
Souri Das, Ph.D., Architect
Matt Perry, Ph.D., Consultant Member of Technical Staff
Eugene Chong, Ph.D., Consultant Member of Technical Staff

Oracle Server Technologies
May 05, 2020

Knowledge Graph Conference 2020
Modeling Evolving Data in Graphs
While Preserving Backward Compatibility:
The Power of RDF Quads

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Souripriya Das (Souri)
https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/

Architect at Oracle
• RDF Knowledge Graph
• Property Graph

Education
• Ph.D., Rutgers University
• M.S., Vanderbilt University
• B.Tech., Indian Institute of Technology (IIT), Kharagpur

Standards Activity
• W3C SPARQL 1.0 and 1.1
• W3C RDB2RDF, Editor of R2RML

Publications in SW and Database Area
• ICDE, EDBT, VLDB, CIKM
• Patents in Database and Graph technologies

https://www.linkedin.com/in/souripriya-souri-das-ph-d-48801911/

Matthew Perry
Engineer at Oracle
• RDF Knowledge Graph
• PGQL on RDBMS

Ph.D. in Computer Science
• Wright State University
• Geospatial Semantic Web Area

Standards Activity
• W3C SPARQL 1.1 Working Group
• OGC GeoSPARQL

Papers in SW and Database Area
• ICDE, EDBT, ACM-GIS
• Terra Cognita workshop series

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Eugene Inseok Chong

Consulting MTS at Oracle
Working on Graph Databases
Developer of Oracle Index Organized Tables, Reference Partitioned Tables, 32K Varchar, and

Domain Indexes

Ph.D. in CS from Northwestern Univ., Evanston, IL
MS in CS from Georgia Tech, Atlanta, GA
BS in CSE from Seoul National Univ., Seoul, Korea

21 Publications including VLDB, SIGMOD, ICDE, and EDBT
Referee for journals and conferences

Specialty in Database Query Processing and Optimization

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing
decisions.

The development, release, timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

5 Copyright © 2020 Oracle and/or its affiliates.

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.6

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.7

Backward Compatibility
validity of pre-existing queries as data evolve

8 Copyright © 2020 Oracle and/or its affiliates.

Data: John
donated to
Top University.

t0
timetime t3

Query: Who all
donated to
Top University?

t1

Data (rephrased):
A donation event occurred where
the donor was John and
the recipient was Top University.

t2

Query (resdesigned): Who
were the donors for
donation events where
the recipient was Top University?

t4

Evolving Data
Data changes are frequent, and often unanticipated

9 Copyright © 2020 Oracle and/or its affiliates.

Create:
John
donated to
Top University.

timetime

Add:
The donation event
helped
the admission event.

Add:
Mary,
got admitted to
Top University.

Refine:
Bob suspects that
the donation event
helped
the admission event.

Handling the Changes in Data
Rephrasing the data using events is one way of handling

10 Copyright © 2020 Oracle and/or its affiliates.

Create:
John
donated to
Top University.

timetime

Add:
The donation event
helped
the admission event.

Add:
Mary,
got admitted to
Top University.

Refine:
Bob suspects that
the donation event
helped
the admission event.

Data (rephrased):
A donation event
occurred where the
donor was John and
the recipient was
Top University.

Data (rephrased):
An admission event
occurred where the
student was Mary and
the recipient was
Top University.

Data (rephrased):
A “helping” event
occurred where the
“helper” was the
donation event and
the “helpee” was
the admission event.

Not
Backward

Compatible

Handling the Changes in Data
Naming the events – without any rephrasing – is another way

11 Copyright © 2020 Oracle and/or its affiliates.

Create:
John
donated to
Top University.

timetime

Add:
The donation event
helped
the admission event.

Add:
Mary,
got admitted to
Top University.

Refine:
Bob suspects that
the donation event
helped
the admission event.donation event admission event helping event

Backward
Compatible

Naming is Everything !
• Name the facts.

• Compose new facts with those names.

RDF
Quads

Evolving Graph: The Power of RDF Quads
Use the “graph” component to to hold the (optional) triple name

12 Copyright © 2020 Oracle and/or its affiliates.

Create:
John
donated to
Top University.

timetime

Add:
The donation event
helped
the admission event.

Add:
Mary,
got admitted to
Top University.

Refine:
Bob suspects that
the donation event
helped
the admission event.donation event admission event helping event

graph subject predicate object

:John :donatedTo :TopUniversity

:Mary :admittedTo :TopUniversity

:donation :helped :admission

:Bob :suspects :helping

:donation

:admission

:helping

Evolving Graph: RDF# - RDF + Fact Naming
piggyback the (optional) triple name on the “predicate” component
See: https://blogs.oracle.com/oraclespatial/rdf-extending-rdf-to-support-named-triples

13 Copyright © 2020 Oracle and/or its affiliates.

Create:
John
donated to
Top University.

timetime

Add:
The donation event
helped
the admission event.

Add:
Mary,
got admitted to
Top University.

Refine:
Bob suspects that
the donation event
helped
the admission event.donation event admission event helping event

graph subject predicate object

:John :donatedTo :TopUniversity

:Mary :admittedTo :TopUniversity

:donation :helped :admission

:Bob :suspects :helping

[:donation]

[:admission]

[:helping]

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.14

Regular Graphs

15 Copyright © 2020 Oracle and/or its affiliates.

https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/charts-speeches/presentations/LH-Expert-Session-Eurowings.pdf

Each edge could have distance as an attribute.

https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/charts-speeches/presentations/LH-Expert-Session-Eurowings.pdf

Types of Graph
Graph in Discrete Math | RDF Triples | Property Graph | RDF Quads

16 Copyright © 2020 Oracle and/or its affiliates.

v1

v2

v3

:c
hi

ld
O

f

:admittedTo

:donatedTo

v1

v2

v3

v1

v2

v3

e3
1:

ch
ild

O
f

e32: admittedTo

e12: donatedTo

year = 2010

year = 2011

v1

:c
hi

ld
O

f

:admittedTo

:donatedTo

v2

v3 :e32

:e12 2010

2011

:year

:year

Graph in Discrete Math:
• # of relations: 1
• for each edge

• # attributes: 0 or 1
• # edges: 0

RDF Triples:
• # of relations: many
• for each edge

• # attributes: 0
• # edges: 0

Property Graph:
• # of relations: many
• for each edge

• # attributes: many
• # edges: 0

RDF Quads:
• # of relations: many
• for each edge

• # attributes: many
• # edges: many

Graph in Discrete Math

RDF Triples

Property Graph

RDF Quads

:helped

Types of Graph
In a Nutshell: How many edge-types (or relations) in a graph?

17 Copyright © 2020 Oracle and/or its affiliates.

graph type # of edge-types
modeled in graph

graph in Math 1

RDF Triples many

Property Graph many

RDF Quads many

Types of Graph
In a Nutshell: What can you hang from an edge?

18 Copyright © 2020 Oracle and/or its affiliates.

graph type # of edge-types
modeled in graph

for a given edge1 …

of attributes
associated with it

of outbound
edges: à vertices

of outbound
edges: à edges

graph in Math 1 0 or 1 (fixed) - -

RDF Triples many - - -

Property Graph many many - -

RDF Quads many many many many

1 For RDF Quads, these apply to attribute association as well.

Comparing RDF Graph and Property Graph
Distinguishing features

Property Graph RDF Graph

Scope of identifiers Local Global (URIs)

Syntax Rules Proprietary Standards-based

Semantics Embedded in application Standard, declarative rules

Copyright © 2020 Oracle and/or its affiliates.19

Comparing RDF Graph and Property Graph
Distinguishing features

Property Graph RDF Graph

Scope of identifiers Local Global (URIs)

Syntax Rules Proprietary Standards-based

Semantics Embedded in application Standard, declarative rules

Vertex, Edge, Vertex-Property Easy Easy

Duplicate Edges Easy use RDF Quad

Edge-Property (KV on edge) Easy use RDF Quad

Multi-valued Attributes Easy (use collection) Easy

Copyright © 2020 Oracle and/or its affiliates.20

Comparing RDF Graph and Property Graph
Distinguishing features

Property Graph RDF Graph

Scope of identifiers Local Global (URIs)

Syntax Rules Proprietary Standards-based

Semantics Embedded in application Standard, declarative rules

Vertex, Edge, Vertex-Property Easy Easy

Duplicate Edges Easy use RDF Quad

Edge-Property (KV on edge) Easy use RDF Quad

Multi-valued Attributes Easy (use collection) Easy

Edge as Endpoint for Edge “vertexify” the edge use RDF Quad

Edge-Property as Endpoint “vertexify” edge-property use RDF Quad

Vertex-Property as Endpoint “vertexify” vertex-property use RDF Quad
Copyright © 2020 Oracle and/or its affiliates.21

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.22

W3C Standards for Knowledge Graphs

23

The World Wide Web
Consortium has defined a suite
of standards to support Linked
Data and Knowledge Graphs.

Fundamental Concepts are:
• Resource Identifiers: IRIs
• Links to other resources
• Standard Data Model (RDF)
• Standard Ontology Language

(OWL)
• Standard Query (SPARQL)
• Rel. Data as RDF (RDB2RDF)

Copyright © 2020 Oracle and/or its affiliates.

What is Resource Description Framework (RDF)
An RDF graph is a directed, labeled graph
with following syntactic restrictions

• Source Vertex (subject): URI
• Edge label (predicate): URI
• Target Vertex (object): URI or scalar value

An edge, called a “triple”, is the atomic unit
• Resource-Triple: < URI, URI, URI >
• Value-Triple: < URI, URI, value >

:university1

:course456

:professorXYZ

:student123

:worksFor :offers

:takes

:teaches

"John"

:name

"Susan"

:n
am

e

u:university1 "MIT"u:name

Subject Predicate
Object

(value or
resource)

RDF Triple

@prefix : <http://univ.org#>
URI prefix and prefixed name

u:e12
:s123_c456

”B+"
:grade

RDF Quad
W3C RDF 1.1 (2014)

graph
name

1 ”RDF does not place any formal restrictions on what resource the graph name may denote …”
SEE: https://www.w3.org/TR/rdf11-concepts/#section-dataset

Copyright © 2020 Oracle and/or its affiliates.24

:Professor :Universityrdf:type

rd
f:t

yp
e :Course

:Studentrdf:type
rd

f:t
yp

e

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

SPARQL Graph Pattern
Basic unit of SPARQL queries

univ:Student

univ:student123

univ:student456

"John Green"

"1999-06-15"^^xsd:date

"male"

"Susan Blue"

"2000-02-10"^^xsd:date

"female"

rdf:type

rdf:type

foaf:name

vcard:BDAY

foaf:gender

foaf:name

vcard:BDAY

foaf:gender

univ:Student

univ:student123

"John Green"

"1999-06-15"^^xsd:date

"male"

rdf:type

foaf:name

vcard:BDAY

foaf:gender

?t

?p

?n

?b

?g

Result 1: {?t=univ:Student, ?p=univ:student123, ?n="John Green", ?g="male", ?b="1999-06-15"^^xsd:date}

Result 2: {?t=univ:Student, ?p=univ:student456, ?n="Susan Blue", ?g="female", ?b="2000-02-10"^^xsd:date}

Copyright © 2020 Oracle and/or its affiliates.25

?t

?p

?n

?b

?g

SPARQL Graph Pattern
Basic unit of SPARQL queries

rdf:type

foaf:name

vcard:BDAY

foaf:gender

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT ?t ?n ?b ?g
WHERE
{ ?p rdf:type ?t ;

foaf:name ?n ;
vcard:BDAY ?b ;
foaf:gender ?g }

How do we express this with SPARQL?

