsd:decimal(), xsd:dateTime(), ...
= ... plus user-defined

75 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL UNION: Disjunction

Get names of writers and directors of movies starring Carl Weathers

SELECT 7?name
WHERE {
?movie movie:actor ?actor
?actor movie:actor name "Carl Weathers"
{ { ?movie movie:director 7?director
?director movie:director name ?name }
UNION
{ ?movie movie:writer ?writer
?writer movie:writer name ?name }

76 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL OPTIONAL: Best Effort Match

Find movies starring Sylvester Stallone and optionally their sequels

SELECT ?title ?title2
WHERE {
?movie dcterms:title ?title
?movie movie:actor ?actor
?actor movie:actor name "Sylvester Stallone"
OPTIONAL ({
?movie movie:sequel ?sequel
?sequel dcterms:title ?title2

77 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Parallel vs. Nested OPTIONAL
RDF Data

;john foaf:name "John"; { ?s foaf:name ?n

foaf:email "john@example.com"; _ OPTIONAL { ?s foaf:email ?e }
foaf:homepage <http://www.example.com/john> . OPTIONAL { ?s foaf:homepage ?h }

:sue foaf:name "Sue"; }
foaf:email "sue@example.com" .

:fred foaf:name "Fred";
foaf:homepage <http://www.example.com/fred> . Query Result

parallel OPTIONAL: s e o

Match all OPTIONALSs from left to john "John" "john@example.com" <http://www.example.com/john>
right_ sue "Sue" "sue@example.com"
fred "Fred" <http://www.example.com/fred>

79 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Parallel vs. Nested OPTIONAL
RDF Data

;john foaf:name "John"; { ?s foaf:name ?n
foaf:email "john@example.com"; OPTIONAL { ?s foaf:email ?e
foaf:homepage <http://www.example.com/john> . OPTIONAL { ?s foaf:homepage ?h }

}

:sue foaf:name "Sue";
foaf:email "sue@example.com" . }

:fred foaf:name "Fred" ;
foaf:homepage <http://www.example.com/fred> . Query Result

Nested OPTIONAL: s e o

Only match the child pattern if the John “John™ “john@example.com™ <http://www.example.com/john>
parent matches. sue "Sue” "sue@example.com”
fred "Fred"

80 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Negation: MINUS

Movies starring Sylvester Stallone that do not have a sequel

SELECT ?title
WHERE {
?movie dcterms:title ?title
?movie movie:actor ?actor
?actor movie:actor name "Sylvester Stallone"
MINUS {
?movie movie:sequel ?sequel

81 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Negation: NOT EXISTS / EXISTS

Movies starring Robert De Niro that have a sequel

SELECT ?title
WHERE {
?movie dcterms:title ?title
?movie movie:actor ?actor
?actor movie:actor name "Robert De Niro"

FILTER (EXISTS { ?Hovie movie:sequel 7?sequel })
}

82 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

B mm— S R
SPARQL Solution Modifiers: ORDER BY

Find all movies directed by Steven Spielberg ordered by ascending title and

descending producer name

SELECT ?title 7?pname
WHERE {
?movie dcterms:title ?title
?movie movie:director ?director
?director movie:director name "Steven Spielberg"
?movie movie:producer ?producer
?producer movie:producer name ?pname

}
ORDER BY ASC(?title) DESC (?pname)

83 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL Solution Modifiers: LIMIT / OFFSET

Find the 6th through 10th movies directed by Steven Spielberg

SELECT ?title ?rdate
WHERE {
?movie dcterms:title ?title
?movie movie:director 7?director
?director movie:director name "Steven Spielberg"
?movie movie:initial release date ?rdate

}
ORDER BY ASC (?rdate)

OFFSET 5
LIMIT 5

84 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 SELECT Expressions

Build a description string for a movie

SELECT (CONCAT (?title,
" Released in ", ?rdate,
" Directed by ", ?dname) AS ?mStr)
WHERE {
?movie dcterms:title ?title
?movie movie:director 7?director
?director movie:director name ?dname
?movie movie:initial release date ?rdate

}
LIMIT 10

85 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Grouping and Aggregation

Find all director actor pairs for movies in the Star Wars series

SELECT ?dname ?aname

WHERE {
?movie dcterms:title ?title
?movie movie:director 7?director
?director movie:director name ?dname
?movie movie:actor ?actor
?actor movie:actor name ?aname
?movie movie:film series ?seriles
?series movie:film series name "Star Wars"

}

GROUP BY ?dname ?aname

ORDER BY ?dname ?aname

86 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Grouping and Aggregation

Find the 10 movie series with the most movies

SELECT ?sname (COUNT (?movie) AS ?mcnt)
WHERE {
?movie movie:film series ?seriles
?series movie:film series name ?sname
}
GROUP BY ?sname
ORDER BY DESC (?mcnt)
LIMIT 10

Available Aggregates:

COUNT (), SUM(), MIN(), MAX(), AVG(),
GROUP CONCAT () , SAMPLE ()

87 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Grouping and Aggregation

SELECT ?sname (COUNT (?movie) AS ?mcnt)
WHERE {
?movie movie:film series ?seriles
?series movie:film series name ?sname
}
GROUP BY ?sname
HAVING (COUNT (?movie) IN (3,4))
ORDER BY DESC (?mcnt)

88 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

B e S
SPARQL 1.1 Subqueries

Find information about actors who have worked with more than 40 different

directors

SELECT ?name
WHERE ({
{ SELECT ?actor

WHERE {
?movie movie:actor ?actor

?movie movie:director ?director

}
GROUP BY ?actor

HAVING (COUNT (DISTINCT ?director) > 40)
}

?actor movie:actor_name ?name

}

89 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Value Assignment: BIND

SELECT ?title
WHERE {
?movie dcterms:title ?title
?movie movie:sequel ?sequel
BIND (CONCAT (?title," II") AS ?part2)
?sequel dcterms:title ?part2

90 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Inline Data: VALUES

Find Action Movies with Uma Thurman and Comedy Movies with John Candy

SELECT ?aname ?title

WHERE { ?movie dcterms:title ?title
?movie movie:actor ?actor
?actor movie:actor name ?aname
?movie movie:genre ?genre
?genre movie:film genre name ?gname

VALUES (?aname ?gname) { ("Uma Thurman" "Action")
("John Candy" "Comedy") }

91 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL ASK Queries

Has Danny DeVito acted in an Action movie?

ASK

WHERE { ?movie movie:actor ?actor
?actor movie:actor name "Danny DeVito"
?movie movie:genre ?genre
?genre movie:film genre name "Action"

92 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

RSSO e I
SPARQL Construct Queries

Build a co-star graph

CONSTRUCT { ?actorl movie:co star ?actor2 }

WHERE { ?movie movie:actor ?actorl
?movie movie:actor ?actor2
FILTER (!sameTerm(?actorl, ?actor2))

}
LIMIT 50

93 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Describe Queries

DESCRIBE <http://data.linkedmdb.org/film/37164>

94 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL Describe Queries

DESCRIBE ?director
WHERE { ?”movie dcterms:title "Toy Story"
?movie movie:director ?director

}

95 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

96

What is SPARQL

2 SPARQL 11 Query Features by Example
Graph Patterns
4 Property Paths
Named Graphs
Federated Queries
SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Property Paths
Enhanced path searching in SPARQL

= Uses regular expression style syntax to express path patterns
over RDF properties

= Allows syntactic shortcuts for fixed length paths
= Allows searching arbitrary length paths
= Computes reachability rather than enumerating paths

97 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

B e e S
Property Path Constructs
Symaxborm ——————TMawhes

iri An IRI (path of length 1)

Aelt Reverse path (object to subject)

elt1 / elt2 Sequence path of elt1 followed by elt2

elt1 | elt2 Alternative path of elt1 or elt2

elt* Path composed of zero or more repetitions of elt

elt+ Path composed of one or more repetitions of elt

elt? Path composed of zero or one repetition of elt

liri or !(iriq|iriy|...|ir1,) A path of length 1that is not one of iri;

M or [(2Nirig| Ao ... | Miry) A path of length 1that is not one of iri; as reverse paths
L(iriq| ... [iri | Airig] .. [Airdy) A path of length 1that is not one of iri; in the indicated direction
(elt) Grouping used to control precedence

iri is an IRI

eltis a path element, which may itself be composed of other path constructs

N\ ULU, Uld

SPARQL 1.1 Property Path

SELECT ?stitle

WHERE { ?movie dcterms:title "The Terminator"
?movie movie:sequel+ 7?sequel
?sequel dcterms:title 7?stitle

99 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Property Path

Get names of writers and directors of movies starring Carl Weathers

SELECT 7?name
WHERE {
?movie movie:actor ?actor
?actor movie:actor name "Carl Weathers"
{ { ?movie movie:director ?director
?director movie:director name ?name }
UNION
{ ?movie movie:writer ?writer
?writer movie:writer name ?name }

100 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Property Path

Get names of writers and directors of movies starring Carl Weathers

Simplified with property path syntactic sugar
SELECT ?name

WHERE {

?movie movie:actor/movie:actor_name "Carl Weathers"
?movie (movie:director/movie:director name) |
(movie:writer/movie:writer name) %?name .}

