
An architecture to manage security services for
cloud applications

M. Repetto, A. Carrega
S2N Lab, CNIT

Genoa, Italy

Email: {alessandro.carrega,matteo.repetto}@cnit.it

G. Lamanna
Infocom Srl

Genoa, Italy

Email: guerino.lamanna@infocomgenova.it

Abstract—The uptake of virtualization and cloud technologies
has pushed novel development and operation models for the
software, bringing more agility and automation. Unfortunately,
cyber-security paradigms have not evolved at the same pace and
are not yet able to effectively tackle the progressive disappearing
of a sharp security perimeter.

In this paper, we describe a novel cyber-security architecture
for cloud-based distributed applications and network services.
We propose a security orchestrator that controls pervasive,
lightweight, and programmable security hooks embedded in the
virtual functions that compose the cloud application, pursuing
better visibility and more automation in this domain. Our
approach improves existing management practice for service
orchestration, by decoupling the management of the business
logic from that of security. We also describe the current imple-
mentation stage for a programmable monitoring, inspection, and
enforcement framework, which represents the ground technology
for the realization of the whole architecture.

I. INTRODUCTION

Today, many organizations are progressively moving their

ICT processes in (private and public) clouds, motivated by

the increasing agility to deploy and withdraw their services

without caring about the physical infrastructure that hosts

them.

One of the main operational benefits brought by the cloud

paradigm is full control of the virtualization infrastructure

through software APIs. The fully-digital management work-

flow allows large automation in deployment and lifecycle op-

erations. Orchestration software replaces humans for repetitive

tasks, such as provisioning of virtual resources as well as

installation and configuration of applications, driven by de-

scriptive models based on imperative or declarative languages

that capture the topology and behavior of the service.

The combination of dynamic provisioning and configuration

management software allows to change the service at runtime,

so to react to the evolving context, hence providing elasticity,

redundancy, and resilience. Most important, such changes can

be automated, by defining suitable management policies in the

service template. However, the ability to adapt to the evolving

context makes the service topology partially unpredictable at

design-time, which may be a major issue for security.

The final publication is available at IEEE Xplore via
https://doi.org/10.1109/CCCS.2019.8888061.

In this paper, we review the two main paradigms (i.e.,

infrastructure-centric and service-centric) that have been used

so far for implementing security services for cloud appli-

cations. Motivated by the lack of common protocols, APIs,

and security models, which hinder cross-cloud interoperability

when implementing security services, we describe an archi-

tecture that improves the visibility over cloud services and

automates reaction. Our approach is based on the definition of

security hooks embedded in the virtual functions, and external

detection and processing logic. The main objective is the

independence between service orchestration, which manages

the business logic, and security orchestration, which directly

controls all security-related components. The distinctive char-

acteristic of our approach is the integration with programmable

technologies, so to easily support new inspection and moni-

toring tasks at run-time.

The paper is organized as follows. Section II briefly re-

views the concept of software orchestration. Section III lists

alternative paradigms for implementing security frameworks

for cloud-based services, and highlights the main novelty of

our approach. We describe the architecture for a holistic cyber-

security framework for cloud services in Section IV, and we

describe the part of this framework that we are implementing

in Section V. Preliminary results from experimentation are

shown in Section VI. Finally, we give our conclusion in

Section VIII.

II. SOFTWARE ORCHESTRATION

The ability to easily adapt applications to the evolving

context calls for a transition from “imperative” (i.e., procedural

languages) to declarative models, an on-going process both

for cloud applications [1], [2] and network function virtual-

ization [3]. A declarative model defines the application as a

logical topology (the service “graph”) of elementary (virtual)

functions, together with a set of rules and constraints for

deployment and operation. A service is usually provided as

a sort of template, which has to be instantiated and initialized

at run-time by “Service Providers” through an orchestration

process. The set of information that describes how to in-

stantiate, configure, and manage the service is denoted as

metadata. It includes the name and version of the software,

vendor, description (including licensing and usage terms),

entry points, deployment constraints, and management hooks978-1-7281-0875-9/19/$31.00 c© 2019 IEEE

(for instance, to start, stop, reload, or reset the service, to

collect measurements, data, events, log).

The elementary components of any service topology are

(virtual) functions. Virtual functions are developed by pro-

grammers (hereby indicated as “software developers”) and

delivered in different forms: (compressed) archive, packages

including dependencies and configuration scripts, bootable

images.