Basic Graph
Pattern (BGP)

Copyright © 2020 Oracle and/or its affiliates.26

Introduction to Linked Data Through an Example

I need an air conditioner

Copyright © 2020 Oracle and/or its affiliates.27

Introduction to Linked Data Through an Example

“LRA087AT7”
cr:model_num

cr:manufacturer

<http://www.frigidaire.com/>

cr:homepage

“2”

“-1”
“1”

cr:cooling

cr:install

cr:noise

“LRA087AT7”
az:product_num

az:price

“210.00”

<http://www.frigidaire.com/>
az:website

az:manufacturer

“4.5”

az:user_rating

“Frigidaire”

cr:name

“Frigidaire”

az:name

Same URI

Copyright © 2020 Oracle and/or its affiliates.28

Introduction to Linked Data Through an Example

“LRA087AT7”
cr:model_num

cr:manufacturer

cr:homepage

“2”

“-1”
“1”

cr:cooling

cr:install

cr:noise

“LRA087AT7”
az:product_num

az:price

“210.00”

<http://www.frigidaire.com/>

az:website

az:manufacturer

“4.5”

az:user_rating

“Frigidaire”

cr:name

“Frigidaire”

az:name

Suspect that cr:model_num is the same as az:product_num

cr:model_num owl:equivalentProperty az:product_num

Copyright © 2020 Oracle and/or its affiliates.29

Introduction to Linked Data Through an Example

cr:model_num /
az:product_numcr:manufacturer

cr:homepage

“2”

“-1”
“1”

cr:cooling

cr:install

cr:noise

“LRA087AT7”

az:product_num /
cr:model_num

az:price

“210.00”

az:website

az:manufacturer

“4.5”

az:user_rating

“Frigidaire”

cr:name

“Frigidaire”

az:name

We suspect that model number is unique

cr:model_num rdf:type owl:inverseFunctionalProperty

<http://www.frigidaire.com/>

Copyright © 2020 Oracle and/or its affiliates.30

Introduction to Linked Data Through an Example

cr:model_num

cr:manufacturer

cr:homepage

“2”

“-1” “1”

cr:cooling

cr:install

cr:noise “LRA087AT7”

az:price

“210.00”

az:website

az:manufacturer

“4.5”

az:user_rating

“Frigidaire”

cr:name
“Frigidaire”

az:name

cr:manufacturer owl:equivalentProperty az:manufacturer

<http://www.frigidaire.com/>

cr:homepage rdf:type owl:inverseFunctionalProperty
cr:homepage owl:equivalentProperty az:website

cr:name owl:equivalentProperty az:name
Copyright © 2020 Oracle and/or its affiliates.31

Introduction to Linked Data Through an Example

<http://www.frigidaire.com/>

cr:model_num

cr:manufacturer

cr:homepage

“2”

“-1” “1”

cr:cooling

cr:install

cr:noise “LRA087AT7”

az:price

“210.00”

“4.5”

az:user_rating

“Frigidaire”

cr:name

<http://dbpedia.org/resource/Frigidaire>

dbpedia:homepage

“1918”

dbpedia:formationYear

<http://dbpedia.org/resource/Electrolux>
dbpedia:divisionOf

“NASDAQ: ELUXF”

dbpedia:tradedAs

<http://dbpedia.org/resource/Sweden>

dbpedia:locationCountry
<http://www.frigidaire.com/>

Adding more linked data
Copyright © 2020 Oracle and/or its affiliates.32

A Big RDF Graph
Linking Many
Data Sources

https://lod-cloud.net/ 1,200+ linked datasets
Copyright © 2020 Oracle and/or its affiliates.

https://lod-cloud.net/

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.34

Copyright © 2020 Oracle and/or its affiliates.

Resources for Getting Started

• VM image: : https://www.oracle.com/database/technologies/databaseappdev-vm.html

• Oracle Database Docker
Single instance database from

https://github.com/oracle/docker-images/tree/master/OracleDatabase

• Oracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

35

https://github.com/oracle/docker-images/tree/master/OracleDatabase

Implementing in RDF:
Vertex, Edge, Vertex-Property

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

John, whose net worth is $1 billion, donated to Top University.
Mary, a child of John, got admitted to Top University.

:donatedTo

SPARQL Update

BEGIN
sem_apis.update_model(‘rdf_demo_graph',
'PREFIX : <http://demo/>
INSERT DATA {
:v1 :name “John” ;

:worth “1 Bil” ;
:donatedTo :v2 .

:v2 :name “TopUniv” .
:v3 :name “Mary” ;

:admittedTo :v2 ;
:childOf :v1 .

} ‘, network_owner=>’..’,network_name=>’..’);
END;
/

Copyright © 2020 Oracle and/or its affiliates.36

RDF Graph

Graphs in PG and RDF:
Vertex, Edge, Vertex-Property

v1

v3

v2

na
m

e
=

“J
oh

n”
w

or
th

 =
“1

 B
il"

na
m

e
=

“M
ar

y”

nam
e = “TopU

niv”

e3
1:

ch
ild

O
f

e32: admitte
dTo

e12: donatedTo

John, whose net worth is $1 billion, donated to Top University.
Mary, a child of John, got admitted to Top University.

Property Graph

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

:donatedTo

Copyright © 2020 Oracle and/or its affiliates.37

RDF Graph

Implementing in RDF:
Duplicate Edge

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

John … donated twice to Top University. …

:donatedTo

:donatedTo
:e12-2

BEGIN
sem_apis.update_model(‘rdf_demo_graph',
'PREFIX : <http://demo/>
INSERT DATA {
graph :e12-2 { :v1 :donatedTo :v2 }

} ');
END;
/

Copyright © 2020 Oracle and/or its affiliates.38

SPARQL Update RDF Graph

Graphs in PG and RDF:
Duplicate Edge

John … donated twice to Top University. …

v1

v3

v2

na
m

e
=

“J
oh

n”
w

or
th

 =
 “

1 B
il"

na
m

e
=

“M
ar

y”

nam
e = “TopU

niv”

e3
1:

ch
ild

O
f

e32: admitte
dTo

e12: donatedTo

e12-2: donatedTo

Property Graph

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

:donatedTo

:donatedTo
:e12-2

Copyright © 2020 Oracle and/or its affiliates.39

RDF Graph

Implementing in RDF:
Edge-Property

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

John … donated twice to Top University, in the years 2010 and 2012, respectively.
Mary … got admitted to Top University in 2011.

:donatedTo

:donatedTo
:e12-2

:year 2012

:year 2
011

:year 2010
:e12

:e32

BEGIN
sem_apis.update_model('rdf_demo_graph',
'PREFIX : <http://demo/>
DELETE DATA {
:v1 :donatedTo :v2 . # deletes triple ONLY
:v3 :admittedTo :v2 .

} ;
INSERT DATA {
graph :e12 { :v1 :donatedTo :v2 }
graph :e32 { :v3 :admittedTo :v2 }
:e12 :year 2010 .
:e12-2 :year 2012 .
:e32 :year 2011 .

} ');
END;
/ Copyright © 2020 Oracle and/or its affiliates.40

SPARQL Update RDF Graph

Graphs in PG and RDF:
Edge-Property

John … donated twice to Top University, in the years 2010 and 2012, respectively.
Mary … got admitted to Top University in 2011.

v1

v3

v2

na
m

e
=

“J
oh

n”
w

or
th

 =
 “

1 B
il"

na
m

e
=

“M
ar

y”

nam
e = “TopU

niv”

e3
1:

ch
ild

O
f

e32: admitte
dTo

e12: donatedTo

e12-2: donatedTo

:year 2012

:year 2010

:year 2
011

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

:nam
e “TopU

niv”

:c
hi

ld
O

f

:admitte
dTo

:donatedTo

:donatedTo
:e12-2

:year 2012

:year 2
011

:year 2010
:e12

:e32

Copyright © 2020 Oracle and/or its affiliates.41

Property Graph RDF Graph

RDF via PG-lens: The Graphs at this point.
Vertex, Edge, Vertex- and Edge-Properties

v1

v3

v2

na
m

e
=

“J
oh

n”
w

or
th

 =
 “

1 B
il"

na
m

e
=

“M
ar

y”

nam
e = “TopU

niv”e32: admitte
dTo

e12: donatedTo

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

e12-2: donatedTo

year = 2012

year = 2010

year = 2011

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

e3
1:

ch
ild

O
f

:c
hi

ld
O

f

Copyright © 2020 Oracle and/or its affiliates.42

Property Graph RDF Graph

Implementing in RDF:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

:c
hi

ld
O

f

Copyright © 2020 Oracle and/or its affiliates.43

RDF Graph

relation domain range

:admittedTo :Person :University

:childOf :Person :Person

:donatedTo :Person :University

:name :Person, :University xsd:string

:worth :Person xsd:string

:year :Admission, :Donation xsd:decimal

:Person
:v1
:v3

:Donation
:e12-2
:e12

:Admission
:e32

:University
:v2

Classes and Instances

Implementing in RDF: SPARQL Query
Vertex, Edge, Vertex- and Edge-Properties

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

:c
hi

ld
O

f

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.
SELECT ?paName ?univName ?chName
WHERE {

?child :childOf ?parent .
#
graph ?donEdge { ?parent :donatedTo ?univ }
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (?admYear = ?donYear + 1)
?child :name ?chName .
?parent :name ?paName .
?univ :name ?univName }

Copyright © 2020 Oracle and/or its affiliates.44

SPARQL Query RDF Graph

triple name is specified as graph name.

Implementing in RDF: SPARQL# Query
Vertex, Edge, Vertex- and Edge-Properties

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

:c
hi

ld
O

f

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.
SELECT ?paName ?univName ?chName
WHERE {

?child :childOf ?parent .
#
?parent [?donEdge]:donatedTo ?univ .
?donEdge :year ?donYear .
#
?child [?admEdge]:admittedTo ?univ .
?admEdge :year ?admYear .
#
FILTER (?admYear = ?donYear + 1)
?child :name ?chName .
?parent :name ?paName .
?univ :name ?univName }

Copyright © 2020 Oracle and/or its affiliates.45

SPARQL Query in RDF# RDF Graph

SPA
RQ

L using RD
F#

syntax: triple nam
e

is piggybacked
on

the predicate, not as

graph nam
e.