101 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

102

What is SPARQL

2 SPARQL 11 Query Features by Example
Graph Patterns
Property Paths
5 Named Graphs
Federated Queries
SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Named Graphs

The concept of an RDF Dataset

= An RDF Dataset is a collection of RDF graphs
= Contains one default graph, which does not have a name

= Contains zero or more named graphs, where each graph is identified by
an IRl

= A SPARQL query is executed against an RDF Dataset

= FROM and FROM NAMED keywords are used to construct the
RDF Dataset for a query

= The GRAPH keyword is used to control the active graph for
different parts of a query

103 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Constructing the RDF Dataset

-
SPARQL query with RDF
Dataset specification
Default Graph

142,43} SELECT * - 14 15, 18 19
<urn:g1> {t4,t5} FROM <urn:gl> / { ,
' ’ FROM <urn:g3>
<urn:g2> {t6,t7} FROM NAMED <urn:g2> Named Graphs
FROM NAMED <urn:g3> — | |1i(<urn:g2>, {16,1t7}),
sum:gs> 1819} FROM NAMED <urn:g4> (<urn:g3>, {18, 19 }),
<urn;g4> {t10,t11} WHERE { } (<Urn:g4>, {t10’ t11 })}

104 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Using the GRAPH Keyword

SPARQL query with RDF

Dataset specification T ——
SELRCT ” Active Graph (BGP1 clause:

FROM <urn:gl> :lve. EFEJN(ION <) -q3>
FROM <urn:g3> { <urn:g urn:g3> } - BGP is executed

] against each active
FROM NAMED <urn:g2> Acti
ctive Graph (BGP2
FROM NAMED <urn:g3 Ph () graph separately

{ <urn:g2>, <urn:g3>, <urn:g4>} (e.g. BGP2 against
FROM NAMED <urn:g4> g2, g3, g4).

\

\

WHERE { _
BGP1 '{A;CJ:,\;IG (iia}p h (BGP3) - Subgraph match
GRAPH ?g { BGP2 } 7 J must occur within a
GRAPH <urn:g4> { BGP3 } _ single graph.
GRAPH <urn:gl> { BGP4 } '{A‘}Ct"’e Graph (BGP4)

}

105 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL Named Graph Query

Find the number of bills sponsored by each politician in the 110t and 111th

congress

SELECT ?n ?g (count(?b) as ?bcnt)
FROM usgov:people
FROM NAMED usgov:bills 110
FROM NAMED usgov:bills 111
WHERE
{ ?s foaf:name ?n
GRAPH ?g { ?b bill:sponsor ?s }
}
GROUP BY ?n ?g
ORDER BY ?n ?g

106 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL Named Graph Query

Edge Property: Find critics and their ratings for The Matrix

SELECT ?cname °?r

WHERE { ?movie dcterms:title "The Matrix"
GRAPH ?review { ?critic movie:reviewed ?movie .}
?review movie:rating ?r
?critic movie:critic name ?cname

107 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

108

What is SPARQL

2 SPARQL 11 Query Features by Example
Graph Patterns
Property Paths
Named Graphs
6 Federated Queries
SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Federated Query

= Used to execute a single query over multiple, possibly
distributed RDF datasources

= Portions of a query can be directed to particular SPARQL
endpoints

= Results are returned to the federated query processor and
combined with the rest of the query

109 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Federated Query

Find birth year, child and spouse information from DBPedia for Tom Hanks

SELECT ?a ?dbpUri ?byear ?child ?spouse
WHERE {
?a movie:actor name "Tom Hanks";
owl : sameAs ?dbpUri
FILTER (STRSTARTS (STR(?dbpUri) ,"http://dbpedia.org"))
SERVICE <http://dbpedia.org/sparql> {
?dbpUri dbo:birthYear %?byear ;
dbo:child ?child ;
dbo: spouse ?spouse

MO Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

m

What is SPARQL
SPARQL 1.1 Query Features by Example
Graph Patterns
Property Paths
Named Graphs
Federated Queries
7 SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update
Capabilities of SPARQL Update

= |nsert triples into an RDF Graph

= Delete triples from an RDF Graph

= |Load an RDF Graph

= (lear an RDF Graph

= (Create a new RDF Graph

= Drop an RDF Graph

= Copy, move or add the content of one RDF Graph to another
= Perform a group of update operations as a single action

12 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Update

Example — INSERT DATA

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA { / pattern

<http://example/book1> dc:title "A new book" ;
dc:creator "A.N.Other" . }

Data before: Data after:

@prefix dc: <http://purl.org/dc/elements/11/> . @prefix dc: <http://purl.org/dc/elements/11/>.
@prefix ns: <http://example.org/ns#> . @prefix ns: <http://example.org/ns#> .
<http://example/book1> ns:price 42 . <http://example/book1> ns:price 42 .

<http://example/book1> dc:title "A new book" .
<http://example/book1> dc:creator "A.N.Other" .

N3 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update

Example — DELETE DATA

PREFIX dc: <http://purl.org/dc/elements/1.1/>
DELETE DATA {
<http://example/book2> dc:title "David Copperfield";
dc:creator "Edmund Wells" . }

Data before: Data after:

@prefix dc: <http://purl.org/dc/elements/11/> . @prefix dc: <http://purl.org/dc/elements/11/>.
@prefix ns: <http://example.org/ns#> . @prefix ns: <http://example.org/ns#> .
<http://example/book2> ns:price 42 . <http://example/book2> ns:price 42 .

<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .

N4 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update

Example — DELETE/INSERT

m PREFIX foaf: <http://xmlns.com/foaf/01/> (7

DELETE { ?person foaf:givenName 'Bill' }
Eﬁ INSERT { GRAPH <foaf:g1> {?person foaf:givenName 'William' } }

WHERE { ?person foaf:givenName 'Bill' } D Full SPARQL 1.1 query
pattern syntax

1. Row source for bindings

Data before: Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> . @prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://example/president27> foaf:givenName "Bill" . foaf:g1{
<http://example/president27> foaf:familyName "Taft" . <http://example/president27> foaf:givenName "William" .
<http://example/president42> foaf:givenName "Bill" . <http://example/president42> foaf:givenName "William" .
<http://example/president42> foaf:familyName }
"Clinton" . <http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:familyName "Clinton" .

N5 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

B e e S
SPARQL 1.1 Update

Example - LOAD

LOAD <http://example.com/addresses>
INTO GRAPH <http://example.com/addresses>

Data before: Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> . @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> . @prefix ex: <http://example.com/>.
Graph: http://example.com/addresses # Graph: http://example.com/addresses

ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

N6 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Update

Example — CLEAR

GRAPH <URI>
or
DEFAULT

CLEAR GRAPH <http://example.com/addresses> - or

NAMED
or
ALL

Data before: Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix ex: <http://example.com/>.

Graph: http://example.com/addresses

ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/>.
Graph: http://example.com/addresses

17 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update

Example — CREATE

CREATE GRAPH <http://example.com/addresses>

Data before: Data after:

Graph: http://example.com/addresses

N8 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

B e e S
SPARQL 1.1 Update

Example — DROP
DROP GRAPH <http://example.com/addresses>

Data before: Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix ex: <http://example.com/> .

Graph: http://example.com/addresses

ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

N9 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update

Example — COPY

COPY GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Data before: Data after:

@prefix foaf: <http://xmins.com/foaf/0.1/> @prefix foaf: <http://xmins.com/foaf/0.1/>
@prefix ex: <http://example.com/> . @prefix ex: <http://example.com/> .
Graph: http://example.com/addresses # Graph: http://example.com/addresses
ex:addresses { ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> . <http://example/bill> foaf:mbox <mailto:bill@example> .
} }
Graph: http://example.com/addresses2 # Graph: http://example.com/addresses2
ex:addresses?2 { ex:addresses?2 {
<http://example/fred> foaf:mbox <mailto:fred@example> . <http://example/bill> foaf:mbox <mailto:bill@example> .
} }

120 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Update

Example - MOVE

MOVE GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Data before: Data after:

@prefix foaf: <http://xmins.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses

ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> .
}

Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/fred> foaf:mbox <mailto:fred@example> .
}

@prefix foaf: <http://xmins.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses2
ex:addresses2 {
<http://example/bill> foaf:mbox <mailto:bill@example> .
}

121 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Update

Example — ADD

ADD GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Data before: Data after:

@prefix foaf: <http://xmins.com/foaf/0.1/> @prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> . @prefix ex: <http://example.com/> .
Graph: http://example.com/addresses # Graph: http://example.com/addresses
ex:addresses { ex:addresses {
<http://example/bill> foaf:mbox <mailto:bill@example> . <http://example/bill> foaf:mbox <mailto:bill@example> .
} }
Graph: http://example.com/addresses2 # Graph: http://example.com/addresses2
ex:addresses2 { ex:addresses?2 {
<http://example/fred> foaf:mbox <mailto:fred@example> . <http://example/fred> foaf:mbox <mailto:fred@example> .
} <http://example/bill> foaf:mbox <mailto:bill@example> .
}

122 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

SPARQL 1.1 Update

Transaction Support

INSERT { ?s :fullName ?name } A sequence of

WHERE {
SELECT ?s (CONCAT(?fname, " ", ?Iname) AS ?name) updates S_hOUId
WHERE { ?s :fname ?fname; e ?‘ngle
lname ?Iname } transaction

5

DELETE { ?s :mbox ?mail }
INSERT { ?s :email ?mail }
WHERE { ?s :mbox ?mail };

DELETE DATA { :emp1:phone "603-123-4567" . }

123 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

Graph Query Languages

Essentials for SPARQL Query & Update
3 Named Graphs for Edge Properties

Comparison with PG Query Languages

Graph Analytics with RDF Data

124 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

John likes Office Space

"Office Space"

dcterms:title

:person123

movie:31916

sioc:likes

125 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

_ ¥y ' &
- — FIT/T77

Adding Movie Reviews

John likes Office Space

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

INSERT DATA {

John likes Office Space
:person123 foaf:name "John" ;
sioc:likes movie:3196 .