Virtual functions should be enriched with metadata as well

to drive automatic deployment and orchestration. Metadata

typically includes the name of the component (i.e., trademark

and vendor), its description (including licensing and usage

terms), provided functionality (e.g., web server, database,

DNS, EPC, eNodeB, RAS), required services (e.g., database,

authentication server), deployment constraints (e.g., number of

cores, CPU speed, RAM, disk space, network bandwidth, hard-

ware acceleration), measured performance metrics (e.g., packet

latency and throughput, dropped packets, packet statistics),

and management hooks (for instance, to start, stop, reload, or

reset the function). This information is used by orchestration

tools to provision the proper set of resources, set up and

configure the execution environment, and perform life-cycle

management actions (e.g., scale the function upon indication

from the orchestrator, recover from failure).

Starting from the declarative service template, orchestration

is responsible to start the provisioning process for virtual

resources, deploy and configure the software, start all functions

and execute any lifecycle management operation. The whole

process may be totally automated, or there may remain a

number of functions that should be carried out by human

staff. Typical orchestration tools monitor at run-time the ex-

ecution of the graph, by collecting measurements about used

resources (CPU, RAM, disk, network), workload, performance

(processed requests, latency) as defined in the service/function

metadata. This data is then used to trigger lifecycle manage-

ment actions, according to the policies defined by the service

designer or the service provider. Example of well-known

software orchestration tools are Juju, Kubernetes, OpenBaton,

OpenMANO.

III. SECURITY PARADIGMS FOR DISTRIBUTED CLOUD

APPLICATIONS

From a purely architectural perspective, we can iden-

tify legacy security appliances as an infrastructure-centric

paradigm, because they have been traditionally designed to

protect the physical infrastructure, not the services imple-

mented on top of it. Though many appliances have been

re-designed and re-implemented in the hypervisor layer to

cope with virtualization and multi-tenancy, this approach still

creates management issues for services that are deployed

over heterogeneous infrastructures, though the IETF I2NSF

working group is already tackling this challenge [4].

The progressive dichotomization between the software and

the underlying hardware brought by the adoption of virtual-

ization and cloud paradigms has boosted a transition from

infrastructure-centric to service-centric architectures, which

are more suitable to be integrated in the overall service orches-

tration process. When the Infrastructure-as-a-Service paradigm

is used, virtual instances of security appliances are “plugged”

into service graphs, leveraging the large correspondence with

physical infrastructures that is present in this model. Each ten-

ant retains full control and responsibility of security manage-

ment for its own graphs, without the need to rely on and trust

external services. In some way, this represents a sort of virtual

perimeter model, though the isolation from external threats

is not comparable with a physical infrastructure. We argue

that application to other cloud models is not straightforward,

especially when some software components are shared among

multiple tenants (i.e., Service-as-a-Service model).

Following the ever-more agility and adaptability to the

evolving context at both the infrastructure and service layer,

the basic principle behind our approach is a service-centric

framework, with security capabilities embedded into each

software element, and orchestrated by a common security

manager that (logically) centralizes the detection processes.

IV. AN ORCHESTRATION FRAMEWORK FOR SECURITY

SERVICES

Existing service-centric approaches for cyber-security of

cloud applications/network services make use of a common

software orchestrator for both service management and secu-

rity operation, with the risk of raising conflicts between differ-

ent operators. The main objective of our work is the definition

of a security orchestration framework that is independent from

the management of the business logic: our design goal is

therefore a stand-alone security orchestrator that interacts with

existing software orchestration tools, by means of their APIs

(see Fig. 1). The two orchestrators are therefore responsible

for implementing operation at different logical layers: control

(security orchestrator) and management (service orchestrator).

According to the main concept introduced in the previous

Section, our approach breaks up cyber-security appliances

into two parts: monitoring, inspection, and enforcement tasks

(embedded in the same service graph) and detection, analysis,

and reaction logic (which are part of the orchestrator itself).

The colored elements in Fig. 1 are the components introduced

by our architecture; grey elements represent virtualization and

management components that are already present in existing

software orchestration frameworks.

