

Lightweight Architecture for IoT Devices with

Context-aware Autonomous Control

Bruno Serra

GECAD

Polytechnic of Porto (ISEP/IPP)

Porto, Portugal

1151400@isep.ipp.pt

Luis Gomes

GECAD

Polytechnic of Porto (ISEP/IPP)

Porto, Portugal

https://orcid.org/0000-0002-8597-3383

Zita Vale

GECAD

Polytechnic of Porto (ISEP/IPP)

Porto, Portugal

https://orcid.org/0000-0002-4560-9544

Abstract—The integration of the Internet of Things (IoT)

devices in our buildings is already a reality and the

dissemination of such devices would grow in the future.

However, much of these devices deal with remote monitoring

and/or control without an intrinsic context-aware control. This

paper proposes hardware and software architectures for the

development of IoT devices with context-aware autonomous

control. The efficient and effective control, of the proposed

architectures, is demonstrated using two scenarios where one

television and one air conditioner unit are controlled according

to their contexts. The context-aware control can increase users’

comfort while decreases the use of appliances and resources,

resulting in a decrease in energy consumption.

Keywords — Internet of things, context awareness,

autonomous control

I. INTRODUCTION

Internet of Things (IoT) devices are spreading in our
homes, buildings, and cities, creating the opportunity to have
smart homes, smart buildings and smart cities. In the current
market is easy to find a vast application of IoT devices from
door lockers to garden monitoring devices. However, these
devices mainly provide remote monitoring and control.

The word ‘smart’ was been placed in front of old, and
usually common, names, such as smart homes [1]. This
concept promises to revolutionize our homes and the way we
interact with them. Smart homes can improve, between others,
home automation, living, and energy management. In [2] an
environmental awareness smart plug with shared knowledge
is proposed to decrease the energy consumption in a fully
distributed system using resource automation. In [3] a system
is proposed for elderly tracking, supporting people with
dementia. In [4] an ontology is proposed as part of a constraint
satisfaction problem for resource optimization in a smart
home.

As stated before, the current market is full of these
relatively new products that can bring a new life to our homes
and pave the way to smart homes. Is expected that by 2022 a
total of 216.9 million homes will have at least one smart
device [5]. This is a market in expansion and therefore it is
easy to find the biggest companies trying to get their piece.
From the conventional smart plugs to smart rice machine of
Xiaomi, almost everything is getting smarter.

The IoT devices in the market are many and increasingly
cheaper. However, they have a problem regarding
compatibility with each other. The current solution is the
integration of all our devices in a centralized system. This
demands another centralized system and does not guarantee

the integration of all IoT devices. Smart voice control systems,
like Google Home, Amazon Alexa, and Apple HomePod can
usually do the job of aggregating multiple IoT devices from
several manufacturers.

If an open source solution is required, is possible to use the
Home Assistant platform that enables the integration of
multiple devices and communication protocols [6]. Home
Assistant does not provide voice control, but it allows the
integration of Google Assistant and Amazon Alexa. An open
source solution for voice assistant is also possible using
Mycroft AI [7].

Another option to integrate several IoT devices is by
buying everything from the same manufacturer, limiting the
available market offer. By integrating several IoT devices, is
possible to have context-aware control over some devices. For
instance, is possible to turn off a heater’s smart plug if the
room’s temperature rises above a set value. Using IFTTT
service (If This Then That) is also possible to define some
actions regarding context. However, all these solutions are
centralized and somewhat limited, being basically if actions.

Context-Aware control and ambient intelligent systems
can change the way we see systems. The ability to change their
status according to its context provide a better fit within its
environment. Moreover, systems with such capabilities can
improve users’ comfort and experience. An example of that is
presented in [8] where an energy management system is
proposed to minimize energy consumption by solving an
optimization problem with multiple comfort constraints to
maintain the multiuser comfort. In [9], is proposed a top-level
architecture for IoT devices to provide services to users.
Gateway-enabled architectures are proposed in [10] and [11],
simplifying the development of horizontal platforms. Another
approach is proposed in [12], where a decentralized
architecture is used for resources’ utilization optimization.

This paper proposes a hardware architecture for an IoT
device with context-aware autonomous control over an
electrical appliance/resource. The proposed architecture focus
on simplicity and efficiency regarding context-aware control.
This paper also presents the software architecture that should
be implemented inside the processing unit of the hardware
architecture. The software architecture provides the necessary
layers to enable context-aware autonomous control. The main
contribution of this paper is the proposal of a lightweight,
functional and complete solution for an IoT device with
context-aware autonomous control over an individual
electrical resource.