126 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

Who likes Office Space?

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

SELECT ?name

WHERE {
?person foaf:name ?name.
?person sioc:likes ?movie .
?movie dctermes:title "Office Space".

}

127 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

John likes Office Space with a rating of 5

"Office Space"

dcterms:title

:person123

movie:31916

sioc:likes
schema:ratingValue 5

128 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

John likes Office Space with a rating of 5

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

remove triple

DELETE DATA { :person123 sioc:likes movie:31916 . }
INSERT DATA {

replace triple with quad assigning :edgel as id
GRAPH :edgel { :person123 sioc:likes movie:3196 . }
add edge property for rating

-:edgel schema:ratingValue 5.

}

129 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

Jill also likes Office Space with a rating of 5

"Office Space"

dcterms:title

:person123

movie:31916

sioc:likes
schema:ratingValue 5

sioc:likes
schema:ratingValue 5

njs;jm
:person456 g Jill
foaf:name
130 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

Jill also likes Office Space with a rating of 5

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

INSERT DATA {
add Jill
:person456 foaf:name "Jill" .
edge id of :edge2 for Jill likes Office Space
GRAPH :edge2 { :person456 sioc:likes movie:3196 . }
add edge property for rating
.:edge2 schema:ratingValue 5.

}

131 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

. : — SIS/ 77
X - - F e FS o

Adding Movie Reviews

Find ratings for Office Space

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

SELECT ?name ?rating

WHERE {
?movie dctermes:title "Office Space".
GRAPH ?edge { ?person sioc:likes ?movie }
?person foaf:name ?name.
?edge schema:ratingValue ?rating..

132 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

Who likes Office Space?

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

SELECT ?name

WHERE { : :
?person foaf:name ?name . Old queries still work!

?person sioc:likes ?movie .
?movie dctermes:title "Office Space".

}

133 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

fb:post456

The source of “John likes Office
Space” is Facebook post 456

"Office Space"
prov:hasPrimarySource

dcterms:title

:person123

T movie:31916
sioc:likes
schema:ratingValue 5

sioc:likes
schema:ratingValue 5

njs;jm
:person456 g Jill
foaf:name
134 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

- F & 4 ’
Y J y 9
_ : : s >, :\ﬁ ‘ ’ J/‘ y - /, /

Adding Movie Reviews

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>

PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX . <http://example.com/data/>
INSERT DATA {

add source information for :edget
:edgel prov:hadPrimarySource fb:post456 .

}

135 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

- F & 4 ’
Y J y 9
_ : : s >, :\ﬁ ‘ ’ J/‘ y - /, /

Adding Movie Reviews

What is the source of “John likes Office Space”?

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX . <http://example.com/data/>

SELECT ?source

WHERE {
?person foaf:name "John".
GRAPH ?edge { ?person sioc:likes ?movie }
?movie dcterms:title "Office Space".
?edge prov:hadPrimarySource ?source .

136 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

fb:post456

Bob suspects that John's like
influenced Jill's like

"Office Space"
prov:hasPrimarySource

dcterms:title

:person123

movie:31916

sioc:likes
schema:ratingValue 5

prov:hasPrimarySource

:person789 L
sioc:likes

prov:influenced _
schema:ratingValue 5

foaf:name

IIBObll S
:person456 g Jill
foaf:name
137 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Adding Movie Reviews

Bob suspects that John’s like influenced Jill’s like

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX . <http://example.com/data/>

INSERT DATA {
add Bob
:person789 foaf:name "Bob" .
edge id of :edge3 for influenced
GRAPH :edge3 { :edgel prov:influenced :edge2 . }
Bob is the source of the influenced edge
:edge3 prov:hasPrimarySource :person789 .

}

138 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

- f & 4 ; -
_ ' a ™ \y' 4 ’.r/,’/ P4 - v

Adding Movie Reviews

Who suspects that John’s like influenced Jill’s like

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX . <http://example.com/data/>

SELECT ?person
WHERE {
?john foaf:name "John".
GRAPH ?edge1{ ?john sioc:likes ?movie }
?movie dctermes:title "Office Space".
?2jill foaf:name "Jill" .
GRAPH ?edge2 { ?jill sioc:likes ?movie }
GRAPH ?edge3 { ?edgel prov:influenced ?edge2 }
?edge3 prov:hasPrimarySource/foaf:name ?person.
139 } Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Adding Movie Reviews

Who likes Office Space?

PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmins.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX . <http://example.com/data/>

SELECT ?name

WHERE { : :
?person foaf:name ?name . Old queries still work!

?person sioc:likes ?movie .
?movie dctermes:title "Office Space".

}

140 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

Graph Query Languages
Essentials for SPARQL Query & Update
Named Graphs for Edge Properties

4 Comparison with PG Query Languages
Graph Analytics with RDF Data

141 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Graph Query Languages

RDF Graph Property Graph
PGOL G-CORE
SPARQL 1.1 [DBC$ pegnstr
WS("” <% Semantic .
v . ’ Web Cypher
@neoy
SPARQL 1.2 SQL/PGQ
SPARQL* GOL GsaL
gt:g;al?%?:rifor q; TigerGraph
\@/ anaaraization Grem]in

142 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

e N R
Property Graph Query Languages

= PG query language design aligns more with graph as a data
structure rather than RDF triple/quad
= More features for path searching and graph algorithms
= Shortest path, k-shortest path, inDegree(), outDegree(), ...
= Use “ASClI-art” for edge pattern expression
= (a:person)-[e:knows]->(b:person)
= \Vertices and Edges are objects with properties

= SPARQL has more features for data integration use cases
= Standard Protocol
= OPTIONAL patterns
= Federated Query
= Entailment Regimes E

143 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

GQL Graph Query Language T

Property Graph Query-Lan ¢ 1 PGQL 1.2 Specification Specifications » Resources ~

Graph pattern mat;
(person) —[:works

Property rapn.
View data as a graph, di

Basic patterns and =
==\
AN

Can we reach fro

Shortest path quer

- PGQL is a query language built on top of SQL, bringing graph pattern matching capabilities to existing SQL users as well as to new users who are interested in graph
F] n d t h e S h O rte St ' technology but who do not have an SQL background.

A high-level overview of PGQL
S . Alongside SQL constructs like . . , and , PGQL allows for matching fixed-length graph patterns and variable-length graph
F a m] l] a r] t f O r S |_ patterns. Fixed-length graph patterns match a fixed number of vertices and edges per solution. The types of the vertices and edges can be defined through arbitrary
y label expressions such as , for example to match edges that have either the label or the label . This means that edge

patterns are higher-level joins that can relate different types of entities at once. Variable-length graph patterns, on the other hand, contain one or more quantifiers like

S] m]] a r] a n 8 u a 8 e C , 4+, 2 0r for matching vertices and edges in a recursive fashion. This allows for encoding graph reachability (transitive closure) queries as well as shortest and

cheapest path finding queries.

S E |_ E C T W PGQL deeply integrates graph pattern matching with subquery capabilities so that vertices and edges that are matched in one query can be passed into another query
== for continued joining or pattern matching. Since PGQL is built on top of SQL’s foundation, it benefits from all existing SQL features and any new SQL features that will be

i“ ReSU]t Set” (ta b]e) added to the standard over time.

PGQL is an open-sourced project (4, and we welcome contributions or suggestions from anyone and in any form.

144 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

PGQL for SPARQL Usefs

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (?univName AS ?university) SELECT p2.name AS friend, u.name AS university
WHERE { MATCH (p1:Person) -[:knows]-> (p2:Person),
?p1a :Person; :studentName ?pIName. (p1) -[:studentOf]-> (u:University) ,
?p2 a :Person; :studentName ?p2Name . (p2) -[:studentOf]-> (u)
?u a:University; :universityName ?univName.. WHERE pl.name = Lee’

?p1:studentOf ?u.
?p1:knows ?p2.

?p2 :studentOf ?u.
FILTER (?pIName = "Lee")

145 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL Users

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (PunivName AS ?university) SELECT p2.name AS friend, ujname|AS university
WHERE { MATCH (pT:Person)|-[(knows]]-> (p2:Person),
?p1a[Person;] :studentName ?pIName.. (p1) -[:studentOf]-> (u:University) ,
?p2 a Person; :studentName ?p2Name . (p2) -[:studentOf]-> (u)
?u a :University; [:universityName| 2univName . WHERE pl.name = 'Lee’

?p1:studentOf ?u.
?pll:knows[?p2.