The service orchestrator retains the exclusive control over

the overall service topology and its components; it is therefore

responsible for provisioning and deprovisioning virtual re-

sources, deploying and updating software, managing life-cycle

events. The security orchestrator controls specific security

components placed in the service graph (pictorially depicted

as orange ellipses in Fig. 1), but it relies on the service

orchestrator to deploy them and to make any changes in

the service topology. Examples of such security components

include:

• kernel features, integrated in the operating system for

monitoring network traffic and system calls;

Security

provider
Security properties

C
lo

u
d

 M
a

n
a

g
m

e
n

t
S

o
ft

w
a

re

Service

Orchestrator

Service

provider

Service

deployment &

management

Kernel

System

libraries

VM/Container

Kernel

System

libraries

VM/Container

Kernel

System

libraries

VM/Container

Kernel

System

libraries

VM/Container

Run-time

service
Virtual network Virtual network

Runtime

context

Cloud/NFV infrastructure

Service
repository

 Security Controller

Context Broker
Detection

algorithms

Reaction and

prevention

policies

Programs
library

Security

orchestrator

Real-time and

historical data

Data abstraction

Control channel

Data channel

Orchestration interface

Data/software flow

Control interface

Management interface

Identity/Access control

Orchestration commands

Virtual links

Fig. 1: Architecture for secure orchestration of cloud-based services.

• log agents in user-space that collect logs from libraries,

daemons, and even the kernel, so their scope extends to

the whole stack;

• function-specific monitoring information that is con-

ceived to drive orchestration actions, but might also be

used for detection purposes.

Security components for monitoring and inspection are

expected to be integrated in the service template at design

time. At deployment time, any software orchestration tool

that understands the specific template format takes care of

installing all the libraries, proxies, and agents required by the

security enrichment in the execution environment (indicated

as orange ellipses in the pictorial representation of the service

topology in the Cloud/NFV Infrastructure).
The security orchestrator acts as the mediator between the

security context and the detection logic, aiming to automate

as much as possible reaction and mitigation. The role of its

main components and their interactions are briefly described

in the following Sections.

A. Security Controller

The Security Controller represents the most valuable part

of the security orchestrator, conceived to automate as much

as possible the behavior of the whole framework. It positions

between the reaction and mitigation policies and the context,

and orchestrates security functionalities.
Overall, the Security Controller will work according to an

Event-Condition-Action (ECA) pattern. Events are triggered

by detection or management entities. Detection events in-

clude the indication of on-going attacks, compromised vir-

tual functions, vulnerabilities found in software, protocols

and configurations, behavioral anomalies. Management events

include initialization triggers, start/stop actions, scaling, topol-

ogy changes (insertion/removal/replacement of virtual func-

tions), configuration changes, and so on. Conditions on the

current context are evaluated by querying the Context Broker,

which exposes the service topology, configuration, events, and

measurements. Actions entail modifications of the security

hooks (monitored data, frequency, granularity, filtering, mark-

ing, etc.), re-configuration of the detection algorithms, changes

in the service graph. Commands may be sent directly to the

responsible entity (service orchestrator, detection algorithm,

Context Broker) or to the Security Dashboard.

ECA rules are expressed by policies, which represent the

real “smartness” of the Security Controller. Though the ECA

pattern is quite expressive, the long-term ambition is the

incorporation of “intent” frameworks, which can derive the

low-level behavior based on very high-level requirements and

expectations from users.

The adoption of advanced reasoning models, even based on

machine learning and other forms of artificial intelligence, is

clearly a very promising yet challenging target to automate

the system behavior. This would open the opportunity for

dynamically adapting the response to new threat vectors. In

this respect, the historical analysis and correlation of the events

and conditions with the effects of the corresponding actions

from existing policies or humans would provide useful hints to

assess the effectiveness of the latter, so to identify and improve

the best control strategies.

B. Context Broker

The first task for the Context Broker is to manage the

heterogeneity of sources and protocols, which is reflected in

different data and control interfaces. The Context Broker hides

this heterogeneity and exposes a common data model to the

other components in the security orchestrator, both in the data

and control planes, for discovering, configuring, and accessing

the security context available from the execution environment.

The Context Broker collects data from monitoring and

inspection processes deployed in the execution environment

(data channel in Fig. 1). The Context Broker hides the het-

erogeneity and asynchrony of the sources, organizes historical

data, and provides simple querying and fusion capabilities in

data access.

