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Load Balancer

| Large share of neural network serving workloads is I Increase efficiency by reusing on-path network processors

memory-bound (e.g., MLP over 60%][1])

. - ® SmartNIC FPGAs f tl | insi t t 4
I Reduced efficiency on memory bound mar S and s frequently deployed inside datacenters [4]

operations, I1.e., low Instruction-per-cycle (IPC) ® A system-wide approach to NN serving!

| Batching improves IPC but increases latency | Network packet processing and NN memory-bound
® For time sensitive workload such increase is not tolerable [2] inference workloads may have complementary traits

I Model quantization helps ® Eg. per-packet parellel processing = per-neuron parellel processing
® Extreme quantization, binarized models[3] I In-network inference

® Matrix multiplications replaced with bitwise operations
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Inference execution chain
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_ Packet Data L P ) ® NN inference threads can use a higher degree of parallelism
T e I What is the cost of modifying a SmartNIC to
enn-ExEc | 145.9W EEE} 29520 386 significantly improve its inference throughput?
e W T | Evaluated trough FPGA-based implementation
é T % o ® 256 neurons with 4096bit input values can be executed in parallel in
" £ [ ; only 80 us, using just 131KB of Block RAM.
Ty ,ﬁfpty moall s Bl T ieds 000" ® 4096 x 4096 FC layerin only 1.3 ns, 781k FC/s using 2Mb of BRAM
I Packet forwarding (during inference): ® Proposed design needs only 679 LUTs, less than 1% of the logic

required to implement basic SmartNICs operations[5]
® line rate (80Gbps)

| A relatively small increase in the hardware resource
requirements could improve NN processing throughput
performance by a factor of 10-100

Power efficiency, FC layers per Wat as a proxy for
the cost of running the system

® toNIC yields a 4.3x better performance/power ratio
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