Implementing in RDF:
Edges as Endpoints of Another Edge

… Bob suspects that John’s 2010 donation helped Mary’s admission.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

BEGIN
sem_apis.update_model('rdf_demo_graph',
'PREFIX : <http://demo/>
INSERT DATA {
graph :e1232 { :e12 :helped :e32 }
:v7 :name “Bob” ;

:suspects :e1232
} ');

END;
/

Copyright © 2020 Oracle and/or its affiliates.48

SPARQL Update RDF Graph

Graphs in PG & RDF: Backward-Compatible?
Edges as Endpoints of Another Edge

… Bob suspects that John’s 2010 donation helped Mary’s admission.

Property Graph RDF Graph

v1

v3

v2

na
m

e
=

“J
oh

n”
w

or
th

 =
 “

1 B
il"

na
m

e
=

“M
ar

y”

nam
e = “TopU

niv”

e3
1:

ch
ild

O
f

e32b: university

e12a: donor

e12-2: donatedTo

year = 2012

year = 2010
event = “donatedTo”

year = 2011
event = “admittedTo”

v4

v5

v6

v7

e12b: recipient

e45a: helper

e45a: helpee

name = “Bob”

e7
6:

 s
us

pe
ct

s

e32a: student

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

Copyright © 2020 Oracle and/or its affiliates.49

Are all pre-existing
QUERIES still VALID?

NO YES

Implementing in RDF:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

Copyright © 2020 Oracle and/or its affiliates.50

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

Schema for RDF Data

How was the schema affected?

• one new class

• Two new relations

relation domain range

:admittedTo :Person :University

:childOf :Person :Person

:donatedTo :Person :University

:helped :Donation :Admission

:suspects :Person :Helping

:name :Person, :University xsd:string

:worth :Person xsd:string

:year :Admission, :Donation xsd:decimal

｛

RDF Graph

Nothing
got

dropped!
:Helping

:e1232

Implementing in RDF:
Resulting RDF Graph, SPARQL query

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

SELECT ?paName ?univName ?chName
WHERE {

?child :childOf ?parent .
#
graph ?donEdge { ?parent :donatedTo ?univ }
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (?admYear = ?donYear + 1)
?child :name ?chName .
?parent :name ?paName .
?univ :name ?univName }

Copyright © 2020 Oracle and/or its affiliates.51

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

SPARQL Query

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

All pre-existing

queries remain valid.

RDF Graph

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.52

Demo Environment for Tutorial

§ Using a freely-available Virtual Machine image with Oracle Database 19.3
§ Other Software

§ Oracle Graph Server and Client 20.1
§ Oracle Support for Apache Jena 3.1.0
§ Java 11

§ Using Linked Movie Data Base RDF Data
§ From a University of Toronto project

§ Detailed setup information is available in a recent Oracle blog post:
https://blogs.oracle.com/oraclespatial/kgc-2020-tutorial3a-modeling-evolving-data-in-graphs-while-preserving-backward-compatibility

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.53

https://blogs.oracle.com/oraclespatial/kgc-2020-tutorial3a-modeling-evolving-data-in-graphs-while-preserving-backward-compatibility

Oracle Spatial and Graph 19c – RDF Knowledge Graph Architecture

Generic Relational Schema for
Storing RDF Data RDF Views of Relational Data

SPARQL-to-SQL
Query Translator

Forward-chaining
OWL ReasonerRDF Bulk Loader SPARQL Update

Processor

SQL and PL/SQL API

Support for Apache Jena (Java API)

Protégé Plugin Cytoscape PluginFuseki Endpoint SQL Developer
RDF Support

Enterprise Manager
and Other DB Tools

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.54

Graph Query Languages

Agenda

1

2

3

4

5

Essentials for SPARQL Query & Update

Named Graphs for Edge Properties

Comparison with PG Query Languages

Graph Analytics with RDF Data

55 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Graph Query Languages

Agenda

1

56 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Graph Query Languages
RDF Graph Property Graph

SPARQL 1.1

SPARQL 1.2
SPARQL*

PGQL

SQL/PGQ
GQL

G-CORE

Cypher

GSQL

Gremlin

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.57

Agenda

2 Essentials for SPARQL Query & Update

58 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

What is SPARQL

Agenda

1

59 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

What is SPARQL?

§ SPARQL Protocol and RDF Query Language
§ W3C standard for querying and manipulating RDF content
§ Queries/updates and corresponding results are communicated via HTTP

with a SPARQL endpoint
§ A SPARQL endpoint implements the SPARQL protocol and serves RDF

data from a RDF triplestore or RDF view

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.60

What is SPARQL?

§ Query Language
§ Update
§ Protocol
§ Service Description
§ Query Results JSON Format
§ Query Results CSV and TSV Format
§ Query Results XML Format
§ Federated Query
§ Entailment Regimes
§ Graph Store HTTP Protocol

Components of SPARQL 1.1

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.61

What is SPARQL?

§ Query Language

Components of SPARQL 1.1
A comprehensive query language
for RDF

Many useful constructs: optional
patterns, aggregates, subqueries,
negation, property paths, extensive
function library, etc.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.62

What is SPARQL?

§ Update

Components of SPARQL 1.1
A comprehensive language for
manipulating RDF graphs

Allows you to create, update and
remove RDF graphs

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.63

What is SPARQL?

§ Protocol

Components of SPARQL 1.1
Defines a protocol for sending
queries or updates to SPARQL
endpoint and returning the results
via HTTP

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.64

What is SPARQL?

§ Service Description

Components of SPARQL 1.1
Defines a mechanism and RDF
vocabulary for describing the
features supported by a SPARQL
endpoint

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.65

What is SPARQL?

§ Query Results JSON Format
§ Query Results CSV and TSV Format
§ Query Results XML Format

Components of SPARQL 1.1
Alternative formats used to
serialize and exchange answers to
SPARQL queries

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.66

What is SPARQL?

§ Federated Query

Components of SPARQL 1.1
SPARQL extension for executing
queries distributed over different
SPARQL endpoints

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.67

What is SPARQL?

§ Entailment Regimes

Components of SPARQL 1.1
Extends SPARQL so that logically
entailed RDF triples (hidden edges
in RDF Graphs) are matched in
addition to directly asserted RDF
triples

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.68

What is SPARQL?

§ Graph Store HTTP Protocol

Components of SPARQL 1.1
Simple alternative to SPARQL 1.1
Update that describes HTTP
operations for managing a
collection of RDF graphs outside of
a SPARQL 1.1 graph store

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.69

Agenda

2

3

SPARQL 1.1 Query Features by Example

Graph Patterns

70 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Graph Pattern
Basic unit of SPARQL queries

univ:Student

univ:student123

univ:student456

"John Green"

"1999-06-15"^^xsd:date

"male"

"Susan Blue"

"2000-02-10"^^xsd:date

"female"

rdf:type

rdf:type

foaf:name

vcard:BDAY

foaf:gender

foaf:name

vcard:BDAY

foaf:gender

univ:Student

univ:student123

"John Green"

"1999-06-15"^^xsd:date

"male"

rdf:type

foaf:name

vcard:BDAY

foaf:gender

?t

?p

?n

?b

?g

Result 1: {?t=univ:Student, ?p=univ:student123, ?n="John Green", ?g="male", ?b="1999-06-15"^^xsd:date}

Result 2: {?t=univ:Student, ?p=univ:student456, ?n="Susan Blue", ?g="female", ?b="2000-02-10"^^xsd:date}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.71

?t

?p

?n

?b

?g

SPARQL Graph Pattern
Basic unit of SPARQL queries

rdf:type

foaf:name

vcard:BDAY

foaf:gender

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT ?t ?n ?b ?g
WHERE
{ ?p rdf:type ?t .

?p foaf:name ?n .
?p vcard:BDAY ?b .
?p foaf:gender ?g }

How do we express this with SPARQL?

Basic Graph
Pattern (BGP)

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.72

SPARQL SELECT Modifiers
Find all DISTINCT genres of movies starring Keanu Reeves

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT DISTINCT ?gname
WHERE { ?movie movie:actor ?actor .

?actor movie:actor_name "Keanu Reeves" .
?movie movie:genre ?genre .
?genre movie:film_genre_name ?gname .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.73

SPARQL FILTER: Restricting Solutions
Find movies starring Matt Damon that are more than 150 min long

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX movie: <http://data.linkedmdb.org/movie/>

SELECT ?title
WHERE {

?movie movie:actor ?actor .
?actor movie:actor_name ?aname .
?movie movie:runtime ?rt .
?movie dcterms:title ?title
FILTER (?aname = "Matt Damon" && xsd:decimal(?rt) > 150)

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.74

SPARQL 1.1 Built-in Functions

§ Basic: arithmetic, comparisons, boolean connectors

§ RDF-related: isLiteral(), isURI(), isBlank(), datatype(), lang(), BOUND(), …

§ String Functions: SUBSTR(), STRSTARTS(), STRENDS(), REGEX(), …

§ Numerics: abs(), floor(), ceil(), …

§ Dates and Times: now(), year(), month(), day(), …

§ Miscellaneous: IN(), NOT IN(), IF(), COALESCE(), …

§ Constructors: xsd:int(), xsd:decimal(), xsd:dateTime(), …

§ … plus user-defined

Extensive library of functions to use

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.75

SPARQL UNION: Disjunction
Get names of writers and directors of movies starring Carl Weathers

SELECT ?name
WHERE {

?movie movie:actor ?actor .
?actor movie:actor_name "Carl Weathers" .
{ { ?movie movie:director ?director .

?director movie:director_name ?name }
UNION
{ ?movie movie:writer ?writer .

?writer movie:writer_name ?name }
}

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.76

SPARQL OPTIONAL: Best Effort Match
Find movies starring Sylvester Stallone and optionally their sequels

SELECT ?title ?title2
WHERE {

?movie dcterms:title ?title .
?movie movie:actor ?actor .
?actor movie:actor_name "Sylvester Stallone" .
OPTIONAL {

?movie movie:sequel ?sequel .
?sequel dcterms:title ?title2

}
}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.77

Parallel vs. Nested OPTIONAL

:john foaf:name "John" ;
foaf:email "john@example.com" ;
foaf:homepage <http://www.example.com/john> .

:sue foaf:name "Sue" ;
foaf:email "sue@example.com" .

:fred foaf:name "Fred" ;
foaf:homepage <http://www.example.com/fred> .

Parallel OPTIONAL

{ ?s foaf:name ?n
OPTIONAL { ?s foaf:email ?e }
OPTIONAL { ?s foaf:homepage ?h }

}

?s ?n ?e ?h

:john "John" "john@example.com" <http://www.example.com/john>

:sue "Sue" "sue@example.com"

:fred "Fred" <http://www.example.com/fred>

RDF Data

Query Result

Parallel OPTIONAL:
Match all OPTIONALs from left to
right.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.79

Parallel vs. Nested OPTIONAL

:john foaf:name "John" ;
foaf:email "john@example.com" ;
foaf:homepage <http://www.example.com/john> .

:sue foaf:name "Sue" ;
foaf:email "sue@example.com" .

:fred foaf:name "Fred" ;
foaf:homepage <http://www.example.com/fred> .