The flexibility in programming the execution environment

is expected to potentially lead to a large heterogeneity in the

kind and verbosity of data collected. For example, some virtual

functions may report detailed packet statistics (i.e., those at

the external boundary of the service), whereas other functions

might only report application logs. In addition, the frequency

and granularity of reporting may differ for each virtual func-

tion. The definition of a (security) context model is therefore

necessary for detection algorithms to know what could be

retrieved (i.e., capabilities) and what is currently available,

how often, with each granularity (i.e., configuration). The

Context Broker also offers a homogeneous control interface

for configuring and programming different data sources, by

implementing the specific protocols (control channel in Fig.

1). Given the very different semantics of the context data,

the obvious choice is non-relation databases (NoSQL). This

allows defining different records for different sources, but

also poses the challenge to identify a limited set of formats,

otherwise part of the data might not be usable by some

detection algorithms.

C. Programs library

One of the main distinctive characteristics for future cyber-

security frameworks will be programmability, that is the capa-

bility to shape the depth of inspection according to the current

need, in both spatial and temporal dimensions, so to effec-

tively balance granularity of information with overhead. This

goes beyond mere re-configuration of individual components

and their virtualization environments: programmability also

includes the capability to offload lightweight aggregation and

processing tasks to each virtual environment, hence reducing

bandwidth requirements and latency.

A programmable run-time environment is able to run mon-

itoring, inspection, classification, and aggregation tasks on

demand. The long-term ambition would be the definition of

dynamic code generation and run-time compiling, as part of

the intent framework; the main technical challenge here is

the definition of common actions at the policy level and their

translation into configurations and code for the heterogeneous

set of security hooks.

The current architecture is more pragmatic in this respect.

Programmability is realized by selecting pre-defined programs

and configuration files from an internal library. Different

languages can be used by different hooks: ELF binaries, java

bytecode, python scripts, P4/eBPF programs. Such programs

are written and compiled offline, and then pushed in the reposi-

tory by the Security Dashboard. They also include metadata for

identification and description, so to be easily referred by the

Security Controller. The scope of such programs may include

monitoring, inspection, and enforcement actions; it is clearly

limited by the instruction set of the execution virtual machine

(if any).

From a security perspective, the current architecture as-

sumes that the programs are safe. This is implicitly guarantee,

for example, for the eBPF, where the code runs within an

execution sandbox. In case of general-purpose languages, the

correctness and safety of the source code might be verified by

static source-code tools.

D. Detection algorithms

Detection algorithms process, analyze and correlate

security-related data and events. They can be mapped to

existing security appliances (DoS detection, IPS, IDS, an-

tivirus, etc.). They are fed by the Context Broker, rather than

implementing their own monitoring and inspection functions.
The availability of a broad real-time and historical security

context from the whole graph, virtually including any type

of data and events, paves the road for novel and more

effective detection approaches, leveraging machine learning

and other forms of artificial intelligence to detect anomalies.

The availability of heterogeneous data from multiple sources

theoretically allows the detection of any kind of threats and

attacks, including the typical scope of host-based, network-

based, and hybrid IDSes, and antiviruses. From a practical

perspective, however, the real range of algorithms will be

limited by the possibility to find an acceptable trade-off

between the complexity to implement local inspection and the

communication overhead.
From an architectural perspective, each algorithm will only

be required to implement the interfaces towards the Context

Broker (to retrieve real-time and historical data) and the

Security Controller (to notify security events like threats and

attacks). For existing tools, this could be achieved by devel-

oping plug-ins or adapters. The description of the generated

security events may include an estimation of the accuracy of

the detection, so to trigger the collection of more detailed in-

formation; alternatively, this information could be retrieved by

evaluating specific conditions on the current security context.
The scope of the detection algorithms is mostly affected

by the type of monitoring and inspection hooks in the execu-

tion environment. While the availability of measurements on

network traffic is rather straightforward, the analysis of the

software execution flow is more challenging. Events and logs

generated by applications are usually enough for IPS/IDS, but

the implementation of antivirus and other forms of (remote)

software attestation usually requires deeper access to system

calls, memory, registers, and instructions. The possibility to

remotely collect this information is still an open issue that

deserves further investigation [5].

