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▌ Large share of neural network serving workloads is 
memory-bound (e.g., MLP over 60%[1])

▌ Reduced efficiency on memory bound 
operations, i.e., low Instruction-per-cycle (IPC)

▌ Batching improves IPC but increases latency

 For time sensitive workload such increase is not tolerable [2]

▌ Model quantization helps

 Extreme quantization, binarized models[3]

 Matrix multiplications replaced with bitwise operations

▌ Increase efficiency by reusing on-path network processors

 SmartNICs and FPGAs frequently deployed inside datacenters [4]

 A system-wide approach to NN serving!

▌ Network packet processing and NN memory-bound 
inference workloads may have complementary traits

 Eg. per-packet parellel processing ≈ per-neuron parellel processing

▌ In-network inference
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▌ Can we do Neural Network inference on a commodity 
SmartNIC, while preserving high performance network 
communications?

Yes, of course!! 

▌ Reference SmartNIC architecture: Netronome NFP4000

 Several processing cores (micro-engines, MEs), 8 threads per core 

 Heterogeneous memory structure

▌ Design:

 Hardware resources are divided in two sets, pkt processing and NN inference

 Packet processing threads have access priority on faster memories

 NN inference threads can use a higher degree of parallelism

Stand alone mode Co-processor mode

▌ What is the cost of modifying a SmartNIC to 
significantly improve its inference throughput?

▌ Evaluated trough FPGA-based implementation

 256 neurons with 4096bit input values can be executed in parallel in 
only 80 us, using just 131KB of Block RAM. 

 4096 x 4096 FC layer in only 1.3 ns, 781k FC/s using 2Mb of BRAM 

 Proposed design needs only 679 LUTs, less than 1% of the logic 
required to implement basic SmartNICs operations[5]

▌ A relatively small increase in the hardware resource 
requirements could improve NN processing throughput 
performance by a factor of 10-100
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Problem: Idea: 

Results What next? 

▌ Packet forwarding (during inference): 

 line rate (80Gbps)  

▌ Power efficiency, FC layers per Wat as a proxy for 
the cost of running the system

 toNIC yields a 4.3x better performance/power ratio

▌ But: 3.7GHz CPU vs 800MHz NFP 

 Latency: ~4x higher in NFP (clock is 4.6x lower)

 Throughput: ~5% of CPU throughput
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