Nested OPTIONAL

{ ?s foaf:name ?n
OPTIONAL { ?s foaf:email ?e
OPTIONAL { ?s foaf:homepage ?h }

}
}

RDF Data

Query Result

Nested OPTIONAL:
Only match the child pattern if the
parent matches.

?s ?n ?e ?h

:john "John" "john@example.com" <http://www.example.com/john>

:sue "Sue" "sue@example.com"

:fred "Fred"

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.80

SPARQL 1.1 Negation: MINUS
Movies starring Sylvester Stallone that do not have a sequel

SELECT ?title
WHERE {

?movie dcterms:title ?title .
?movie movie:actor ?actor .
?actor movie:actor_name "Sylvester Stallone" .
MINUS {

?movie movie:sequel ?sequel .
}

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.81

SPARQL 1.1 Negation: NOT EXISTS / EXISTS
Movies starring Robert De Niro that have a sequel

SELECT ?title
WHERE {

?movie dcterms:title ?title .
?movie movie:actor ?actor .
?actor movie:actor_name "Robert De Niro" .
FILTER (EXISTS { ?movie movie:sequel ?sequel })

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.82

SPARQL Solution Modifiers: ORDER BY
Find all movies directed by Steven Spielberg ordered by ascending title and
descending producer name
SELECT ?title ?pname
WHERE {

?movie dcterms:title ?title .
?movie movie:director ?director .
?director movie:director_name "Steven Spielberg" .
?movie movie:producer ?producer .
?producer movie:producer_name ?pname .

}
ORDER BY ASC(?title) DESC(?pname)

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.83

SPARQL Solution Modifiers: LIMIT / OFFSET
Find the 6th through 10th movies directed by Steven Spielberg

SELECT ?title ?rdate
WHERE {

?movie dcterms:title ?title .
?movie movie:director ?director .
?director movie:director_name "Steven Spielberg" .
?movie movie:initial_release_date ?rdate .

}
ORDER BY ASC(?rdate)
OFFSET 5
LIMIT 5

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.84

SPARQL 1.1 SELECT Expressions
Build a description string for a movie

SELECT (CONCAT(?title,
" Released in ", ?rdate,
" Directed by ", ?dname) AS ?mStr)

WHERE {
?movie dcterms:title ?title .
?movie movie:director ?director .
?director movie:director_name ?dname .
?movie movie:initial_release_date ?rdate .

}
LIMIT 10

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.85

SPARQL 1.1 Grouping and Aggregation
Find all director actor pairs for movies in the Star Wars series

SELECT ?dname ?aname
WHERE {

?movie dcterms:title ?title .
?movie movie:director ?director .
?director movie:director_name ?dname .
?movie movie:actor ?actor .
?actor movie:actor_name ?aname .
?movie movie:film_series ?series .
?series movie:film_series_name "Star Wars" .

}
GROUP BY ?dname ?aname
ORDER BY ?dname ?aname

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.86

SPARQL 1.1 Grouping and Aggregation
Find the 10 movie series with the most movies

SELECT ?sname (COUNT(?movie) AS ?mcnt)
WHERE {

?movie movie:film_series ?series .
?series movie:film_series_name ?sname .

}
GROUP BY ?sname
ORDER BY DESC(?mcnt)
LIMIT 10

Available Aggregates:
COUNT(), SUM(), MIN(), MAX(), AVG(),
GROUP_CONCAT(), SAMPLE()

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.87

SPARQL 1.1 Grouping and Aggregation
Find movie series having 3 or 4 movies

SELECT ?sname (COUNT(?movie) AS ?mcnt)
WHERE {

?movie movie:film_series ?series .
?series movie:film_series_name ?sname .

}
GROUP BY ?sname
HAVING (COUNT(?movie) IN (3,4))
ORDER BY DESC(?mcnt)

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.88

SPARQL 1.1 Subqueries
Find information about actors who have worked with more than 40 different
directors
SELECT ?name
WHERE {

{ SELECT ?actor
WHERE {

?movie movie:actor ?actor .
?movie movie:director ?director .

}
GROUP BY ?actor
HAVING (COUNT(DISTINCT ?director) > 40)

}
?actor movie:actor_name ?name .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.89

SPARQL 1.1 Value Assignment: BIND
Find movies with a sequel named <title> II

SELECT ?title
WHERE {

?movie dcterms:title ?title .
?movie movie:sequel ?sequel .
BIND (CONCAT(?title," II") AS ?part2)
?sequel dcterms:title ?part2

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.90

SPARQL 1.1 Inline Data: VALUES
Find Action Movies with Uma Thurman and Comedy Movies with John Candy

SELECT ?aname ?title
WHERE { ?movie dcterms:title ?title .

?movie movie:actor ?actor .
?actor movie:actor_name ?aname .
?movie movie:genre ?genre .
?genre movie:film_genre_name ?gname .

VALUES (?aname ?gname) { ("Uma Thurman" "Action")
("John Candy" "Comedy") }

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.91

SPARQL ASK Queries
Has Danny DeVito acted in an Action movie?

ASK
WHERE { ?movie movie:actor ?actor .

?actor movie:actor_name "Danny DeVito" .
?movie movie:genre ?genre .
?genre movie:film_genre_name "Action" .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.92

SPARQL Construct Queries
Build a co-star graph

CONSTRUCT { ?actor1 movie:co_star ?actor2 }
WHERE { ?movie movie:actor ?actor1 .

?movie movie:actor ?actor2 .
FILTER (!sameTerm(?actor1, ?actor2))

}
LIMIT 50

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.93

SPARQL Describe Queries
Describe a single resource

DESCRIBE <http://data.linkedmdb.org/film/37164>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.94

SPARQL Describe Queries
Describe variables in a bigger query

DESCRIBE ?director
WHERE { ?movie dcterms:title "Toy Story" .

?movie movie:director ?director
}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.95

Agenda

2

4

SPARQL 1.1 Query Features by Example

Property Paths

96 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL 1.1 Property Paths

§ Uses regular expression style syntax to express path patterns
over RDF properties

§ Allows syntactic shortcuts for fixed length paths
§ Allows searching arbitrary length paths
§ Computes reachability rather than enumerating paths

Enhanced path searching in SPARQL

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.97

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.98

Property Path Constructs
Syntax Form Matches

iri An IRI (path of length 1)

^elt Reverse path (object to subject)

elt1 / elt2 Sequence path of elt1 followed by elt2

elt1 | elt2 Alternative path of elt1 or elt2

elt* Path composed of zero or more repetitions of elt

elt+ Path composed of one or more repetitions of elt

elt? Path composed of zero or one repetition of elt

!iri or !(iri1|iri2|…|irin) A path of length 1 that is not one of irii

!^iri or !(^iri1|^iri2|…|^irin) A path of length 1 that is not one of irii as reverse paths

!(iri1|…|irij|^irij+1|…|^irin) A path of length 1 that is not one of irii in the indicated direction

(elt) Grouping used to control precedence

iri is an IRI
elt is a path element, which may itself be composed of other path constructs

SPARQL 1.1 Property Path
Find all sequels for The Terminator

SELECT ?stitle
WHERE { ?movie dcterms:title "The Terminator" .

?movie movie:sequel+ ?sequel .
?sequel dcterms:title ?stitle

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.99

SPARQL 1.1 Property Path
Get names of writers and directors of movies starring Carl Weathers

SELECT ?name
WHERE {

?movie movie:actor ?actor .
?actor movie:actor_name "Carl Weathers" .
{ { ?movie movie:director ?director .

?director movie:director_name ?name }
UNION
{ ?movie movie:writer ?writer .

?writer movie:writer_name ?name }
}

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.100

SPARQL 1.1 Property Path
Get names of writers and directors of movies starring Carl Weathers
Simplified with property path syntactic sugar
SELECT ?name
WHERE {

?movie movie:actor/movie:actor_name "Carl Weathers" .
?movie (movie:director/movie:director_name)|

(movie:writer/movie:writer_name) ?name .}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.101

Agenda

2

5

SPARQL 1.1 Query Features by Example

Named Graphs

102 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Named Graphs

§ An RDF Dataset is a collection of RDF graphs
§ Contains one default graph, which does not have a name
§ Contains zero or more named graphs, where each graph is identified by

an IRI

§ A SPARQL query is executed against an RDF Dataset
§ FROM and FROM NAMED keywords are used to construct the

RDF Dataset for a query
§ The GRAPH keyword is used to control the active graph for

different parts of a query

The concept of an RDF Dataset

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.103

Constructing the RDF Dataset

Graph Name Triples

-- {t1,t2,t3}

<urn:g1> {t4,t5}

<urn:g2> {t6,t7}

<urn:g3> {t8,t9}

<urn:g4> {t10,t11}

Contents of RDF Triplestore

SELECT *
FROM <urn:g1>
FROM <urn:g3>
FROM NAMED <urn:g2>
FROM NAMED <urn:g3>
FROM NAMED <urn:g4>
WHERE { … }

SPARQL query with RDF
Dataset specification

Default Graph
{ t4, t5, t8, t9 }

Named Graphs
{ (<urn:g2>, { t6, t7 }),

(<urn:g3>, { t8, t9 }),
(<urn:g4>, { t10, t11 }) }

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.104

Using the GRAPH Keyword

SELECT *
FROM <urn:g1>
FROM <urn:g3>
FROM NAMED <urn:g2>
FROM NAMED <urn:g3>
FROM NAMED <urn:g4>
WHERE {

BGP1
GRAPH ?g { BGP2 }
GRAPH <urn:g4> { BGP3 }
GRAPH <urn:g1> { BGP4 }

}

SPARQL query with RDF
Dataset specification

Active Graph (BGP1)
{ <urn:g1> UNION <urn:g3> }

Active Graph (BGP2)
{ <urn:g2>, <urn:g3>, <urn:g4> }

Active Graph (BGP3)
{<urn:g4> }

Active Graph (BGP4)
{ }

Within a GRAPH
clause:

- BGP is executed
against each active
graph separately
(e.g. BGP2 against
g2, g3, g4).

- Subgraph match
must occur within a
single graph.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.105

SPARQL Named Graph Query
Find the number of bills sponsored by each politician in the 110th and 111th
congress
SELECT ?n ?g (count(?b) as ?bcnt)
FROM usgov:people
FROM NAMED usgov:bills_110
FROM NAMED usgov:bills_111
WHERE
{ ?s foaf:name ?n

GRAPH ?g { ?b bill:sponsor ?s }
}
GROUP BY ?n ?g
ORDER BY ?n ?g

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.106

SPARQL Named Graph Query
Edge Property: Find critics and their ratings for The Matrix

SELECT ?cname ?r
WHERE { ?movie dcterms:title "The Matrix" .