E. Reaction and prevention policies

Policies are used to automate the response to expected

events, avoiding whenever possible repetitive, manual, and

error-prone operations done by humans. Conceptually, reaction

and prevention policies do not implement inspection, detection

or enforcement tasks, so they do not correspond to any existing

security function (IDS/IPS, antivirus, VPN).
According to current definition of the Security Controller,

policies should be expressed with the ECA pattern. The

definition of an ECA policy requires at least 3 elements:

• an Event that defines when the policy is evaluated; the

event may be triggered by the data plane (i.e., detection

algorithms), the management plane (i.e., manual indica-

tions from the dashboard, notifications from the service

orchestrator), or the control plane (i.e., a timer);

• a Condition that selects one among the possible execution

paths; the condition typically considers context informa-

tion as data source, date/time, user, past events, etc.;

• a list of Actions that respond, mitigate, or prevent attacks.

Actions might not be limited to simple commands, but

can implement complex logics, also including some form of

processing on the run-time context (e.g., to derive the firewall

configuration for the running instance). They can be described

by imperative languages, in the forms of scripts or programs.

The range of possible operations performed by policies

includes enforcement actions, but also re-configuration and re-

programming of the monitoring/inspection components in the

execution environment. Enforcement and mitigation actions

are mostly expected when the attack and/or threat and their

sources are clearly identified and can be fought. Instead,

re-configuration is necessary when there are only generic

indications, and more detailed analysis could be useful to

better focus the response.

A typical example is a volumetric DoS attack. To keep the

processing and communication load minimal, the monitoring

process may only compute rough network usage statistics

every few minutes. This is enough to detect anomalies in the

volume of traffic but does not give precise indication about

the source and identification of malicious flows to stop. Re-

configuring the local probes to compute per-flow statistics or

more sophisticated analysis helps implement traffic scrubbing.

F. Communication channels

The interaction with the execution environment requires

the setup of communication channels, for both control and

data messages. These communication buses between virtual

functions and the security orchestrator are secure channels

deployed by the service orchestrator.

There are multiple implementation alternatives:

• In-band. The simplest approach would be to use virtual

network(s) in the IaaS already used for communication

between the virtual machines. This does not require any

specific effort on the orchestration side, but the traffic

for data collection may overwhelm the network and

should be recognizable so as to not alter traffic statistics

for detection purposes. In addition, though the usage

of encryption is taken for grant, there are still security

concerns in mixing the management and service data

traffic.

• Out-of-band in the service graph. The instantiation of a

dedicated virtual network for the control and data channel

looks a better approach with minimal overhead on service

management. In this case, the enrichment process must

envision an additional virtual NIC for each VM and a

service-wide flat network connecting all VMs and the

security orchestrator.

• Out-of-band in management interfaces. The underpin-

ning assumption for automatic life-cycle management

through service orchestration is i) the access to mon-

itoring and context information about the execution of

virtual functions, and ii) the possibility to interact with

virtual functions to trigger management scripts. That

means a management channel must be available outside

the execution environment. An example of management

channel is the Ve-Vnfm interface in the ETSI MANO

architecture [6], which may correspond to the control

network of OpenStack or a physical network for Docker

containers.

G. Security Dashboard

An interface is envisioned in the proposed architecture to

manage the security orchestrator. It can be used to select

specific software analysis, to visualize anomalies and security

events and to pinpoint them in the graph topology, to set run

time security policies, and to perform manual reaction. With

respect to the last two options, we point out that security

policies are the best way to respond to well-known threats,

for which there are already established practice and consol-

idated methodologies for mitigation or protection. However,

the identification of new threats and the elaboration of novel

countermeasures require direct step-by-step control over the

on-going system behavior. The dashboard interacts with the

orchestration system to give security provider full control over

the graph in case of need.

H. Example of workflow

We give a concrete example of how our security framework

is expected to behave in case of DoS service.

Detection of volumetric DoS is typically based on analytics

on the network traffic. Since deep inspection of the traffic

leads to high computational loads and latency, an initialization

policy only requires statistics about the aggregate network

traffic that enters the service, which may be collected by

standard measurements reported by the kernel. The same

policy also initializes an algorithm for network analytics and

sets the alert thresholds.

Upon detection of an anomaly in the traffic profile, an

event is triggered and the Security Controller invokes the

corresponding DoS policy. The policy now requires finer-

grained statistics; the Security Controller selects a filtering

program from the repository of programmable components for

packet classification, installs and configures it. The policy also

requires the detection algorithms to work with the broader

context information now available. Network analytics may

then confirm the attack or classify the anomaly as a fortuitous

event.