?p2 :studentOf ?u.
FILTER (?pIName = "Lee")

} Identifiers for resources,

classes, types are Strings
(labels) not URIs

146 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL Usefs

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (?univName AS ?university) SELECT p2.name AS friend, u.name AS university
WHERE { MATCH (p1:Person) -[:knows]-> (pZ]Person),

?p1k :Person; :studentName ?p1Name. ?E; -[:studentOf]-> (u:University) ,

?p2 a :Person; :studentName ?p2Name . p2) -[:studentOf]->

7U |a :University; :universityName ?univName.. WHERE pl.name = Lee’

?p1:studentOf ?u.
?p1:knows|?p2|.
?p2 :studentOf ?u.
FILTER (?pIName = "Lee")

} Variables are not

prefixed with a ?".

Syntax rules used to
identify variables.

147 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL Usefs

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (?univName AS ?university) SELECT p2.name AS friend, u.name AS university
WHERE { MATCH)| (p1:Person) -[:knows]-> (p2:Person),
?p1a :Person; :studentName ?pIName. (p1) -[:studentOf]-> (u:University) ,
?p2 a :Person; :studentName ?p2Name . (p2) -[:studentOf]-> (u)
?u a:University; :universityName ?univName.. WHERE pThame ="Lee

?p1:studentOf ?u.
?p1:knows ?p2.

?p2 :studentOf ?u.
FILTER (7pTName = "Lee")

}

Edge traversals are
specified with ASCII art

instead of triple patterns

148 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL User's'

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (?univName AS ?university) SELECT p2.name AS friend, u.name AS university
WHERE { MATCH (p1:Person) -[:knows]-> (p2:Person),
?p1a :Person;|:studentName ?pIName. (p1) -[:studentOf]-> [u:University)
?p2 a :Person;| :studentName ?p2Name.. (p2) -[:studentOf]-> (u]
Pua:University] :universityName ?univName . WHERE pl.name = Lee’

?p1:studentOf ?u.
?p1:knows ?p2.

?p2 :studentOf ?u.
FILTER (?pIName = "Lee")

Vertex type information
is specified with a label

constraint instead of
rdf:type triples.

149 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL User's'

“Find people that Lee knows and that are a student at the same university as Lee’

PREFIX : <http://univ/vocab#>

SELECT (?p2Name AS ?friend) (PunivName AS ?university) SELECT p2.name AS friend, u.name AS university
WHERE { MATCH (p1:Person) [[:knows]-> (p2:Person),
?pl1a:Person; :studentName ?pIName. (p1) -[:studentOf]-> (u:University) ,
?p2 a :Person; :studentName ?p2Name . (p2) -[:studentOff]-> (u)
?u a:University; :universityName ?univName.. WHERE pl.name = Lee’

?p1[:studentOT]?u .
?p1[:knows|[?7pZ .

?p4 :studentOf ?u .
FILTER (?pTName = "Lee") Edge type information is

specified with a label

constraint instead of
predicate URI

150 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL User's'

“Find people that Lee knows and that are a student at the same university as Lee’

PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {
?p1a :Person; |;studentName ?pIName .
?p2 a :Person;|:studentName ?p2Name
?2u a:University; JuniversityName ZunivName |
?p1:studentOf ?u.
?p1:knows ?p2.
?p2 :studentOf ?u.
FILTER (?pIName = "Lee")

151 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SELECT

p2.name

MATCH

AS friend,

u.name

AS university

(pT:Person) -[:knows]-> (pZ:
(p1) -[:studentOf]-> (u:University),
(p2) -[:studentOf]-> (u)

WHERE

pl.name

='Lee’

Vertex properties are
specified as attributes

with dot notation
instead of with triple
patterns and variables.

erson),

PGQL for SPARQL User's'

“Find people that Lee knows and that are a student at the same university as Lee”

PREFIX : <http://univ/vocab#>

SELECT [?p2Name AS ?friend)[(?univName AS ?university) SELECT| p2.name AS friend, u.name AS university
WHERE ¢ MATCH {pT.Person) -[:knows]-> (pZ:Person),
?p1a :Person; :studentName ?pIName. (p1) -[:studentOf]-> (u:University) ,
?p2 a :Person; :studentName ?p2Name . (p2) -[:studentOf]-> (u)
?u a:University; :universityName ?univName.. WHERE pl.name = Lee’

?p1:studentOf ?u.
?p1:knows ?p2.

?p2 :studentOf ?u.

FILTER (?pIName = "Lee")

Projection and filter

expressions are similar

152 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGQL for SPARQL Users

Specifying everything as triples can be g discovery of schema:
verbose, but ... What edge types and property types are

SPAROL 11 available?

PREFIX : <http://univ/vocab#> stl_'IEgg PDTINGT#p
SELECT (?p2Name AS ?friend) (univName AS 2university) {?s?p?0 .}
WHERE {
?p1a:Person; :studentName ?pIName.
?p2 a :Person; :studentName ?p2Name.
?2u a:University; :universityName ?univName.. SELECT DISTINCT 2t
?p1:studentOf ?u. WHERE { ?s rdf:type ?t . }
?p1:knows ?p2.

?p2 :studentOf ?u . :
FILTER (?pIName = "Lee") Works well for irregular data:

1 Project all properties for each Student

SELECT ?s?p ?0
WHERE {
?s a :Student ;
’s?pro.

What vertex types are available?

}

153 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. d

Path Searching in PGQL and SPARQL

Reachability: Is Lee connected to Tom through a sequence of knows relations?

PREFIX :<http://univ/vocab#> SELECT 'yes' AS isConnected
SELECT ("yes" AS ?isConnected) MATCH (p1:Person) - /:knows+/->|(p2:Person)
WHERE { WHERE p1.name = Lee’ AND p2.name = "Tom'

?p1:studentName "Lee".
?p2 :studentName "Tom" .

} eplfknows+zp2. Both query languages use regex-
style syntax for one or more and

zero or more. PGQL uses /p/
instead of [p] to specify reachability

154 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Path Searching in PGQL and SPARQL

Shortest Path: Find the shortest path connecting Lee to Tom through a
sequence of knows relations

Not Possible SELECT COUNT(e) AS pathLen,
ARRAY_AGG(b.name) AS friends
MATCH SHORTEST ((p1:Person) ((a) —-[e:knows]-> (b))* (p2:Person))
WHERE pl.name = 'Lee’ AND p2.name = "Tom’

PGQL uses MATCH SHORTEST to specify shortest
path search. Also, each path result is treated as a

“horizontal group” and aggregates can be used to
project the path.

155 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Agenda

Graph Query Languages

Essentials for SPARQL Query & Update

Named Graphs for Edge Properties

Comparison with PG Query Languages
5 Graph Analytics with RDF Data

156 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

e T
Graph Analytics with RDF Data

= RDF data model is well suited for data integration
= Flexible data model - tolerant of dirty data

= Semantics for merging graphs is well-defined
= URIs
= OWL/RDFS entailment

= We can easily extract subgraphs for analysis with graph analytics
engines

157 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

e T
Graph Analytics with RDF Data

Movie/Actor Property Graph
extracted from LMDB RDF Graph

Movie
id: 456

Actor had_actor title: "The Great Outdoors”

id: 123 = i
name: "John Candy' . EENre. “Lomeady

acted_in

158 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Oracle Graph Server and Client

Gra p h oracle-graph-client-<ver>.zip

i i i * JShell CLI, Zeppelin interpreters
Server Client libraries . Visualiation
an d Graph store access API
Client

analytics-server (PGX): *.rom
In-memo ry * Installed in /opt/oracle/graph

: Server .war file
i |ytICS SSLRASe Start scripts and conf

Graph store access API

Graph Database APIs

Graph store

159 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Software package for use with Oracle
Database

Client Libraries for building Property Graph
Applications in database or in-memory

JShell CLI, Zepplin Interpreters, Viz
Application

PGX In-memory Analytics Server
 Run PGQL queries
* 50 Pre-built Graph Algorithms

Workflow for Graph Analytics with RDF

Client

Load into memory

ORACLE

DATABASE

Vertex / Edge
Relational Views

. SPARQL/SQL

LMDB RDF Data

161 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Extracting the Property Graph

CREATE VIEW ACTORS AS
SELECT ACTOR$RDFVID AS ID, 'Actor' AS "label", NAME AS "name"
FROM TABLE(SEM_MATCH(

'‘PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT ?actor ?name

WHERE {

?actor rdf:type movie:actor ;
movie:actor_name ?name

¥,

SEM_MODELS('LMDB),...));

162 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

L&he 0wt L TR IBIeR™
Extracting the Property Graph

CREATE VIEW MOVIES AS
SELECT MOVIE$RDFVID AS ID, 'Movie' AS "label", MTITLE AS "title", MGENRE AS "genre"
FROM TABLE(SEM_MATCH(

'PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX dcterms: <http://purl.org/dc/terms/title>

PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT ?movie (MAX(STR(?genre)) AS ?mGenre) (MAX(STR(?title)) AS ?mTitle)

WHERE {

?movie rdf:type movie:film;

dcterms:title ?title ;
movie:genre/movie:film_genre_name ?genre..