GRAPH ?review { ?critic movie:reviewed ?movie .}
?review movie:rating ?r
?critic movie:critic_name ?cname

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.107

Agenda

2 SPARQL 1.1 Query Features by Example

108 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Federated Queries6

SPARQL 1.1 Federated Query

§ Used to execute a single query over multiple, possibly
distributed RDF datasources

§ Portions of a query can be directed to particular SPARQL
endpoints

§ Results are returned to the federated query processor and
combined with the rest of the query

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.109

SPARQL 1.1 Federated Query
Find birth year, child and spouse information from DBPedia for Tom Hanks

SELECT ?a ?dbpUri ?byear ?child ?spouse
WHERE {

?a movie:actor_name "Tom Hanks";
owl:sameAs ?dbpUri .

FILTER (STRSTARTS(STR(?dbpUri),"http://dbpedia.org"))
SERVICE <http://dbpedia.org/sparql> {

?dbpUri dbo:birthYear ?byear ;
dbo:child ?child ;
dbo:spouse ?spouse .

}
}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.110

Agenda

111 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

SPARQL Update7

SPARQL 1.1 Update

§ Insert triples into an RDF Graph
§ Delete triples from an RDF Graph
§ Load an RDF Graph
§ Clear an RDF Graph
§ Create a new RDF Graph
§ Drop an RDF Graph
§ Copy, move or add the content of one RDF Graph to another
§ Perform a group of update operations as a single action

Capabilities of SPARQL Update

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.112

SPARQL 1.1 Update

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA {

<http://example/book1> dc:title "A new book" ;
dc:creator "A.N.Other" . }

Example – INSERT DATA

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book1> ns:price 42 .
<http://example/book1> dc:title "A new book" .
<http://example/book1> dc:creator "A.N.Other" .

Data after:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book1> ns:price 42 .

Data before:

Constant quad
pattern

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.113

SPARQL 1.1 Update
Example – DELETE DATA

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book2> ns:price 42 .

Data after:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .

Data before:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
DELETE DATA {

<http://example/book2> dc:title "David Copperfield" ;
dc:creator "Edmund Wells" . }

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.114

SPARQL 1.1 Update
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DELETE { ?person foaf:givenName 'Bill' }
INSERT { GRAPH <foaf:g1> {?person foaf:givenName 'William' } }
WHERE { ?person foaf:givenName 'Bill' }

Example – DELETE/INSERT

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
foaf:g1 {

<http://example/president27> foaf:givenName "William" .
<http://example/president42> foaf:givenName "William" .

}
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:familyName "Clinton" .

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://example/president27> foaf:givenName "Bill" .
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:givenName "Bill" .
<http://example/president42> foaf:familyName
"Clinton" .

Data before:

Quad pattern

Full SPARQL 1.1 query
pattern syntax1. Row source for bindings

2

3

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.115

SPARQL 1.1 Update
Example – LOAD

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses

Data before:

LOAD <http://example.com/addresses>
INTO GRAPH <http://example.com/addresses> GRAPH <URI>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.116

SPARQL 1.1 Update
Example – CLEAR

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

Data before:

CLEAR GRAPH <http://example.com/addresses>

GRAPH <URI>
or
DEFAULT
or
NAMED
or
ALL

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.117

SPARQL 1.1 Update
Example – CREATE

Graph: http://example.com/addresses

Data after:Data before:

CREATE GRAPH <http://example.com/addresses>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.118

SPARQL 1.1 Update
Example – DROP

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
<http://example/fred> foaf:mbox <mailto:fred@example> .

}

Data before:

DROP GRAPH <http://example.com/addresses>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.119

SPARQL 1.1 Update
Example – COPY

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/fred> foaf:mbox <mailto:fred@example> .
}

Data before:

COPY GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.120

SPARQL 1.1 Update
Example – MOVE

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/fred> foaf:mbox <mailto:fred@example> .
}

Data before:

MOVE GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.121

SPARQL 1.1 Update
Example – ADD

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/fred> foaf:mbox <mailto:fred@example> .
<http://example/bill> foaf:mbox <mailto:bill@example> .

}

Data after:

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.com/> .
Graph: http://example.com/addresses
ex:addresses {

<http://example/bill> foaf:mbox <mailto:bill@example> .
}
Graph: http://example.com/addresses2
ex:addresses2 {

<http://example/fred> foaf:mbox <mailto:fred@example> .
}

Data before:

ADD GRAPH <http://example.com/addresses>
TO GRAPH <http://example.com/addresses2>

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.122

SPARQL 1.1 Update
Transaction Support

INSERT { ?s :fullName ?name }
WHERE {
SELECT ?s (CONCAT(?fname, " ", ?lname) AS ?name)
WHERE { ?s :fname ?fname;

:lname ?lname }
};
DELETE { ?s :mbox ?mail }
INSERT { ?s :email ?mail }
WHERE { ?s :mbox ?mail };
DELETE DATA { :emp1 :phone "603-123-4567" . }

A sequence of
updates should
run as a single
transaction

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.123

Agenda

3 Named Graphs for Edge Properties

124 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Adding Movie Reviews
Edge
John likes Office Space

movie:31916

"Office Space"

:person123

"John"

foaf:name
dcterms:title

sioc:likes

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.125

Adding Movie Reviews
John likes Office Space
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

INSERT DATA {
John likes Office Space
:person123 foaf:name "John" ;

sioc:likes movie:3196 .
}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.126

Adding Movie Reviews
Who likes Office Space?
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

SELECT ?name
WHERE {

?person foaf:name ?name .
?person sioc:likes ?movie .
?movie dcterms:title "Office Space" .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.127

Adding Movie Reviews
Edge Property
John likes Office Space with a rating of 5

movie:31916

"Office Space"

:person123

"John"

foaf:name
dcterms:title

sioc:likes
schema:ratingValue 5

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.128

Adding Movie Reviews
John likes Office Space with a rating of 5
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

remove triple
DELETE DATA { :person123 sioc:likes movie:31916 . }
INSERT DATA {

replace triple with quad assigning :edge1 as id
GRAPH :edge1 { :person123 sioc:likes movie:3196 . }
add edge property for rating
:edge1 schema:ratingValue 5 .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.129

Adding Movie Reviews
Edge Property
Jill also likes Office Space with a rating of 5

movie:31916

"Office Space"

:person123

"John"

foaf:name
dcterms:title

sioc:likes
schema:ratingValue 5

:person456

sioc:likes

"Jill"
foaf:name

schema:ratingValue 5

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.130

Adding Movie Reviews
Jill also likes Office Space with a rating of 5
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

INSERT DATA {
add Jill
:person456 foaf:name "Jill" .
edge id of :edge2 for Jill likes Office Space
GRAPH :edge2 { :person456 sioc:likes movie:3196 . }
add edge property for rating
:edge2 schema:ratingValue 5 .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.131

Adding Movie Reviews
Find ratings for Office Space
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

SELECT ?name ?rating
WHERE {

?movie dcterms:title "Office Space" .
GRAPH ?edge { ?person sioc:likes ?movie }
?person foaf:name ?name .
?edge schema:ratingValue ?rating .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.132

Adding Movie Reviews
Who likes Office Space?
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

SELECT ?name
WHERE {

?person foaf:name ?name .
?person sioc:likes ?movie .
?movie dcterms:title "Office Space" .

}

Old queries still work!

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.133

Adding Movie Reviews
Edge to Vertex Relationship
The source of “John likes Office
Space” is Facebook post 456

movie:31916

"Office Space"

:person123

"John"

foaf:name
dcterms:title

sioc:likes
schema:ratingValue 5

fb:post456

:person456

sioc:likes

"Jill"
foaf:name

schema:ratingValue 5

prov:hasPrimarySource

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.134

Adding Movie Reviews
The source of “John likes Office Space” is Facebook post 456
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX : <http://example.com/data/>

INSERT DATA {
add source information for :edge1
:edge1 prov:hadPrimarySource fb:post456 .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.135

Adding Movie Reviews
What is the source of “John likes Office Space”?
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX : <http://example.com/data/>

SELECT ?source
WHERE {

?person foaf:name "John" .
GRAPH ?edge { ?person sioc:likes ?movie }
?movie dcterms:title "Office Space" .
?edge prov:hadPrimarySource ?source .

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.136

Adding Movie Reviews

movie:31916

"Office Space"

:person123

"John"

foaf:name
dcterms:title

sioc:likes
schema:ratingValue 5

fb:post456

:person456

sioc:likesprov:influenced

"Jill"
foaf:name

:person789

"Bob"

foaf:name

prov:hasPrimarySource

schema:ratingValue 5

Edge to Edge Relationship +
Edge to Vertex Relationship
Bob suspects that John’s like
influenced Jill’s like

prov:hasPrimarySource

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.137

Adding Movie Reviews
Bob suspects that John’s like influenced Jill’s like
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX fb: <http://www.facebook.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX : <http://example.com/data/>

INSERT DATA {
add Bob
:person789 foaf:name "Bob" .
edge id of :edge3 for influenced
GRAPH :edge3 { :edge1 prov:influenced :edge2 . }
Bob is the source of the influenced edge
:edge3 prov:hasPrimarySource :person789 .

}
Copyright © 2020, Oracle and/or its affiliates. All rights reserved.138

Adding Movie Reviews
Who suspects that John’s like influenced Jill’s like
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX : <http://example.com/data/>

SELECT ?person
WHERE {

?john foaf:name "John" .
GRAPH ?edge1 { ?john sioc:likes ?movie }
?movie dcterms:title "Office Space" .
?jill foaf:name "Jill" .
GRAPH ?edge2 { ?jill sioc:likes ?movie }
GRAPH ?edge3 { ?edge1 prov:influenced ?edge2 }
?edge3 prov:hasPrimarySource/foaf:name ?person .

} Copyright © 2020, Oracle and/or its affiliates. All rights reserved.139

Adding Movie Reviews
Who likes Office Space?
PREFIX movie: <http://data.linkedmdb.org/movie/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX schema: <http://data.linkedmdb.org/movie/>
PREFIX : <http://example.com/data/>

SELECT ?name
WHERE {

?person foaf:name ?name .
?person sioc:likes ?movie .
?movie dcterms:title "Office Space" .

}

Old queries still work!

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.140

Agenda

4 Comparison with PG Query Languages

141 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Graph Query Languages
RDF Graph Property Graph

SPARQL 1.1

SPARQL 1.2
SPARQL*

PGQL

SQL/PGQ
GQL

G-CORE

Cypher

GSQL

Gremlin

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.142

Property Graph Query Languages
§ PG query language design aligns more with graph as a data

structure rather than RDF triple/quad
§ More features for path searching and graph algorithms

§ Shortest path, k-shortest path, inDegree(), outDegree(), …
§ Use “ASCII-art” for edge pattern expression

§ (a:person)-[e:knows]->(b:person)
§ Vertices and Edges are objects with properties

§ SPARQL has more features for data integration use cases
§ Standard Protocol
§ OPTIONAL patterns
§ Federated Query
§ Entailment Regimes

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.143

PGQL Graph Query Language
Graph pattern matching

(person) –[:works_for] -> (person)

Basic patterns and reachability patterns
Can we reach from A to B with an arbitrary number of hops?