Before taking the decision about how to react, the mitigation

policy may evaluate some conditions to check if either the

suspicious flow comes from an expected user of the service, or

has been previously blacklisted or whitelisted, or is acceptable

based on previously recorded time series. The actions to be

implemented (e.g., dropping all packets, dropping selected

packets, redirecting suspicious flows towards external DoS

mitigation hardware/software, stop the service, move part or

the whole service to a different infrastructure) is therefore no-

tified to the Security Controller, which again translates them in

a set of commands for the external service orchestrator, and/or

enforcement configurations and programs to be installed in the

execution environment.

V. PROGRAMMABLE MONITORING AND INSPECTION

One of the most challenging and innovative aspects of

the security orchestration architecture discussed in Section

IV is programmable inspection and monitoring of virtual

functions. Existing tools and frameworks are mostly conceived

to work statically, i.e., they always collect the same kind of

information, with minimal or no possibility to change the

configuration at run-time.

Our solution enhances existing frameworks with an addi-

tional dimension of programmability. We started from the

Elastic Stack framework1, a collection of open-source projects

for data acquisition, processing, and storage. It was originally

composed of Elasticsearch, Logstash, and Kibana (for which it

was formerly known as ELK) and is now evolving to include

additional options.

Fig. 2 shows our implementation of the monitoring and in-

spection framework, including both a data plane and a control

plane. The left side of the picture entails the components

that are deployed in the execution environment by service

orchestration; the components in the right side are part of the

Context Broker.

Logstash is a server-side data processing pipeline that

ingests data from multiple sources simultaneously, transforms

it, and then sends it to a remote “stash” like Elasticsearch.

Data is gathered by a family of lightweight, single-purpose

data shippers called beats. Several beats are already available

to grab log files from popular applications (FileBeat), to read

metrics from the kernel (MetricBeat), and even to perform

measurements on network traffic (PacketBeat).

Our extension includes a new beat, named PolyBeat, which

reads measurements, statistics, and events generated by eBPF

programs. The enhanced Berkeley Packet Filter (eBPF) is an

efficient, safe, and programmable event processing framework

implemented in the Linux kernel, suitable for both packet

inspection and software analysis. It can be used both for

monitoring, inspection, and enforcement tasks.

eBPF programs can be easily injected at run-time, but we

need a control plane to support this feature. We adopted

polycube2, a framework that provides fast and lightweight net-

work functions such as bridges, routers, firewalls, and others.

Polycube is made of control functions (cubes) implemented in

high-level languages, and eBPF programs as data plane. We

started with a simple program and limited statistics, but there

will be virtually no limit to the classification, measurement,

inspection, and enforcement filters that can be implemented

and dynamically orchestrated by the Security Controller. An

additional cube is currently under implementation to control

other beats, so to change their configuration at run-time (this

feature is not available in Logstash). A further beat will be

implemented to load processing tasks in Logstash. Polycube

1The Elastic Stack. URL: https://www.elastic.co/elk-stack.
2Polycube.network. URL: https://github.com/polycube-network/polycube.

offers a REST API for remote control, which in our framework

implements the control channel envisioned by the overall

architecture.

The data channel is implemented by Kafka3, a message

bus system for building real-time data pipelines and streaming

apps. Though LogStash could directly feed the Elasticsearch

database, we opt for this additional component to steer mea-

surements towards detection applications, so to reduce the

latency for real-time processing.

Elasticsearch is a NoSQL search and analytics engine, a

perfect choice for storing unstructured data and performing

queries on graph-based topologies. Kibana is currently used

to visualize data with charts and graphs in Elasticsearch, but

will be replaced at a later stage with a more powerful GUI

(the Security Dashboard) with specific functions to display the

service graph and manage security features.

VI. EXPERIMENTAL EVALUATION

We carried out preliminary evaluation in a small set up,

which included most of the monitoring agents described in

Sec. V. We considered three virtual functions: an Apache web

server (monitored by FileBeat), a MySQL database server

(monitored by MetricBeat), and a mini httpd web server

(monitored by PolyBeat); we also deployed a Context Broker

that collects all data. Our testbed includes therefore logs,

application status, and network measures.

Our purpose was to evaluate the overhead introduced by

the distributed monitoring framework. We considered both

CPU usage by security agents and network traffic generated

to collect the security context. We investigated how variable

workload and frequency of sampling impact these parameters.