]
GROUP BY ?movie’,

SEM_MODELS('LMDB'), ...));

163 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Extracting the Property Graph

CREATE VIEW ACTED_IN AS
SELECT ACTOR$RDFVID AS SOURCE_ID, MOVIE$RDFVID AS DEST_ID, 'acted_in' AS "label"

FROM TABLE(SEM_MATCH(
'PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?actor ?movie

WHERE {
movie movie:actor ?actor

I
SEM_MODELS(LMDBY),...));

164 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Extracting the Property Graph

CREATE VIEW HAD_ACTOR AS
SELECT MOVIE$RDFVID AS SOURCE_ID, ACTOR$RDFVID AS DEST_ID, 'had_actor' AS "label"

FROM TABLE(SEM_MATCH(
'PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?actor ?movie
WHERE {
?movie movie:actor ?actor
¥
SEM_MODELS('LMDB),...));

165 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

PGX Configuration File for loading the Graph
e

{

"name":"Imdb",

"jdbc_url":"jdbc:oracle:thin:@localhost:1521/orcl",

"username":"rdfuser",
"keystore_alias":"database1",
"vertex_id_strategy": "keys_as_ids",

"vertex_providers":[

{

"name":"Actor",
"format":"rdbms",
"database_table_name":"ACTORS",
"key_column":"ID",
"key_type": "long",
"props":[

{ n n

name":"name",

"type":"string"

}
]
%
{

"name":"Movie",

"format":"rdbms",
"database_table_name":"MOVIES",
"key_column":"ID",
"key_type": "long",
"props":[

{

"name":"title",

"type":"string"

7

{ n.n

"name":"genre",

"type":"string"
]

166 Copyright © 2020, Oracle and/or its affiliates. All rights r]es};arved.

"edge_providers":[

"name":"acted_in",
"format™:"rdbms",
"database_table_name":"ACTED_IN",
"source_column":"SOURCE_ID",
"destination_column":"DEST_ID",
"source_vertex_provider":"Actor",

"destination_vertex_provider":"Movie"

"name":"had_actor",

"format™:"rdbms",
"database_table_name":"HAD_ACTOR",
"source_column":"SOURCE_ID",
"destination_column":"DEST_ID",
"source_vertex_provider":"Movie",
"destination_vertex_provider":"Actor"

Example PGQL Queries

Who acted in Home Alone?

SELECT a.name AS name
MATCH (m:Movie)-[:had_actor]->(a:Actor)
WHERE m_.title = '"Home Alone'

167 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Example PGQL Queries

Who are the top actors by number of movies?

SELECT a.name AS name, count(*) AS movieCount
MATCH (a:Actor)-[:acted_in]->(m:Movie)

GROUP BY a

ORDER BY movieCount DESC

LIMIT 10

168 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

L &be 0 o L RN NIRRT
Example PGQL Queries

Is there a path from Charlie Chaplin to Mr. T?

PATH co_star AS (:Actor)-[:acted_in]->(:Movie)<-[:acted_in]-(:Actor)
SELECT 1 AS isReachable

MATCH (a)-/:co_star+/->(b)

WHERE a.name = 'Charlie Chaplin' AND b.name ='Mr. T'

169 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

Example PGQL Queries

Find the shortest path from Charlie ChaplintoMr. T

SELECT COUNT(e) AS pathLen,
ARRAY_AGG(t.title) AS movie,
ARRAY_AGG(t.name) AS coStar
MATCH SHORTEST ((a) ((s)-[e:acted_in]-(t))* (b))
WHERE a.name = 'Charlie Chaplin' AND b.name ='Mr. T

170 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. E

\'Arf.‘ & .I/:’j 'y

Computing Page Rank over the Graph

Finding the most important movies and actors

oracle@localhost:~/RDF/PG/oracle-graph-client-20.1.0 - &8 X

File Edit View Search Terminal Help

graph ==> PgxGraph[name=1mdb,N=51456,E=124888,created=1588273909898]

opg-jshell-rdbms> var analyst = session.createAnalyst();

analyst ==> NamedArgumentAnalyst[session=a7691laeb-6db3-4202-834b-ab3b68135500]

opg-jshell-rdbms> VertexProperty<Integer, Double> pagerank = analyst.pagerank(graph);

pagerank ==> VertexProperty[name=pagerank, type=double,graph=lmdb]

opg-jshell-rdbms> pagerank.getName();

$4 ==> "pagerank"

opg-jshell-rdbms> graph.queryPgql("select id(a), a.pagerank, a.name match (a:Actor) order by a.pagerank
desc limit 10").print();

e e e i +
| id(a) | a.pagerank | a.name |
e -
6918926442303567142	3.6529432149215376E-4	Oliver Hardy
5108249384479603329	3.5349054336350765E-4	Stan Laurel
2217693998232186748	3.503315385654337E-4	John Wayne
1521869729662604452	3.266064860979765E-4	Claudette Colbert
7570309037436615508	3.187072825866198E-4	William Garwood
4463808826027376555	3.1474937877896015E-4	Charlie Chaplin
1130732531415155834	2.7138550552431096E-4	Harry von Meter
6706176589560490413	2.5675796106955844E-4	Jackie Chan
3000787937460459606	2.336318740626907E-4	Vincent Price
7730444284418262623	2.2997707687822115E-4	Joan Crawford
T e e e -+

opg-js

$5,7=> FagIBesuLEss Rt [raphs indbDumResul sssted E

Computing Page Rank over the Graph

Finding the most important movies and actors

oracle@!localhost:~/RDF/PG/oracle-graph-client-20.1.0 - @ X

172

File Edit View Search Terminal

4463808826027376555
1130732531415155834
6706176589560490413
3000787937460459606
7730444284418262623

Help

.1474937877896015E-4
.7138550552431096E-4
.5675796106955844E-4
.336318740626907E-4

.2997707687822115E-4

Charlie Chaplin |
Harry von Meter |
Jackie Chan |
Vincent Price |
Joan Crawford |

$5 ==> PgqlResultSetImpl[graph=lmdb, numResults=10]
opg-jshell-rdbms> graph.queryPgql("select id(a), a.pagerank, a.title match (a:Movie) order by a.pagerank
desc limit 10").print();

$

9203356100102031272
3043577596047303050
1551281233598901313
4716692856789145745
5136965450075342208
8906191549691061753
1924525656707524741
2044045883429832681
3830516857956502081
1250359656689937498

.595791154220637E-4
.7362096519635195E-4
.090654197141825E-4
.9467453955043946E-4
.7029926744780766E-4
.366584825237721E-4
.2347530719121636E-4
.0619976574073263E-4
.057737297912671E-4
.920351747698865E-4

Stranger Than Fiction
Walk Hard: The Dewey Cox Story

30 Days of Night

Talladega Nights: The Ballad of Ricky Bobby

Untraceable
Baby Boy
Night at the Museum

Adventures Into Digital Comics
The Other Boleyn Girl

First Sunday

6 ==> PgqlResultSetImpl[graph=1lmdb,numResults=10]
oﬁgp;g'@iefbu{)@db@mle'nd/or its affiliates. All rights reserved.

Agenda

Part 1

» Backward Compatibility in Evolving Graphs
« Distinguishing among Graph Types

 Brief Intro to RDF

« Backward Compatibility: An Example and Demo
Part 2

* Intro to SPARQL Query and SPARQL Update
» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Palﬂ
e |Intro to R2RML |

« Advanced Modeling using RZRML: An Example and Demo
» Baseball Data: A Real-World Example and Demo

173 Copyright © 2020 Oracle and/or its affiliates. E

R2RML: RDB to RDF Mapping Language

W3C Recommendation 27 September 2012

This version:
http://www.w3.0rg/TR/2012/REC-r2rml-20120927/

Latest version:
http://www.w3.org/TR/r2rml/

Previous version:
http://www.w3.0rg/TR/2012/PR-r2rml-20120814/

Editors:
Souripriya Das, Oracle
Seema Sundara, Oracle
Richard Cyganiak, DERI, National University of Ireland, Galway

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

174 Copyright © 2020 Oracle and/or its affiliates. E

R2RML map. doc = {TriplesMap,, TriplesMap., ...}

PERSON 4 CHILD_OF »
TriplesMap |« name < | child
worth \ parent

-- PERSON table --

| LogicalTable | #

ex:TMap_PERSON a rr:TriplesMap ;

ek e rrilogicalTable ... ;
rr:subjectMap ... ;

rr:predicateObjectMap
ObjectMap
e —r— P T—— # -- CHILD_OF (relationship) table --
e ${ Sublectiep e # EDGE=> (child)-[childOf]->(parent)
RefObjectMap #H
Generated Triples ex:TMap_CHILD_OF a rr:TriplesMap ;
Generated Output Dataset rr:ilogicalTable ... ;
rr:subjectMap ... ;
rr:predicateObjectMap

175 Copyright © 2020 Oracle and/or its affiliates. E

R2RML: TriplesMap > LogicalTable

-- PERSON table --

i

ex:TMap_PERSON
rrzlogicalTable [rr:tableName "RDFU.PERSON"] ;
rr:subjectMap ... ;
rr:predicateObjectMap

Qﬁples’v‘ap\ rr:logical Table ’@gicaﬁable\
/ _/

rr:.ltableName

table or view name

rr:sqlQuery

-- CHILD_OF (relationship) table --

EDGE=> (child)-[childOf]->(parent)

i

ex:TMap_CHILD_OF
rrzlogicalTable [rr:tableName "RDFU.CHILD_OF"] ;
rr:subjectMap ... ;
rr:predicateObjectMap