Shortest path queries
Find the shortest path from A to B

Familiarity for SQL users
Similar language constructs and syntax

SELECT … WHERE ….GROUP BY … ORDER BY
“Result set” (table) as output

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

pgql-lang.org

144

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.145

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Identifiers for resources,
classes, types are Strings
(labels) not URIs

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.146

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Variables are not
prefixed with a ‘?’.
Syntax rules used to
identify variables.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.147

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Edge traversals are
specified with ASCII art
instead of triple patterns

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.148

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Vertex type information
is specified with a label
constraint instead of
rdf:type triples.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.149

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Edge type information is
specified with a label
constraint instead of
predicate URI

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.150

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Vertex properties are
specified as attributes
with dot notation
instead of with triple
patterns and variables.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.151

PGQL for SPARQL Users

PGQL 1.2
SELECT p2.name AS friend, u.name AS university
MATCH (p1:Person) -[:knows]-> (p2:Person) ,

(p1) -[:studentOf]-> (u:University) ,
(p2) -[:studentOf]-> (u)

WHERE p1.name = 'Lee'

“Find people that Lee knows and that are a student at the same university as Lee”

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

} Projection and filter
expressions are similar

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.152

PGQL for SPARQL Users
Specifying everything as triples can be
verbose, but …

Allows discovery of schema:
What edge types and property types are
available?
SELECT DISTINCT ?p
WHERE { ?s ?p ?o . }

Works well for irregular data:
Project all properties for each Student
SELECT ?s ?p ?o
WHERE {

?s a :Student ;
?s ?p ?o .

}

What vertex types are available?
SELECT DISTINCT ?t
WHERE { ?s rdf:type ?t . }

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT (?p2Name AS ?friend) (?univName AS ?university)
WHERE {

?p1 a :Person; :studentName ?p1Name .
?p2 a :Person; :studentName ?p2Name .
?u a :University; :universityName ?univName .
?p1 :studentOf ?u .
?p1 :knows ?p2 .
?p2 :studentOf ?u .
FILTER (?p1Name = "Lee")

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.153

Path Searching in PGQL and SPARQL
Reachability: Is Lee connected to Tom through a sequence of knows relations?

SPARQL 1.1
PREFIX : <http://univ/vocab#>
SELECT ("yes" AS ?isConnected)
WHERE {

?p1 :studentName "Lee" .
?p2 :studentName "Tom" .
?p1 :knows+ ?p2 .

}

PGQL 1.2
SELECT 'yes' AS isConnected
MATCH (p1:Person) -/:knows+/-> (p2:Person)
WHERE p1.name = 'Lee' AND p2.name = 'Tom'

Both query languages use regex-
style syntax for one or more and
zero or more. PGQL uses /p/
instead of [p] to specify reachability

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.154

Path Searching in PGQL and SPARQL
Shortest Path: Find the shortest path connecting Lee to Tom through a
sequence of knows relations

SPARQL 1.1
Not Possible

PGQL 1.2
SELECT COUNT(e) AS pathLen,

ARRAY_AGG(b.name) AS friends
MATCH SHORTEST ((p1:Person) ((a) –[e:knows]-> (b))* (p2:Person))
WHERE p1.name = 'Lee' AND p2.name = 'Tom'

PGQL uses MATCH SHORTEST to specify shortest
path search. Also, each path result is treated as a
“horizontal group” and aggregates can be used to
project the path.

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.155

Agenda

5 Graph Analytics with RDF Data

156 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Graph Analytics with RDF Data

§ RDF data model is well suited for data integration
§ Flexible data model – tolerant of dirty data
§ Semantics for merging graphs is well-defined

§ URIs
§ OWL/RDFS entailment

§ We can easily extract subgraphs for analysis with graph analytics
engines

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.157

Graph Analytics with RDF Data
Movie/Actor Property Graph
extracted from LMDB RDF Graph

Actor
id: 123
name: "John Candy"

Movie
id: 456
title: "The Great Outdoors“
genre: "Comedy"

acted_in

had_actor

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.158

Oracle Graph Server and Client

In-memory
analytics server

Client libraries

analytics-server (PGX): *.rpm
• Installed in /opt/oracle/graph
• Server .war file
• Start scripts and conf
• Graph store access API

oracle-graph-client-<ver>.zip
• JShell CLI, Zeppelin interpreters
• Visualization
• Graph store access API

Graph store

Graph Database APIs

Graph
Server
and
Client

Software package for use with Oracle
Database
• Client Libraries for building Property Graph

Applications in database or in-memory
• JShell CLI, Zepplin Interpreters, Viz

Application

• PGX In-memory Analytics Server
• Run PGQL queries

• 50 Pre-built Graph Algorithms

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.159

Workflow for Graph Analytics with RDF

LMDB RDF Data

CREATE VIEW
Vertex / Edge
Relational Views

SPARQL/SQL

In-Memory Analyst
• PGQL Queries
• Graph Algorithms

PGX JShell
Client

Load into memory

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.161

Extracting the Property Graph
Create a Vertex view for Actors
CREATE VIEW ACTORS AS
SELECT ACTOR$RDFVID AS ID, 'Actor' AS "label", NAME AS "name"
FROM TABLE(SEM_MATCH(
'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?actor ?name
WHERE {

?actor rdf:type movie:actor ;
movie:actor_name ?name

}',
SEM_MODELS('LMDB'),…));

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.162

Extracting the Property Graph
Create a Vertex view for Movies
CREATE VIEW MOVIES AS
SELECT MOVIE$RDFVID AS ID, 'Movie' AS "label", MTITLE AS "title", MGENRE AS "genre"
FROM TABLE(SEM_MATCH(

'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dcterms: <http://purl.org/dc/terms/title>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?movie (MAX(STR(?genre)) AS ?mGenre) (MAX(STR(?title)) AS ?mTitle)
WHERE {

?movie rdf:type movie:film ;
dcterms:title ?title ;
movie:genre/movie:film_genre_name ?genre .

}
GROUP BY ?movie',
SEM_MODELS('LMDB'), …));

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.163

Extracting the Property Graph
Create an Edge view for Actor-[:acted_in]->Movie
CREATE VIEW ACTED_IN AS
SELECT ACTOR$RDFVID AS SOURCE_ID, MOVIE$RDFVID AS DEST_ID, 'acted_in' AS "label"
FROM TABLE(SEM_MATCH(

'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?actor ?movie
WHERE {

?movie movie:actor ?actor
}',
SEM_MODELS('LMDB'),…));

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.164

Extracting the Property Graph
Create an Edge view for Movie-[:hadActor]->Actor
CREATE VIEW HAD_ACTOR AS
SELECT MOVIE$RDFVID AS SOURCE_ID, ACTOR$RDFVID AS DEST_ID, 'had_actor' AS "label"
FROM TABLE(SEM_MATCH(

'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX movie: <http://data.linkedmdb.org/movie/>
SELECT ?actor ?movie
WHERE {

?movie movie:actor ?actor
}',
SEM_MODELS('LMDB'),…));

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.165

PGX Configuration File for loading the Graph
{

"name":"lmdb",
"jdbc_url":"jdbc:oracle:thin:@localhost:1521/orcl",
"username":"rdfuser",
"keystore_alias":"database1",
"vertex_id_strategy": "keys_as_ids",

"vertex_providers":[
{

"name":"Actor",
"format":"rdbms",
"database_table_name":"ACTORS",
"key_column":"ID",
"key_type": "long",
"props":[

{
"name":"name",
"type":"string"

}
]

},
{

"name":"Movie",
"format":"rdbms",
"database_table_name":"MOVIES",
"key_column":"ID",
"key_type": "long",
"props":[

{
"name":"title",
"type":"string"

},
{

"name":"genre",
"type":"string"

}
]

}
],

"edge_providers":[
{

"name":"acted_in",
"format":"rdbms",
"database_table_name":"ACTED_IN",
"source_column":"SOURCE_ID",
"destination_column":"DEST_ID",
"source_vertex_provider":"Actor",
"destination_vertex_provider":"Movie"

},
{

"name":"had_actor",
"format":"rdbms",
"database_table_name":"HAD_ACTOR",
"source_column":"SOURCE_ID",
"destination_column":"DEST_ID",
"source_vertex_provider":"Movie",
"destination_vertex_provider":"Actor"

}
]

}

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.166

Example PGQL Queries

Who acted in Home Alone?

SELECT a.name AS name
MATCH (m:Movie)-[:had_actor]->(a:Actor)
WHERE m.title = 'Home Alone'

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.167

Example PGQL Queries

Who are the top actors by number of movies?

SELECT a.name AS name, count(*) AS movieCount
MATCH (a:Actor)-[:acted_in]->(m:Movie)
GROUP BY a
ORDER BY movieCount DESC
LIMIT 10

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.168

Example PGQL Queries

Is there a path from Charlie Chaplin to Mr. T?

PATH co_star AS (:Actor)-[:acted_in]->(:Movie)<-[:acted_in]-(:Actor)
SELECT 1 AS isReachable
MATCH (a)-/:co_star+/->(b)
WHERE a.name = 'Charlie Chaplin' AND b.name = 'Mr. T'

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.169

Example PGQL Queries

Find the shortest path from Charlie Chaplin to Mr. T

SELECT COUNT(e) AS pathLen,
ARRAY_AGG(t.title) AS movie,
ARRAY_AGG(t.name) AS coStar

MATCH SHORTEST ((a) ((s)-[e:acted_in]-(t))* (b))
WHERE a.name = 'Charlie Chaplin' AND b.name = 'Mr. T'

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.170

Computing Page Rank over the Graph
Finding the most important movies and actors

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.171

Computing Page Rank over the Graph
Finding the most important movies and actors

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.172

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.173

Copyright © 2020 Oracle and/or its affiliates.174

R2RML map. doc = {TriplesMap1, TriplesMap2, …}

Copyright © 2020 Oracle and/or its affiliates.175

PERSON CHILD_OF

name
worth

child
parent

-- PERSON table --
#
ex:TMap_PERSON a rr:TriplesMap ;
rr:logicalTable … ;
rr:subjectMap … ;
rr:predicateObjectMap … .

-- CHILD_OF (relationship) table --
EDGEè (child)-[childOf]->(parent)
#
ex:TMap_CHILD_OF a rr:TriplesMap ;
rr:logicalTable … ;
rr:subjectMap … ;
rr:predicateObjectMap … .

R2RML: TriplesMap à1 LogicalTable

Copyright © 2020 Oracle and/or its affiliates.176

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable [rr:tableName "RDFU.PERSON"] ;
rr:subjectMap … ;
rr:predicateObjectMap … .

-- CHILD_OF (relationship) table --
EDGEè (child)-[childOf]->(parent)
#
ex:TMap_CHILD_OF
rr:logicalTable [rr:tableName "RDFU.CHILD_OF"] ;
rr:subjectMap … ;
rr:predicateObjectMap … .

R2RML: TriplesMap à1 SubjectMap,
à* PredicateObjectMap

177 Copyright © 2020 Oracle and/or its affiliates.

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable … ;
rr:subjectMap [

rr:template "http://ex/PERSON/{NAME}" ;
rr:class ex:Person] ;

rr:predicateObjectMap … .

