Supply Chain Continuity in the Age of Covid-19

May 2020

Julie Swann, PhD

Department Head & A. Doug Allison Distinguished Professor Edward P. Fitts Department of Industrial and Systems Engineering North Carolina State University

DOI: 10.5281/zenodo.3814454 CC BY-NC-ND Video of webinar available: <u>https://youtu.be/7P8T7A9VDoY?t=53</u>

Foundational Disease Model: SEIR

• Values for COVID-19 pulled from multiple references

Foundational Disease Model: SEIR

- How infectious is the virus that causes COVID-19?
 - R0 is the average number of people infected by someone who is infectious (at the beginning of the outbreak, without interventions)
 - Doubling rate of cases is a related measure
 - (Values pulled from numerous references)

of Symptomatic?

Community

- Households in each
 neighborhood
 - Size
 - Family or not
 - Presence of kids
 - Ages

Community

Community

- Households in each census tract
 - Size
 - Family or not
 - Presence of kids
 - Ages
- Infections within
 - Schools (horizontal purple)
 - Workplaces
 (vertical blue)
 - Community (1 represented)

6

- Households
 - Voluntary quarantine
- Schools
 - Closures, distancing, vacating dorms
- Workplaces
 - Telecommuting, essential only, distancing
- Community
 - Sports, churches, nonessential businesses

COVID-19 Globally

- Confirmed cases and deaths continue to rise and are undercounted
- Every country will eventually be hit
- There are several current hot spots in Africa

Images copied from "ourworldindata.org/coronavirus" on May 4, 2020

NC STATE UNIVERSITY

High income

High income

COVID-19 Globally: Future

- Lead modelers predict peak demand
- Lowest income countries
 - Critical care need could outstrip supply 25 times

Walker et al: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gidafellowships/Imperial-College-COVID19-Global-Impact-26-03-2020v2.pdf

Low income

Lower middle income Upper middle income

Future Scenarios

- Do Nothing
 - Epidemics may stop when 60-80% of population has been infected and has immunity
 - Of those infected, 0.5 to 1% (or more) may die
- Mitigation
 - Balance distancing, protection for vulnerable populations, and economics
- Innovation
 - New treatment reduces mortality and hospital stays
 - New vaccine prevents disease; global distribution can be achieved

SUPPLY CHAIN RISK

Complex Supply Chains

Disease Impacts Supply Chains

- Disruptions in supply
- Major surges or decreases of demand
- Workforce absenteeism
- Shutting down of operations (e.g., shelter-in-place)
- Return to normalcy
- Disruption can lead to innovation

General Strategy

- Know your risks ullet
- Prioritize •
- Prevent or mitigate
- "Triple A" supply chain
 - Agile
 - Adaptable
 - Aligned

COVID-19 Example: Masks

- Global shortages of N95 masks and Personal Protective Equipment
- Contributors
 - Over 50% sourced from China
 - Countries have some control over suppliers
 - Long leadtime between manufacturer and consumer
 - Specialized material in mask not widely made
- Solutions:
 - Know your supply chain
 - Produce to satisfy local demand for critical products

COVID-19 Example: Testing Kits

- In US, some tests for COVID-19 disease or antibodies are difficult to obtain
- Contributors
 - First test built on specialized nasal swab
 - Some tests built on chemical reagent sourced from deep sea ocean vents
- Solution
 - Product commonality can be helpful
 - Consider suppliers in product designs

COVID-19 Example: Household Products

- Demand from Consumers (and resellers) surged for household items like hand sanitizer and toilet paper
- Contributors
 - Lean supply chains with just-in-time inventory
 - Separate production for industrial and consumer demand
- Solution
 - Flexible production to adjust level of supply
 - Systems that can adapt to demand from different channels

COVID-19 Example: Ventilators

- Medical ventilators can be in short supply if disease level is high
- Contributors
 - Expensive item with surge demand
 - Complicated medical device
 - Critical components manufactured in China
- Solutions
 - Redesign product or supply chain for it
 - Consider role of and process for regulations

COVID-19 Example: Food

- Meat is in short supply across the US, including pork, beef, and chicken; other food shortages impending globally
- Contributors
 - Workers at processing plants getting sick
 - Transportation disrupted
 - Markets closed
- Solutions
 - Quantify risks within plant
 - Classify transportation as "essential industry"
 - Mitigate or prevent

Global Supply Chain Challenges

- Potential shortages in metals (S.A.) and medicines from suppliers (India)
- Challenges in vaccine distribution by UNICEF
 - 70-80% reduction in planned vaccine shipments
- Africa
 - 31+ countries have border closures
 - Countries rely on exports for revenue
 - Collapse in prices for oil and other commodities
 - Some businesses and traders will not survive

Risk is beyond COVID-19

- Earthquake in Japan (2011) caused "production delays, shortages, and higher prices", for computers, electronics, or automobiles
 - Add inventory if necessary
 - Agile supply chains can scale up quickly
- Hurricane Maria in Puerto Rico (2017) caused shortages in IV bags and saline throughout the US
 - Ensure suppliers in multiple locations
- Flooding, riots, strikes, fires, embargoes, ...

Know your Risks

- Map the full supply chain
 - Do you know your suppliers' key suppliers?
 - Are they sole or multi-sourced?
 - In what locations are they?
 - What customers are key? Who are their customers?
- Understand the information network
 - Data centers, voice links, IT outsourcing, etc.

Prioritize Risk

- Identify the key suppliers of goods and services
 - How would we be impacted if this one fails?
- Quantify probability of disruption or failure
 - E.g., past data or forecasting, insurance companies
- Understand potential severity of each risk
 - Predictive analytics and scenario analysis
- Challenges: events with low probabilities but high impact

Prevent and Mitigate Risks

- Prevent risk (e.g., choose suppliers well)
- Evaluate sourcing strategies (sole, multi-, etc.)
- Partner with key suppliers or customers
- Develop detailed communications and emergency plan
- Test, evaluate, and redesign
- Be on guard and act quickly

Moving Forward with COVID-19

- Protect workforce
- Build relationships and partnerships
- Be prepared for more surges (up or down) in demand or supply
- Disruptions can lead to innovation

Questions

- Dr. Julie Swann
- jlswann@ncsu.edu