176 Copyright © 2020 Oracle and/or its affiliates.

mr.sqlVersion

L

SQL query

SQL version identifD

R2RML: TriplesMap —>' SubjectMap,

- PredicateObjectMap

l rr:subjectMap rr.class *
GTriplesMD QSU bjectMa_D < class IRI)

-- PERSON table --
i
ex:TMap_PERSON
rr:logicalTable ... ;
rr:subjectMap [
rr:template "http://ex/PERSON/{NAME}";
rr:class ex:Person] ;
rr:predicateObjectMap

rr.predicateMap <+

/’f rr:PredicateMD

PredicateObjectMD

177 Copyright © 2020 Oracle and/or its affiliates.

\ *CObjectMaD
mobjectMap 4 rr:RefObjectMap

R2RML: TriplesMap —=>! SubjectMap,
- PredicateObjectMap

-- PERSON table --
#
ex:TMap_PERSON

M _ rr.class *

rr:logicalTable ... ; rr:SubjectMap\ class IRI
rr:subjectMap ... ; _,/

rr:predicateObjectMap

[rr:predicate :name ;

rr:objectMap [rr:column "NAME"]] | .
, [rr:predicate :worth ; rr.predicateMap <+

rr:objectMap [rr:column "WORTH"]]. / Ir: Predicate@

. . . rr:PredicateObjectMap
rr.predicateObjectMap
N *CObjectMaD
mobjeciMap rr:RefObjectMap

178 Copyright © 2020 Oracle and/or its affiliates. E

R2RML: SubjectMap, PredicateMap, ObjectMap

179

constant value

column name I ‘

\

L=

string template A

-- PERSON table --

i

ex:TMap_PERSON
rrilogicalTable ... ;
rr:subjectMap [

rr.constant
rr.column
rr:template
rrtermType
term map
(m:SubjectMap, rrlanguage
r:PredicateMap,
m:ObjectMap,
rr:GraphMa
P P) m.datatype

Copyright © 2020 Oracle and/or its affiliates.

IR
rr:BlankNode
mr:Literal

—> rr:template "http://ex/PERSON/{NAME}";
rr:class ex:Person] ;
rr:predicateObjectMap
—> [rr:predicate :name ;

language tag

rdfs:Datatype

—> rr:objectMap [rr:column "NAME"]]
, [rr:predicate :worth ;

rr:objectMap [rr:column "WORTH"]] .

- r & 4 ’ y
_ ' Y T '\Y’ 4 ’.,/,’/ ,l_?// -

-- CHILD_OF (relationship) table --

R2 RM L: RefObj ectM ap z EDGE= (child)-[childOf]->(parent)

ex:TMap_CHILD_OF
rrilogicalTable ... ;
rr:subjectMap [
rr:template "http://ex/PERSON/{CHILD}" ...];
rr:TriplesMap rr:predicateObjectMap [

rr.parentTriplesMap

rr:predicate :childOf ;
rr:objectMap [
PERSON 1 CHILD_OF » rr:parentTriplesMap ex:TMap_PERSON ;
name T child rr;joinCondition
m:RefO bjectM ap worth parent [rr:child "PARENT" ; rr:zparent "NAME"]]] .
rr.child
#{ column name
Pl

rr:JoinCondition

\
rr-parent

rr:joinCondition %

—| column name

180 Copyright © 2020 Oracle and/or its affiliates.

- F & 4 ’
A . ..'w' 4 ’r/"; /s

R2RML: GraphMap

(I SubjectMap

PERSON table --

rr.graphMap

*

ex: TMap_PERSON
rr:logicalTable ... ;
rr:subjectMap [... rr:graph :personinfoGraph; ...]
rr:predicateObjectMap ...
, [rr:zgraph :moneyMattersGraph ; rr:predicate :worth ;
rr:objectMap [rr:column "WORTH"]].

rr:PredicateObjectMap — "
rr.graphMap

181 Copyright © 2020 Oracle and/or its affiliates. E

rr:GraphMap

Agenda

Part 1

« Backward Compatibility in Evolving Graphs

« Distinguishing among Graph Types

 Brief Intro to RDF

« Backward Compatibility: An Example and Demo
Part 2

* Intro to SPARQL Query and SPARQL Update

» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

. |Advanced Modeling using R2RML: An Example and Demo |
» Baseball Data: A Real-World Example and Demo

182 Copyright © 2020 Oracle and/or its affiliates. E

Resources for Getting Started

« VM image: . https://www.oracle.com /database/technologies/databaseappdev-vm.html

Oracle Database Docker

Single instance database from
https://sithub.com /oracle /docker-images /tree /master/OracleDatabase

Oracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

183 Copyright © 2020 Oracle and/or its affiliates.

https://github.com/oracle/docker-images/tree/master/OracleDatabase

Relational to RDF Quads:
ER model and Relational Data

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

PERSON CHILD_OF | PERSON | CHILD_OF |
— name | worth | child | parent |

name child :
worth L\ parent John 1Bil Mary John

A
\4

Mary
DONATED_TO

DONATED_TO ADMITTED_TO
— ear
don i ~dmit_id mmm
L dongr — student John TOpUﬂIV 2010
ipi i UNIVERSITY 2 John TopUniv 2012
| recipient ~ univ pUniv
year year
TopUniv ADMITTED_TO

Mary TopUniv 2071

name <

A

ER diagram Relational Data

184 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
in ER model = R2RML

-- PERSON table --
PERSON { CHILD_OF }| | & avie
name child ex:TMap_PERSON
worth ; parent rr:logicalTable [rritableName "RDFU.PERSON" | ;
DONATED_TO ADMITTED_TO rr:subjectMap [
_ - — rr:template "http://ex/PERSON/{NAME}" ;
don_id admit_id rr:class ex:Person] ;
- donor -1 student
1 recipient — univ rr:predicateObjectMap
year year [rr:predicate :name ; rr:objectMap [rr:column "NAME"]]
, [rr:predicate :worth ; rr:objectMap [rr:column "WORTH"]] .
UNIVERSITY
» name «

ER diagram R2RML mapping
185 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
in ER model = R2RML

-- UNIVERSITY table --
PERSON < CHILD_OF #
name ‘_{ child ex:TMap_UNIVERSITY
worth] parent rr:logicalTable [rritableName "RDFU.UNIVERSITY"] ;
DONATED_TO ADMITTED_TO rr:subjectMap [
— — rritemplate "http://ex/UNIVERSITY/{NAME}" ;
don_id admit_id rr:class ex:University] ;
- donor -1 student
1 recipient — univ rr:predicateObjectMap
year year [rr:predicate :name ; rr:objectMap [rr:column "NAME"]].
(" UNIVERSITY
\y_name I

ER diagram R2RML mapping
186 Copyright © 2020 Oracle and/or its affiliates. E

g mmm— Y
Relational to RDF Quads:
Relation in ER model = R2RML

-- CHILD_OF (relationship) table --
FIERSOI 1 CHILD_OF P\ | 4 EDGE™ (child)-[childOf]->(parent)
name child #
worth Qa;elt// ex:TMap_CHILD_OF
~ rr:logicalTable [rr:tableName "RDFU.CHILD_OF"] ;
DONATED TO ADMITTED_TO
_ — — rr:subjectMap [
don_id admit_id rr:itemplate "http://ex/PERSON/{CHILD}" ;
| donor ~1 student rr:class ex:Child] ;
| recipient —| univ
year year rr:predicateObjectMap [
rr:predicate :childOf ;
UNIVERSITY rr:objectMap |
rr:parentTriplesMap ex:TMap_PERSON ;
» Name N rr;joinCondition [rr:child "PARENT" ; rr:parent "NAME"]]].

ER diagram R2RML mapping
187 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
Relation-As-Entity in ER = R2RML

-- DONATED_TO (relationship-as-entity) table --
PERSON {CHILD_OF b| | & _TO(P V)
name ‘_{ child ex:TMap_DONATED_TO_AS_ENTITY
worth] parent rr:logicalTable [rr:tableName "RDFU.DONATED_TO"];
/DONATED TO ADMITTED _TO rr:subiectMap[
/ _ _TO\ — rritemplate "http://ex/donationld#{DON_ID}" ;
/ don_id admit_id rr:class ex:Donation] ;
| donor — student
\% recipient —{ univ rr:predicateObjectMap
\\year / year [rr:predicate :year ; rr:objectMap [rr:column "YEAR"]].
N\ //
UNIVERSITY
» name <
ER diagram R2RML mapping

188 Copyright © 2020 Oracle and/or its affiliates. E

SR T e AR
Relational to RDF Quads:
Relation in ER model = R2RML

-- DONATED_TO (relationship) table --
FIERSOI 1 CHILD_OF » # EDGE=>» (donor)-[donatedTo]->(recipient)
name ‘f{ child ex:TMap_DONATED_TO
worth N parent rr:logicalTable [rr:tableName "RDFU.DONATED_TO" | ;
L TN |
JDONATED_TON ADMITTED_TO rr:subjectMap [
/ _ - — rr:template "http://ex/PERSON/{DONOR}" ;
| don_id \ admit_id rr:class ex:Donor] ;
(4 donor I - student
\ recipient / —univ rr:predicateObjectMap [
‘\year y year rr.graphMap [rr:itemplate "http://ex/donationld#{DON_ID}"];
~ — rr:predicate :donatedTo ;
=~ — TUNIVERSITY rr:objectMap [
rr:parentTriplesMap ex:TMap_UNIVERSITY ;
» Name N rr;joinCondition [rr:child "RECIPIENT" ; rr:parent "NAME"]]] .
ER diagram R2RML mapping