Specifically, we generated 1, 10, 100, and 1000 requests per

second to emulate different workload levels for Apache and

MySQL; the same number of requests were used to emulate

a Denial-of-Service (DoS) attack to mini httpd. The sampling

period was varied from 1 to 20 seconds.

Fig. 3 shows the impact of the workload and polling period

on CPU usage. For Apache, a larger number of requests

implies more logs, hence more CPU is used to read the

data and send them to the Context Broker. Shorter polling

periods create more data when the data has fixed size (e.g., in

case of status and network measurements for MetricBeat and

PolyBeat); the impact on CPU usage is very small, as shown

for MySQL and mini httpd.

Similar considerations hold for bandwidth usage. Fig. 4

compares the total amount of traffic generated by each virtual

function with the amount of data sent to the Context Broker.

Also in this case the larger number of logs generated by

Apache has a huge impact on resource usage by FileBeat;

however, they still represent a small fraction with respect

to the overall traffic. The same fraction is even smaller for

MetricBeat and PolyBeat, where the size of the collected

data is fixed. The length of the polling interval has negligible

impact in this case.

3Apache Kafka. URL: https://kafka.apache.org/.

ExecutionEnvironment

VF

System
Libraries

Kernel

B
e
a
ts

Fig. 2: Implementation of the context fabric for collecting and processing the security context.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 10 100 1000

a) Apache

Polling interval [s]:

C
P

U
 u

s
a
g
e
 [
%

]

Number of requests [s
-1

]

1 5 10 20

1 10 100 1000

b) MySQL

Number of requests [s
-1

]

1 10 100 1000

c) mini_httpd

Number of requests [s
-1

]

Fig. 3: CPU usage by the different monitoring agents.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 10 100
1000

1 10 100
1000

1 10 100
1000

1 10 100
1000

a) Apache

B
a
n
d
w

id
th

 [
M

b
/s

]

Number of requests [s
-1

]

Total Security Context

Poll: 20 sPoll: 10 sPoll: 5 sPoll: 1 s

1 10 100
1000

1 10 100
1000

1 10 100
1000

1 10 100
1000

b) MySQL

Number of requests [s
-1

]

Poll: 20 sPoll: 10 sPoll: 5 sPoll: 1 s

1 10 100
1000

1 10 100
1000

1 10 100
1000

1 10 100
1000

c) mini_httpd

Number of requests [s
-1

]

Poll: 20 sPoll: 10 sPoll: 5 sPoll: 1 s

Fig. 4: Bandwidth usage for all traffic (“Total”) and the monitoring flow to the Context Broker (“Security Context”).

VII. RELATED WORK

Virtualization and cloud technologies are eroding ever more

the concept of security perimeter, with the primary conse-

quence that legacy security appliances cannot anymore applied

according to existing models [7]. Accordingly, attempts can

be found in the literature that aim at improving security

in distributed, multi-domain and multi-tenancy systems. The

work [8] is among the first proposals of a distributed antivirus

(CloudAV). The usage of multiple detection engines in parallel

increases the likelihood of detection and enable correlation

between analysis from different engines, but also raises false

positives compared to a 1-version engine.

An agent-based framework for virtualised services is pro-

posed in [9]. The approach is based on Static and Mobile

Agents (SA/MA). The former are inspection tools statically

deployed in each VM; they are responsible to detect suspicious

conditions and report to a central IDS Control Centre (IDS

CC). The latter are detection agents for specific attacks, that

are sent to VM to investigate in detail suspected conditions.

The work in [10] proposes a distributed IDS for the Grid. This

approach is based on standalone IDSes that share the security

context for detection. They consider both messages exchanged

by the grid nodes and logs from the grid middleware. Detection

is based on behavioral anomalies (through neural networks)

and knowledge (rule-based).

The goal of the proposal in [11] is to design a collaborative

framework among IDPS deployed in different domains of

a cloud environment (host, network, VM). The framework

shares information at both the local (in clusters of similar

hosts) and global level (among clusters), so that attacks and

security events can be correlated to identify complex patterns.

The duplication at the local and global level introduces redun-

dancy and also communication overhead.

More recently, some works on countermeasures against

cyber attacks in distributed systems are surveyed in [12]. They

present a high degree of scalability, in terms of computational

efforts, because of the architectures that distribute the compu-

tational tasks to the peripheral part of the network (i.e., the

nodes), instead of concentrating them in a single central point.