R2RML: TriplesMap à1 SubjectMap,
à* PredicateObjectMap

178 Copyright © 2020 Oracle and/or its affiliates.

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable … ;
rr:subjectMap … ;
rr:predicateObjectMap

[rr:predicate :name ;
rr:objectMap [rr:column "NAME"]]

, [rr:predicate :worth ;
rr:objectMap [rr:column "WORTH"]] .

R2RML: SubjectMap, PredicateMap, ObjectMap

Copyright © 2020 Oracle and/or its affiliates.179

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable … ;
rr:subjectMap [

rr:template "http://ex/PERSON/{NAME}" ;
rr:class ex:Person] ;

rr:predicateObjectMap
[rr:predicate :name ;

rr:objectMap [rr:column "NAME"]]
, [rr:predicate :worth ;

rr:objectMap [rr:column "WORTH"]] .

R2RML: RefObjectMap

Copyright © 2020 Oracle and/or its affiliates.180

-- CHILD_OF (relationship) table --
EDGEè (child)-[childOf]->(parent)
#
ex:TMap_CHILD_OF
rr:logicalTable … ;
rr:subjectMap [

rr:template "http://ex/PERSON/{CHILD}" …] ;
rr:predicateObjectMap [

rr:predicate :childOf ;
rr:objectMap [

rr:parentTriplesMap ex:TMap_PERSON ;
rr:joinCondition
[rr:child "PARENT" ; rr:parent "NAME"]]] .

PERSON CHILD_OF

name
worth

child
parent

R2RML: GraphMap

Copyright © 2020 Oracle and/or its affiliates.181

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable … ;
rr:subjectMap [… rr:graph :personInfoGraph ; …]
rr:predicateObjectMap …
, [rr:graph :moneyMattersGraph ; rr:predicate :worth ;

rr:objectMap [rr:column "WORTH"]] .

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.182

Copyright © 2020 Oracle and/or its affiliates.

Resources for Getting Started

• VM image: : https://www.oracle.com/database/technologies/databaseappdev-vm.html

• Oracle Database Docker
Single instance database from

https://github.com/oracle/docker-images/tree/master/OracleDatabase

• Oracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

183

https://github.com/oracle/docker-images/tree/master/OracleDatabase

Relational to RDF Quads:
Example: ER model and Relational Data

Relational DataER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

Copyright © 2020 Oracle and/or its affiliates.184

name worth

John 1 Bil

Mary

PERSON

child parent

Mary John

CHILD_OF

name

TopUniv

UNIVERSITY

don_id donor recipient year

1 John TopUniv 2010

2 John TopUniv 2012

DONATED_TO

admit_id student univ year

1 Mary TopUniv 2011

ADMITTED_TO

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

Relational to RDF Quads:
Entity in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- PERSON table --
#
ex:TMap_PERSON
rr:logicalTable [rr:tableName "RDFU.PERSON"] ;

rr:subjectMap [
rr:template "http://ex/PERSON/{NAME}" ;
rr:class ex:Person] ;

rr:predicateObjectMap
[rr:predicate :name ; rr:objectMap [rr:column "NAME"]]

, [rr:predicate :worth ; rr:objectMap [rr:column "WORTH"]] .

Copyright © 2020 Oracle and/or its affiliates.185

Relational to RDF Quads:
Entity in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- UNIVERSITY table --
#
ex:TMap_UNIVERSITY
rr:logicalTable [rr:tableName "RDFU.UNIVERSITY"] ;

rr:subjectMap [
rr:template "http://ex/UNIVERSITY/{NAME}" ;
rr:class ex:University] ;

rr:predicateObjectMap
[rr:predicate :name ; rr:objectMap [rr:column "NAME"]] .

Copyright © 2020 Oracle and/or its affiliates.186

Relational to RDF Quads:
Relation in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- CHILD_OF (relationship) table --
EDGEè (child)-[childOf]->(parent)
#
ex:TMap_CHILD_OF
rr:logicalTable [rr:tableName "RDFU.CHILD_OF"] ;

rr:subjectMap [
rr:template "http://ex/PERSON/{CHILD}" ;
rr:class ex:Child] ;

rr:predicateObjectMap [
rr:predicate :childOf ;
rr:objectMap [

rr:parentTriplesMap ex:TMap_PERSON ;
rr:joinCondition [rr:child "PARENT" ; rr:parent "NAME"]]] .

Copyright © 2020 Oracle and/or its affiliates.187

Relational to RDF Quads:
Relation-As-Entity in ER è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- DONATED_TO (relationship-as-entity) table --
#
ex:TMap_DONATED_TO_AS_ENTITY
rr:logicalTable [rr:tableName "RDFU.DONATED_TO"] ;

rr:subjectMap [
rr:template "http://ex/donationId#{DON_ID}" ;
rr:class ex:Donation] ;

…
rr:predicateObjectMap
[rr:predicate :year ; rr:objectMap [rr:column "YEAR"]] .

Copyright © 2020 Oracle and/or its affiliates.188

Relational to RDF Quads:
Relation in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- DONATED_TO (relationship) table --
EDGEè (donor)-[donatedTo]->(recipient)
ex:TMap_DONATED_TO
rr:logicalTable [rr:tableName "RDFU.DONATED_TO"] ;

rr:subjectMap [
rr:template "http://ex/PERSON/{DONOR}" ;
rr:class ex:Donor] ;

rr:predicateObjectMap [
rr:graphMap [rr:template "http://ex/donationId#{DON_ID}"] ;
rr:predicate :donatedTo ;
rr:objectMap [

rr:parentTriplesMap ex:TMap_UNIVERSITY ;
rr:joinCondition [rr:child "RECIPIENT" ; rr:parent "NAME"]]] .

Copyright © 2020 Oracle and/or its affiliates.189

Relational to RDF Quads:
Relation-As-Entity in ER è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- ADMITTED_TO (relationship-as-entity) table --
#
ex:TMap_ADMITTED_TO_AS_ENTITY
rr:logicalTable [rr:tableName "RDFU.ADMITTED_TO"] ;

rr:subjectMap [
rr:template "http://ex/admissionId#{ADMIT_ID}" ;
rr:class ex:Admission] ;

…
rr:predicateObjectMap
[rr:predicate :year ; rr:objectMap [rr:column "YEAR"]] .

Copyright © 2020 Oracle and/or its affiliates.190

Relational to RDF Quads:
Relation in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- ADMITTED_TO (relationship) table --
EDGEè (student)-[admittedTo]->(univ)
ex:TMap_ADMITTED_TO
rr:logicalTable [rr:tableName "RDFU.ADMITTED_TO"] ;

rr:subjectMap [
rr:template "http://ex/PERSON/{STUDENT}" ;
rr:class ex:Admitted] ;

rr:predicateObjectMap [
rr:graphMap [rr:template "http://ex/admissionId#{ADMIT_ID}"] ;
rr:predicate :admittedTo ;
rr:objectMap [
rr:parentTriplesMap ex:TMap_UNIVERSITY ;
rr:joinCondition [rr:child "UNIV" ; rr:parent "NAME"]]] .

Copyright © 2020 Oracle and/or its affiliates.191

Relational to RDF Quads:
Resulting RDF Graph, SPARQL query

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

:c
hi

ld
O

f

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.
SELECT ?paName ?univName ?chName
WHERE {

?child :childOf ?parent .
#
graph ?donEdge { ?parent :donatedTo ?univ }
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (?admYear = ?donYear + 1)
?child :name ?chName .
?parent :name ?paName .
?univ :name ?univName }

Copyright © 2020 Oracle and/or its affiliates.192

SPARQL Query RDF Graph

:e12 è<http://ex/donationId#1>, :e12-2 è<http://ex/donationId#2>,
:e32 è<http://ex/admissionId#1>

triple name is specified as graph name.

Relational to RDF Quads:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively.
Mary, a child of John, got admitted to Top University in 2011.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

:c
hi

ld
O

f

PREFIX orardf: <http://xmlns.oracle.com/orardf/>
select ?prop ?domain ?range
{graph orardf:schgraph> {

?prop rdf:type rdf:Property ;
orardf:includesDomainRange ?domrng .

?domrng orardf:includesDomain ?domain ;
orardf:includesRange ?range .

}}

Copyright © 2020 Oracle and/or its affiliates.193

RDF Graph

RDB2RDF_METADATA=T

?prop ?domain ?range

:admittedTo :Admitted :University

:childOf :Child :Person

:donatedTo :Donor :University

:name :Person, :University xsd:string

:worth :Person xsd:string

:year :Admission, :Donation xsd:decimal

Relational to RDF Quads:
Additional Data

Additional Relational DataER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

Copyright © 2020 Oracle and/or its affiliates.194

HELPED

help_id
don_id
admit_id

…
Bob suspects that the 2010 donation helped the 2011 admission.

SUSPECTS

name
help_id

name help_id

Bob 1

SUSPECTS

help_id don_id admit_id

1 1 1

HELPED

Relational to RDF Quads:
Relation-As-Entity in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- HELPED (relationship-as-entity) table --
#
ex:TMap_HELPED_AS_ENTITY
rr:logicalTable [rr:tableName "RDFU.HELPED"] ;

rr:subjectMap [
rr:template "http://ex/helpId#{HELP_ID}" ;
rr:class ex:Helping] ;

…

Copyright © 2020 Oracle and/or its affiliates.195

HELPED

help_id
don_id
admit_id

…
Bob suspects that the 2010 donation helped the 2011 admission.

SUSPECTS

name
help_id

Relational to RDF Quads:
Relation in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- HELPED (relationship) table --
EDGEè (don_id)-[helped]->(admit_id)
#
ex:TMap_HELPED
rr:logicalTable [rr:tableName "RDFU.HELPED"] ;

rr:subjectMap [rr:template "http://ex/donationId#{DON_ID}"] ;

rr:predicateObjectMap [
rr:graphMap [rr:template "http://ex/helpId#{HELP_ID}"] ;
rr:predicate :helped ;
rr:objectMap [
rr:parentTriplesMap ex:TMap_ADMITTED_TO_AS_ENTITY ;
rr:joinCondition [rr:child ”ADMIT_ID" ; rr:parent ”ADMIT_ID"]]] .

Copyright © 2020 Oracle and/or its affiliates.196

HELPED

help_id
don_id
admit_id

…
… Bob suspects that the 2010 donation helped the 2011 admission.

SUSPECTS

name
help_id

Relational to RDF Quads:
Relation in ER model è R2RML

R2RML mappingER diagram

PERSON

UNIVERSITY

CHILD_OF

DONATED_TO

name
worth

name

child
parent

ADMITTED_TO

don_id
donor
recipient
year

admit_id
student
univ
year

-- SUSPECTS table --
EDGEè (name)-[suspects]->(help_id)
#
ex:TMap_SUSPECTS
rr:logicalTable [rr:tableName "RDFU.SUSPECTS"] ;

rr:subjectMap [rr:template "http://ex/PERSON/{NAME}"] ;

rr:predicateObjectMap
[rr:predicate :name ; rr:objectMap [rr:column ”NAME"]] ;
[rr:predicate :suspects ;
rr:objectMap [
rr:parentTriplesMap ex:TMap_HELPED_AS_ENTITY ;
rr:joinCondition [rr:child ”HELP_ID" ; rr:parent ”HELP_ID"]]] .