189 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
Relation-As-Entity in ER = R2RML

-- ADMITTED_TO (relationship-as-entity) table --
PERSON I CHILD OF b " _TO (relationship-as-entity) table
name ‘_{ child ex:-TMap_ADMITTED_TO_AS_ENTITY
worth] parent rrilogicalTable [rritableName "RDFU.ADMITTED_TO" |,
//) :subjectMap [
DONATED_TO ADMITTED_T rr:subjectiviap
_ - / — rr:template "http://ex/admissionld#{ADMIT_ID}" ;
don_id admit_id rr:class ex:Admission] ;
| donor — student
- recipient — univ rr:predicateObjectMap
year \\year [rr:predicate :year ; rr:objectMap [rr:column "YEAR"]].
UNIVERSITY ~
» name «

ER diagram R2RML mapping
190 Copyright © 2020 Oracle and/or its affiliates. E

SR T e AR
Relational to RDF Quads:
Relation in ER model = R2RML

-- ADMITTED_TO (relationship) table --
FARSOI { CHILD_OF ¢! | 4 EDGES (student)-[admittedTo]->(univ)
name ‘_{ child ex:TMap_ADMITTED_TO
worth] parent rr:logicalTable [rr:tableName "RDFU.ADMITTED_TO" |;
LTSN
» ADMITTED TO rr:subjectMap [
DONATED_TD // —N rr:template "http://ex/PERSON/{STUDENT}" ;
don_id admit_id \ rr:class ex:Admitted] ;
| donor (_ student |
1 recipient \ univ] | rr:predicateObjectMap [
year \ vear (rr.graphMap [rr:itemplate "http://ex/admissionld#{ADMIT_ID}"];
< 7 rr:predicate :admittedTo;
UNIVERSITY = rr:objectMap [
rr:parentTriplesMap ex:TMap_UNIVERSITY ;
g VEnnis - rr;joinCondition [rr:child "UNIV"; rr:parent "NAME" 1] .

ER diagram R2RML mapping

191 Copyright © 2020 Oracle and/or its affiliates. E

e — mmmm—— R S
Relational to RDF Quads:
Resulting RDF Graph, SPARQL query

John, whose net Worth is $1 billion, donated tw1ce to Top University, in the years 2010 and 2012, respectively.

Mary, a child of John, got admitted to Top University in 2011.
Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

SELECT ?paName ?univName ?chName
WHERE {
?child :childOf ?parent.
#
graph ?donEdge { ?parent :donatedTo ?univ}
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (7admYear = ?donYear +1)
?child :iame ?chName.
?parent :name ?paName.
2univ. :name ?univName } RDF Graph

192 Copyright © 2020 Oracle and/or its affiliates. :e12 = <http://ex/donationld#1>, :e12-2 =» <http://ex/donationld#2>,
.32 =»<http://ex/admissionld#1>

=<.donatedTo
:year 2012

a""s

—~ :year 2010 e12

.:donatedTo

‘name “John”
‘worth “1Bil"

Alundoy,, = aweu

:name “Mary”

SPARQL Query

g mmm— Y
Relational to RDF Quads:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

PREFIX orardf: <http://xmins.oracle.com/orardf/>
? ? in? -
select ?prop ?domain ?range RDB2RDF_METADATA=T <.donatedTo
{graph orardf:schgraph> {
:year 2012
?prop rdf:type rdf:Property ;
orardfiincludesDomainRange ?domrng .. s
?domrng orardfiincludesDomain ?domain; <5 - ==~ =
. S year 2010 e12 3
orardf:iincludesRange ’range . D~ LY ,:donatedTo %
1 GEJ < I
prop | 2domain | zange _J(KHS -
:admittedTo :Admitted :University -;CJ
:childOf :Child :Person 5 <
:donatedTo :Donor :University ‘ET?
‘name :Person, :University xsd:string =w
:worth :Person xsd:string g
‘year :Admission, :Donation xsd:decimal = RDF Graph

193 Copyright © 2020 Oracle and/or its affiliates. E

B mm— S R
Relational to RDF Quads:
Additional Data

Bob suspects that the 2010 donation helped the 2011 admission.

SUSPECTS
name | help_id |
Bob 1

\4

CHILD_OF

A
A

SUSPECTS PERSON

-{name-—" Lhame child
help_id\ worth L\ parent

N\
DONATEDYO | <> /| ADMITTED_TO h HEPE id | admit_id
< — elp_i on_i
don_id "~ \] = > | Ladmit_id .
| donor shelp_id /1 student 1 1 1
| recipient -don_id [| | univ
year admlt_ld year
UNIVERSITY
» name >

ER diagram Additional Relational Data
194 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
Relation-As-Entity in ER model = R2RML

Bob suspects that the 2010 donation helped the 2011 admission.

-- HELPED (relationship-as-entity) table --
{'SUSPECTS || PERSON {CHILD_OF b| | & (relationship ty)
| name—" [hame \‘_ child ex:TMap_HELPED_AS_ENTITY
help_id worth] parent rr:logicalTable [rritableName "RDFU.HELPED"] ;
N .
DONATED TO /\ ADMITTED_TO rr:sub]ectMap [
‘\ / HELPED \ — rr:template "http://ex/helpld#{HELP_ID}";
’ admit_id rr:class ex:Helping] ;

L

S ——_

don_id \ :
donor help_id /|H student
| recipient don_id [|/ univ

admit_icy year
N

year

UNIVERSITY

name <

A

ER diagram R2RML mapping
195 Copyright © 2020 Oracle and/or its affiliates. E

B mm— S R
Relational to RDF Quads:
Relation in ER model = R2RML

... Bob suspects that the 2010 donation helped the 2011 admission.

-- HELPED (relationship) table --
{ SUSPECTS || PERSON { CHILD_OF »| | % EDGE (don_id)-[helped]->(admit_id)
-{ name—" [hame ‘f{ child #
help_idy || worth “] | parent ex:TMap_HELPED
\ rr:logicalTable [rr:tableName "RDFU.HELPED"];
DONATED \[O X\ | | ADMITTED_TO _ _
_ / HELPED \ — rr:subjectMap [rritemplate "http://ex/donationld#{DON_ID}"] ;
don_id \’ : x admit_id
| donor help_id /11 student rr:predicateObjectMap [
1 recipient don_id / univ rr.graphMap [rr:itemplate "http://ex/helpld#{HELP_ID}"] ;
year admit_icy year rr:predicate :helped ;
rr:objectMap [
UNIVERSITY rr:parentTriplesMap ex:-TMap_ADMITTED_TO_AS_ENTITY ;
rr;joinCondition [rr:child "ADMIT_ID" ; rr:parent "ADMIT_ID"]1] .
» name <

ER diagram R2RML mapping
196 Copyright © 2020 Oracle and/or its affiliates. E

SR T e AR
Relational to RDF Quads:
Relation in ER model = R2RML

... Bob suspects that the 2010 donation helped the 2011 admission.

D —

N\
-- SUSPECTS table --
SUSPECTS\ PERSON CHILD_OF # EDGE=>» (name)-[suspects]->(help_id)

\ name-—" /) name L\ child #

A
\4

A

\Qelp_id worth parent ex:-TMap_SUSPECTS
—\ rr:logicalTable [rr:tableName "RDFU.SUSPECTS" |;
DONATED O | .~ | | ADMITTED_TO
; > —\\ HELPED r— rr:subjectMap [rr:itemplate "http://ex/PERSON/{NAME}"];
on_i S _
| donor &help—_‘d -1 student rr:predicateObjectMap
- recipient “don_id [| | univ [rr:predicate :name ; rr:objectMap [rr:column "NAME"]];
year admit_id year [rr:predicate :suspects ;
rr:objectMap [
UNIVERSITY rr:parentTriplesMap ex:-TMap_HELPED_AS_ENTITY ;
rr;joinCondition [rr:child "HELP_ID" ; rr:parent "HELP_ID"]]] .
» name .

ER diagram R2RML mapping
197 Copyright © 2020 Oracle and/or its affiliates. E

Relational to RDF Quads:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

How was the schema
. - =< donatedTo
affected? Two n o (el2-27— 50
oroperties got addec: 1Y
7prop Jrdomain lzange |J[E998
-admittedTo :Admitted ‘Universit 5 O e) 5
:admittedTo :Admitte :University ahn €1 _/:donatedTo 3
:childOf :Child :Person v C I
:donatedTo :Donor :University E g 5'=
-helped ‘Donation -Admission S 2
- -]
:suspects :Person :Helping - <
> 3
‘name :Person, :University xsd:string S
:worth :Person xsd:string ?
‘year :Admission, :Donation xsd:decimal qé
(0]
Schema for RDF Data c

198 Copyright © 2020 Oracle and/or its affiliates. :e12 = <http://ex/donationld#1>, :e12-2 =» <http://ex/donationld#2>,
:e32 = <http://ex/admissionld#1>, :e1232 =» <http://ex/helpld#1>.