The weak point is that the works do not consider dynamic

changes in the network parameters, so the countermeasures

cannot dynamically change. Furthermore, the amount of infor-

mation on the security state of the system, that strongly grows

with the size of the system, makes the proposed solutions not

suitable in real distributed environments.

VIII. CONCLUSION

In this paper we have described a framework for orches-

trating security functions for virtual services, including both

cloud applications and network services. We also carried out

preliminary performance evaluation, in order to investigate the

impact of the main parameters on resource usage.
Our future work will be the integration of the monitoring

framework with security orchestration. This step will imple-

ment the necessary logic to automate the configuration of

monitoring parameters at run-time, including the frequency

of polling and the set of measurements to be collected. The

second step will be the integration with detection and analysis

algorithms, to demonstrate the benefits of a programmable

context framework in terms of efficiency and effectiveness of

detection.

ACKNOWLEDGMENT

This work was supported in part by the European Commis-

sion, under Grant Agreement no. 786922 and 833456.

REFERENCES

[1] B. Karakostas, “Towards autonomic cloud configuration and deployment
environments,” in International Conference on Cloud and Autonomic

Computing (ICCAC), London, UK, Sep., 8th-12th 2014, pp. 93–96.
[2] J. Wettinger, U. Breitenbücher, and F. Leymann, “Standards-based

DevOps automation and integration using TOSCA,” in IEEE/ACM

7th International Conference on Utility and Cloud Computing (UCC),
London, UK, Dec. 8–11, 2014, pp. 59–68.

[3] P. Bellavista, L. Foschini, R. Venanzi, and G. Carella, “Extensible
orchestration of elastic IP multimedia subsystem as a service using
Open Baton,” in 5th IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering (MobileCloud), San Francisco,
CA – USA, Apr., 6th-8th, 2017, pp. 88–95.

[4] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. Jeong,
“Interface to network security functions (I2NSF): Problem statement
and use cases,” IETF RFC 8192, July 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/pdfrfc/rfc8192.txt.pdf

[5] N. Koutroumpouchos, C. Ntantogian, S. A. Menesidou, K. Liang,
P. Gouvas, C. Xenakis, and T. Giannetsos, “Secure edge computing with
lightweight control-flow property-based attestation,” in 1st International

Workshop on Cyber-Security Threats, Trust and Privacy Management in

Software-defined and Virtualized Infrastructures (SecSoft 2019), Paris,
France, 2019, to appear.

[6] ETSI, “Network functions virtualisation (nfv); management and orches-
tration,” ETSI GS NFV-MAN 001, December 2014, v1.1.1.

[7] R. Rapuzzi and M. Repetto, “Building situational awareness for network
threats in fog/edge computing: Emerging paradigms beyond the security
perimeter model,” Future Generation Computer Systems, vol. 85, pp.
235–249, August 2018.

[8] F. J. Jon Oberheide, Evan Cooke, “Cloudav: N-version antivirus in
the network cloud,” in Proceedings of the 17th conference on Security

symposium (SS’08), San Jose, CA – USA, Jul. 28th – Aug. 1st, 2008,
pp. 91–106.

[9] A. V. Dastjerdi, K. A. Bakar, and S. G. Hassan Tabatabaei, “Distributed
intrusion detection in clouds using mobile agents,” in Third International

Conference on Advanced Engineering Computing and Applications in

Sciences, Sliema, Malta, Oct. 11th–16th, 2009, pp. 175–180.
[10] K. Vieira, A. Schulter, C. Westphall, and C. Westphall, “Intrusion

detection for grid and cloud computing,” IT Professional, vol. 12, no. 4,
pp. 38–43, Jul-Aug 2010.

[11] S. T. Zargar, H. Takabi, and J. B. Joshi, “DCDIDP: A distributed, col-
laborative, and data-driven intrusion detection and prevention framework
for cloud computing environments,” in 7th International Conference on

Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), Pittsburgh, PA – USA, Oct. 15th–18th 2011, pp.
332–341.

[12] P. Nespoli, D. Papamartzivanos, F. G. Marmol, and G. Kambourakis,
“Optimal Countermeasures Selection Against Cyber Attacks: A Com-
prehensive Survey on Reaction Frameworks,” IEEE Communications

Surveys Tutorials, vol. 20, no. 2, pp. 1361–1396, Secondquarter 2018.

