
© NEC Corporation 2018

Deep Learning Inference on Commodity Network Interface Cards
Giuseppe Siracusano*, Davide Sanvito‡, Salvator Galea†, Roberto Bifulco*
*NEC Laboratories Europe, ‡Politecnico di Milano, †University of Cambridge

to
N

I
C

Island

IMEM EMEM

Island

ME ME

CLS CTM

ME ME

Resources assigned to inference

Resources assigned to pkt proc.

CLS CTM

Resources shared with pkt proc.

ME

T T T T
T T T T

ME

T T T T
T T T T

ME

T T T T
T T T T

▌ Large share of neural network serving workloads is
memory-bound (e.g., MLP over 60%[1])

▌ Reduced efficiency on memory bound
operations, i.e., low Instruction-per-cycle (IPC)

▌ Batching improves IPC but increases latency

 For time sensitive workload such increase is not tolerable [2]

▌ Model quantization helps

 Extreme quantization, binarized models[3]

 Matrix multiplications replaced with bitwise operations

▌ Increase efficiency by reusing on-path network processors

 SmartNICs and FPGAs frequently deployed inside datacenters [4]

 A system-wide approach to NN serving!

▌ Network packet processing and NN memory-bound
inference workloads may have complementary traits

 Eg. per-packet parellel processing ≈ per-neuron parellel processing

▌ In-network inference

Front-end
application

User

toNIC
server

Perform
Inference

2User Service
Request

1

User Service
Response

3

Front-end
application

User

Inferenc
e

server

toNIC
server

User Service
Request

1
Forward to

host

2
Perform

Inference (1st part)

3

Perform
Inference (2nd part)

4
User Service

Response

5

NICNIC

Back-end Machine

RAM CPU

NIC

Front-end Machine

NIC

Front-end
application

User Online
User Service

Request

1
Remote

Procedure
Call NN

Inference

Load Balancer

Inferenc
e

server
2

3

Network

▌ Can we do Neural Network inference on a commodity
SmartNIC, while preserving high performance network
communications?

Yes, of course!!

▌ Reference SmartNIC architecture: Netronome NFP4000

 Several processing cores (micro-engines, MEs), 8 threads per core

 Heterogeneous memory structure

▌ Design:

 Hardware resources are divided in two sets, pkt processing and NN inference

 Packet processing threads have access priority on faster memories

 NN inference threads can use a higher degree of parallelism

Stand alone mode Co-processor mode

▌ What is the cost of modifying a SmartNIC to
significantly improve its inference throughput?

▌ Evaluated trough FPGA-based implementation

 256 neurons with 4096bit input values can be executed in parallel in
only 80 us, using just 131KB of Block RAM.

 4096 x 4096 FC layer in only 1.3 ns, 781k FC/s using 2Mb of BRAM

 Proposed design needs only 679 LUTs, less than 1% of the logic
required to implement basic SmartNICs operations[5]

▌ A relatively small increase in the hardware resource
requirements could improve NN processing throughput
performance by a factor of 10-100

T T T T TT

Dispatcher
Inference execution chain

New
Packet

Start notification

Send
Packet

Local CTM

Packet Data

EMEM

Layers Weights

End notification
Start notification

End notification

Problem: Idea:

Results What next?

▌ Packet forwarding (during inference):

 line rate (80Gbps)

▌ Power efficiency, FC layers per Wat as a proxy for
the cost of running the system

 toNIC yields a 4.3x better performance/power ratio

▌ But: 3.7GHz CPU vs 800MHz NFP

 Latency: ~4x higher in NFP (clock is 4.6x lower)

 Throughput: ~5% of CPU throughput

References:
[1] Norman P Jouppi, et al. "In-datacenter performance analysis of a tensor processing unit", ACM ISCA 2017.
[2] Ankit Singla, Balakrishnan Chandrasekaran, P Godfrey, and Bruce Maggs. "The internet at the speed of light", ACM HotNets 2014.
[3] Matthieu Courbariaux and Yoshua Bengio. "Binarynet: Training deep neural networks with weights and activations constrained to +1 or -1", CoRR.
[4] Firestone, Daniel, et al. "Azure Accelerated Networking: SmartNICs in the Public Cloud", USENIX NSDI 2018.
[5] Salvatore Pontarelli, et al. "Flowblaze: Stateful packet processing in hardware." USENIX NSDI 2019.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement
No. 761508 ("5GCITY"). This paper reflects only the authors’ views and the European Commission is not responsible for any use
that may be made of the information it contains.