Relational to RDF Quads:
Resulting RDF Graph, SPARQL query

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

=<.donatedTo

\&12-2" vear 2012

WHERE {
?child :childOf ?parent.
#
graph ?donEdge { ?parent :donatedTo ?univ}
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (7admYear = ?donYear +1)
?child :iame ?chName.
?parent :name ?paName.
2univ. :name ?univName }

199 Copyright © 2020 Oracle and/or its affiliates. :e12 = <http://ex/donationld#1>, :e12-2 =» <http://ex/donationld#2>,
:e32 = <http://ex/admissionld#1>, :e1232 = <http://ex/helpld#1>.

—-——s

e12

g S
)

J:donatedTo

‘name “John”
‘worth “1Bil"

Alundoy,, = aweu

:name “Mary”

SPARQL Query

Agenda

Part 1

« Backward Compatibility in Evolving Graphs
« Distinguishing among Graph Types
 Brief Intro to RDF

« Backward Compatibility: An Example and Demo
Part 2

* Intro to SPARQL Query and SPARQL Update
» Evolving Data: Movie Review Demo

« PGQL vs SPARQL

« Graph Analytics on RDF data

« Demo

Part 3

* Intro to RZRML

 Advanced Modeling using RZRML: An Example and Demo
. |Baseball Data: A Real-World Example and Demo |
éO Copyright © 2020 Oracle and/or its affiliates. E

Resources for Getting Started

e VM image: https://www.oracle.com/database/technologies/databaseappdev-vm.htm]

Oracle Database Docker

Single instance database from
https://sithub.com /oracle /docker-images /tree /master/OracleDatabase

Oracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

201 Copyright © 2020 Oracle and/or its affiliates.

https://github.com/oracle/docker-images/tree/master/OracleDatabase

RDF View Demo Setup

Data: Baseball data source: http://baseballl.com/statistics (CSV files)
Entity tables:

create table people (playerID varchar2(30) primary key, birthYear varchar2(4),
debut date, nameGiven varchar2(50), finalGame date) compress;

create table teams (yearlD varchar2(4), teamID varchar2(10), name varchar2(100),
primary key (yearID, teamID)) compress;

create table schools (schoollD varchar2(30) primary key, name_full varchar2(100),
city varchar2(30), tate varchar2(30), country varchar2(30)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

RDF View Demo Setup

Relationship tables:

create table salaries (yearID varchar2(4), teamlID varchar2(10), playerlID varchar2(30),

salary int, primary key(yearlD, teamlD, playerID),
foreign key(yearID, teamlID) references TEAMS(yearlD, teamID),
foreign key (playerID) references PEOPLE(playerID)) compress;

create table batting (playerID varchar2(30) primary key, yearlD varchar2(4),
teamlID varchar2(10), AB int, H int, HR int,
foreign key(yearID, teamlID) references TEAMS(yearlD, teamID),
foreign key(playerID) references PEOPLE(playerID)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

RDF View Demo Setup

Relationship tables:

create table pitching (playerlD varchar2(30) primary key, yearlD varchar2(4),
teamlID varchar2(10), W int, L int, G int, SHO int, ERA number,
foreign key(yearID, teamlID) references TEAMS(yearlD, teamID),
foreign key(playerlID) references PEOPLE(playerlD));

create table CollegePlaying (playerID varchar2(30), schoollD varchar2(30), year varchar2(4),

foreign key(playerID) references PEOPLE(playerID),
foreign key(schoollD) references SCHOOLS(schoollD)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

Relational Tables

BATTING

plaveriD | | |AB H HR |

L Tlayerid | salary

| Iname

PITCHING

playerl D - mﬂmm
Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

Data Loading

Oracle SQL*Loader: (people.ctl)
load data into table people
insert
fields terminated by ”,"
(
playeriD,
birthYear,
field1 FILLER,
field2 FILLER,

finalGame,
f18 FILLER,

5.

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Data Loading

Oracle SQL*Loader: (people.par)

userid=rdfuser@orcl/rdfuser
control=/home/oracle/people.ctl
log=demo.log

bad=demo.bad
data=/home/oracle/People.csv
direct=true

errors=10

Load command: sqlldr people.par

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

DECLARE
r2rmiStr CLOB;
BEGIN
r2rmiStr :=
‘@prefix rr: <http://www.w3.org/ns/r2rmi#>."||
'‘@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>."||
‘@prefix : <http://demo/>."||
'‘@prefix ex: <http://ex/>."||'
-- PEOPLE table --
ex:TMap_PLAYERS
rrilogicalTable [rr:tableName "rdfuser.PEOPLE"] ;
rr:subjectMap [rr:itemplate "http://ex/PLAYER/{playerID}" ; rr:class :Player] ;
-- generate triples for scalar columns
rr:predicateObjectMap
[rr:predicate :givenName ; rr:objectMap [rr:column "nameGiven"]]
, [rr:predicate :birthYear ; rr:objectMap [rr:column "birthYear"]].

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

#

-- TEAMS table --
#

ex:TMap_TEAMS

rrilogicalTable [rritableName "rdfuser. TEAMS" | ;

rr:subjectMap [rr:template "http://ex/TEAM/{yearID}-{teamID}" ; rr:class :Team] ;
-- generate triples for scalar columns

rr:predicateObjectMap [rr:predicate :name ; rr:objectMap [rr:column "NAME"]].

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

#

-- BATTING table --
#

ex:TMap_TEAM_PLAYER_BATTING

rr:ilogicalTable [rr:tableName "rdfuser.BATTING" | ;

rr:subjectMap [rr:itemplate "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class
:BattingInfo | ;
-- generate triples for scalar columns

rr:predicateObjectMap

[rr:predicate :atBat ; rr:objectMap [rr:column "AB" |]
, [rr:predicate :hits ; rr:objectMap [rr:column "H"]]
, [rr:predicate :homeRuns ; rr:objectMap [rr:column "HR"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

#

-- PITCHING table --
#

ex:TMap_TEAM_PLAYER_PITCHING

rr:logicalTable [rr:tableName "rdfuser.PITCHING"] ;

rr:subjectMap [rr:itemplate "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class
:PitchingInfo];
-- generate triples for scalar columns

rr:predicateObjectMap

[rr:predicate :wins ; rr:objectMap [rr:column "W"]]

, [rr:predicate :losses ; rr:objectMap [rr:column "L"]]

, [rr:predicate :games ; rr:objectMap [rr:column "G"]]

, [rr:predicate :shutOuts ; rr:objectMap [rr:column "SHO"]]

, [rr:predicate :earnedRunAvg ; rr:objectMap [rr:column "ERA"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML
#
-- SALARIES (relationship) table --
#

ex:-TMap_PLAYED_SALARY
rr:logicalTable [rritableName "rdfuser.SALARIES"] ;
rr:subjectMap [rritemplate "http://ex/PLAYER/{playerID}" ; rr:class :SalariedPlayer] ;
-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}"]
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;
rr;joinCondition
[rr:child "yearID" ; rr:parent "year|D"]
, [rr:child "teamlID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

-- BATTING (relationship) table --
#
ex:TMap_PLAYED_BATTER
rr:logicalTable [rritableName "rdfuser.BATTING" | ;
rr:subjectMap [rritemplate "http://ex/PLAYER/{playerID}" ; rr:class :Batter] ;
-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}"]
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;
rr;joinCondition
[rr:child "yearID" ; rr:parent "yearlD"]
, [rr:child "teamlID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

#

-- PITCHING (relationship) table --
#

ex:TMap_PLAYED_PITCHER
rr:logicalTable [rr:tableName "rdfuser.PITCHING"];
rr:subjectMap [rr:itemplate "http://ex/PLAYER/{playerID}" ; rr:class :Pitcher] ;
-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-
{playerID}"];
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;
rr;joinCondition
[rr:child "yearlD" ; rr:parent "yearlD"]
, [rr:child "teamlID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

R2RML

#

-- SALARIES table --
#

ex:TMap_TEAM_PLAYER_SALARY
rrilogicalTable [rr:tableName "rdfuser.SALARIES" | ;
rr:subjectMap [rr:itemplate "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class
:SalaryInfo] ;
-- generate the relationship triples
rr:predicateObjectMap
[rr:predicate :salary ; rr:objectMap [rr:column "salary"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

Create RDFView

SGA setting:
conn sys/oracle@orcl as sysdba
create pfile='"/home/oracle/rdf_init.ora' from spfile;
Edit rdf_init.ora and set: sga_target=2G
Restart DB:
conn sys/oracle@orcl as sysdba
alter session set container=CDB$ROOT;
shutdown immediate
conn sys/oracle@//localhost:1521/orclcdb as sysdba;
startup pfile= /home/oracle/rdf_init.ora

sem_apis.create_rdfview_model(

model_name => ‘rdfview_demo_graph’, tables => NULL,
r2rml_string => r2rmlStr, r2rml_string_fmt => 'TURTLE’,
network_owner=>'RDFUSER’, network_name=>'NET?'

);
Copyright © 2020 Oracle and/or its affiliates. All rights reserved E

ORACLE