Copyright © 2020 Oracle and/or its affiliates.197

HELPED

help_id
don_id
admit_id

SUSPECTS

name
help_id

…
… Bob suspects that the 2010 donation helped the 2011 admission.

Relational to RDF Quads:
Schema for Resulting RDF Graph

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

Copyright © 2020 Oracle and/or its affiliates.198 :e12 è<http://ex/donationId#1>, :e12-2 è<http://ex/donationId#2>,
:e32 è<http://ex/admissionId#1>, :e1232 è<http://ex/helpId#1>.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

Schema for RDF Data

How was the schema

affected? Two new

properties got added!

?prop ?domain ?range

:admittedTo :Admitted :University

:childOf :Child :Person

:donatedTo :Donor :University

:helped :Donation :Admission

:suspects :Person :Helping

:name :Person, :University xsd:string

:worth :Person xsd:string

:year :Admission, :Donation xsd:decimal

｛

Relational to RDF Quads:
Resulting RDF Graph, SPARQL query

John, whose net worth is $1 billion, donated twice to Top University, in the years 2010 and 2012, respectively. Mary, a child of
John, got admitted to Top University in 2011. Bob suspects that the 2010 donation helped the 2011 admission.

SELECT ?paName ?univName ?chName
WHERE {

?child :childOf ?parent .
#
graph ?donEdge { ?parent :donatedTo ?univ }
?donEdge :year ?donYear .
#
graph ?admEdge { ?child :admittedTo ?univ }
?admEdge :year ?admYear .
#
FILTER (?admYear = ?donYear + 1)
?child :name ?chName .
?parent :name ?paName .
?univ :name ?univName }

Copyright © 2020 Oracle and/or its affiliates.199

Find names of parent, university, and child where parent
donated to the university during a year and his/her child
got admitted to the university in the following year.

SPARQL Query

:e12 è<http://ex/donationId#1>, :e12-2 è<http://ex/donationId#2>,
:e32 è<http://ex/admissionId#1>, :e1232 è<http://ex/helpId#1>.

:e12-2

:e12

:e32

v1

v3

v2

:n
am

e
 “J

oh
n”

:w
or

th
 “

1 B
il"

:n
am

e
 “

M
ar

y”

nam
e = “TopU

niv”

:admitte
dTo

:donatedTo

:donatedTo
:year 2012

:year 2010

:year 2
011

v7

:h
el

pe
d

:e1232

:n
am

e
 “

B
ob

”
:su

sp
ec

ts

:c
hi

ld
O

f

All pre-existing

queries remain valid.

Agenda

Part 1
• Backward Compatibility in Evolving Graphs
• Distinguishing among Graph Types
• Brief Intro to RDF
• Backward Compatibility: An Example and Demo
Part 2
• Intro to SPARQL Query and SPARQL Update
• Evolving Data: Movie Review Demo
• PGQL vs SPARQL
• Graph Analytics on RDF data
• Demo
Part 3
• Intro to R2RML
• Advanced Modeling using R2RML: An Example and Demo
• Baseball Data: A Real-World Example and Demo

Copyright © 2020 Oracle and/or its affiliates.20
0

Copyright © 2020 Oracle and/or its affiliates.

Resources for Getting Started

• VM image: https://www.oracle.com/database/technologies/databaseappdev-vm.html

• Oracle Database Docker
Single instance database from

https://github.com/oracle/docker-images/tree/master/OracleDatabase

• Oracle Cloud
Use Oracle Database Cloud Service with $300 free credits
On the roadmap: RDF Graph support in ‘Always Free Tier’

201

https://github.com/oracle/docker-images/tree/master/OracleDatabase

RDF View Demo Setup

Data: Baseball data source: http://baseball1.com/statistics (CSV files)

Entity tables:

create table people (playerID varchar2(30) primary key, birthYear varchar2(4),
debut date, nameGiven varchar2(50), finalGame date) compress;

create table teams (yearID varchar2(4), teamID varchar2(10), name varchar2(100),
primary key (yearID, teamID)) compress;

create table schools (schoolID varchar2(30) primary key, name_full varchar2(100),
city varchar2(30), tate varchar2(30), country varchar2(30)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

RDF View Demo Setup

Relationship tables:

create table salaries (yearID varchar2(4), teamID varchar2(10), playerID varchar2(30),
salary int, primary key(yearID, teamID, playerID),
foreign key(yearID, teamID) references TEAMS(yearID, teamID),
foreign key (playerID) references PEOPLE(playerID)) compress;

create table batting (playerID varchar2(30) primary key, yearID varchar2(4),
teamID varchar2(10), AB int, H int, HR int,
foreign key(yearID, teamID) references TEAMS(yearID, teamID),
foreign key(playerID) references PEOPLE(playerID)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

RDF View Demo Setup

Relationship tables:

create table pitching (playerID varchar2(30) primary key, yearID varchar2(4),
teamID varchar2(10), W int, L int, G int, SHO int, ERA number,
foreign key(yearID, teamID) references TEAMS(yearID, teamID),
foreign key(playerID) references PEOPLE(playerID));

create table CollegePlaying (playerID varchar2(30), schoolID varchar2(30), year varchar2(4),
foreign key(playerID) references PEOPLE(playerID),
foreign key(schoolID) references SCHOOLS(schoolID)) compress;

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Relational Tables

BATTING

SALARIES

TEAMS

PITCHING

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

yearID teamiD name

playerID yearID teamID AB H HR

playerID yearID teamID W L G SHO ERA

yearID teamID playerID salary

Data Loading

Oracle SQL*Loader: (people.ctl)
load data into table people
insert
fields terminated by ”,"
(
playerID,
birthYear,
field1 FILLER,
field2 FILLER,
………
debut
finalGame,
f18 FILLER,
..
)

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Data Loading

Oracle SQL*Loader: (people.par)

userid=rdfuser@orcl/rdfuser
control=/home/oracle/people.ctl
log=demo.log
bad=demo.bad
data=/home/oracle/People.csv
direct=true
errors=10

Load command: sqlldr people.par

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

DECLARE
r2rmlStr CLOB;

BEGIN
r2rmlStr :=
'@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
'@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
'@prefix : <http://demo/>. '||
'@prefix ex: <http://ex/>. '||'

-- PEOPLE table --
ex:TMap_PLAYERS
rr:logicalTable [rr:tableName "rdfuser.PEOPLE"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{playerID}" ; rr:class :Player] ;

-- generate triples for scalar columns
rr:predicateObjectMap
[rr:predicate :givenName ; rr:objectMap [rr:column "nameGiven"]]

, [rr:predicate :birthYear ; rr:objectMap [rr:column "birthYear"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- TEAMS table --
#
ex:TMap_TEAMS
rr:logicalTable [rr:tableName "rdfuser.TEAMS"] ;
rr:subjectMap [rr:template "http://ex/TEAM/{yearID}-{teamID}" ; rr:class :Team] ;

-- generate triples for scalar columns
rr:predicateObjectMap [rr:predicate :name ; rr:objectMap [rr:column "NAME"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- BATTING table --
#
ex:TMap_TEAM_PLAYER_BATTING
rr:logicalTable [rr:tableName "rdfuser.BATTING"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class

:BattingInfo] ;
-- generate triples for scalar columns
rr:predicateObjectMap
[rr:predicate :atBat ; rr:objectMap [rr:column "AB"]]

, [rr:predicate :hits ; rr:objectMap [rr:column "H"]]
, [rr:predicate :homeRuns ; rr:objectMap [rr:column "HR"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- PITCHING table --
#
ex:TMap_TEAM_PLAYER_PITCHING
rr:logicalTable [rr:tableName "rdfuser.PITCHING"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class

:PitchingInfo] ;
-- generate triples for scalar columns
rr:predicateObjectMap
[rr:predicate :wins ; rr:objectMap [rr:column "W"]]

, [rr:predicate :losses ; rr:objectMap [rr:column "L"]]
, [rr:predicate :games ; rr:objectMap [rr:column "G"]]
, [rr:predicate :shutOuts ; rr:objectMap [rr:column "SHO"]]
, [rr:predicate :earnedRunAvg ; rr:objectMap [rr:column "ERA"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- SALARIES (relationship) table --
#
ex:TMap_PLAYED_SALARY
rr:logicalTable [rr:tableName "rdfuser.SALARIES"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{playerID}" ; rr:class :SalariedPlayer] ;

-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}"]

;
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;

rr:joinCondition
[rr:child "yearID" ; rr:parent "yearID"]

, [rr:child "teamID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

-- BATTING (relationship) table --
#
ex:TMap_PLAYED_BATTER
rr:logicalTable [rr:tableName "rdfuser.BATTING"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{playerID}" ; rr:class :Batter] ;

-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}"]

;
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;

rr:joinCondition
[rr:child "yearID" ; rr:parent "yearID"]

, [rr:child "teamID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- PITCHING (relationship) table --
#
ex:TMap_PLAYED_PITCHER
rr:logicalTable [rr:tableName "rdfuser.PITCHING"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{playerID}" ; rr:class :Pitcher] ;

-- generate the relationship triples
rr:predicateObjectMap [rr:graphMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-

{playerID}"] ;
rr:predicate :playedFor ;
rr:objectMap [rr:parentTriplesMap ex:TMap_TEAMS ;

rr:joinCondition
[rr:child "yearID" ; rr:parent "yearID"]

, [rr:child "teamID" ; rr:parent "teamID"]]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

R2RML

#
-- SALARIES table --
#
ex:TMap_TEAM_PLAYER_SALARY
rr:logicalTable [rr:tableName "rdfuser.SALARIES"] ;
rr:subjectMap [rr:template "http://ex/PLAYER/{yearID}-{teamID}-{playerID}" ; rr:class

:SalaryInfo] ;
-- generate the relationship triples
rr:predicateObjectMap
[rr:predicate :salary ; rr:objectMap [rr:column "salary"]] .

Copyright © 2020 Oracle and/or its affiliates. All rights reserved

Create RDFView

SGA setting:
conn sys/oracle@orcl as sysdba
create pfile='/home/oracle/rdf_init.ora' from spfile;

Edit rdf_init.ora and set: sga_target=2G
Restart DB:

conn sys/oracle@orcl as sysdba
alter session set container=CDB$ROOT;
shutdown immediate
conn sys/oracle@//localhost:1521/orclcdb as sysdba;
startup pfile= /home/oracle/rdf_init.ora

sem_apis.create_rdfview_model(
model_name => ‘rdfview_demo_graph’, tables => NULL,
r2rml_string => r2rmlStr, r2rml_string_fmt => 'TURTLE’,
network_owner=>'RDFUSER’, network_name=>'NET1'

);
Copyright © 2020 Oracle and/or its affiliates. All rights reserved