In this paper, are presented two case studies where the
hardware and software architectures are deployed. The two
developed IoT devices were successfully deployed in one of
our buildings. The deployment and results are presented in this
paper. One case study will control the brightness of one
television to reduce its energy consumption, while the other
case study will control one air conditioner unit to prevent it
from working without having persons inside its room.

After this first introductory section, Section II will detail
both proposed architecture; the hardware and the software.
Section III will describe the deployment of the two IoT
devices used. In Section IV are presented the results of both
deployments and finally, in Section V a discussion and main
conclusions are presented.

II. PROPOSED IOT DEVICE FOR CONTEXT-AWARE

AUTONOMOUS CONTROL

Market available IoT devices promote remote control and
monitor, they usually are small pieces of a system that the user
can expand and create. A single IoT device is usually limited
in its functionalities but by integrating it in an IoT community,
with other devices, then new control possibilities arise. This
paper will go beyond the state of the art regarding IoT devices
by proposing a generic architecture that enables the
development of IoT devices for context-aware autonomous
control.

An IoT device enables the integration of the physical
world in the internet world. To provide this integration, a close
collaboration between hardware and software must be built.
Therefore, the proposed architecture is, in fact, a combination
of one hardware architecture and one software architecture.
The developed devices, shown in this paper, have these two
architectures.

The proposed hardware architecture, shown in Figure 1, is
divided into four main modules: a processing unit, sensors, an
actuator, and a communication module. The software of the
proposed IoT device is divided, as seen in Figure 2, in four
layers: contextual data monitoring, context awareness
(re)action, correction monitoring, and resource control.

The proposed architecture is able to obtain and deliver
every information needed to create a context-aware
autonomous control. The minimalist architecture enables the
development of cheap and easy to use IoT devices.

A. Hardware modules

Figure 1. Hardware architecture

The main novelty of this architecture, when compared to
market available IoT devices, is the integration of sensors and
one actuator in the same device. This integration enables the
context-aware control inside the hardware device and not in
the cloud. Normally, market available solutions and scientific
proposed solutions use the cloud-side to process heavy

algorithms. However, the proposed work will function
entirely inside the IoT device without needing a cloud
connection.

In the centre of the architecture, it is found the main
component of the device, the processing unit. The processing
unit consists of a microcontroller, and it is responsible for the
workflow of the device. Everything that involves information
processing, receiving or sending information from or to some
component, it is done inside the microcontroller. The choose
of microcontroller must take into account the communication
protocol intended for the IoT device and the sensors and
actuator that will be integrated into the device.

The sensors module integrates all the sensors needed for
the context-aware control. Each chosen sensor must make
sense in the desired control. The sensor will measure, in real-
time, values that the software will read and process in the
processing unit. The measured values, provided by sensors,
must be directly used in the context-aware autonomous
control. Therefore, sensors have the objective of knowing
what is happening on the device’s surroundings.

The actuator module is responsible to control the desired
resource, the type of actuator used will dictate the type of
control allowed over the resource. There are a variety of
possible actuators, they may consist on a simple relay to just
turn on or off a circuit or they may consist on something more
complex, it can use communication protocols like infrared
emitters to provide a detailed control.

The Communication module provides the opening of the
IoT device to the outside world and truly creates an IoT
compatible device. In our work, we used the Message
Queuing Telemetry Transport (MQTT) [13] protocol over
TCP/IP. However, other protocols can be used, such as the
Advanced Message Queuing Protocol (AMQP) or the Simple
Text Oriented Messaging Protocol (Stomp). Other base
protocols, different than TCP/IP, are also valid options, such
as ZigBee or Z-Wave.

The Communication module, of Figure 1, is the base for
modules integration. The Communication module works as a
base while the others lay on its top. Sensors, Processing unit
and Actuator work side by side to provide readings and
actuation features. Although Communication is the most
important layer to turn this into an IoT device, the focus of this
paper is the ability to perform context-aware autonomous
control. Therefore, the Communication layer will work to
enable and disable the context-aware control; the focus of the
paper will be the performance of the control itself.

B. Software modules

Figure 2. Software architecture

The contextual data monitoring layer is responsible to read
and process all the data feed from the sensors. The
interpretation of such signals is essential to provide the system
with real-time contextual data that will be used in the context-

The present work has been developed under the EUREKA - ITEA2

Project M2MGrids (ITEA-13011), Project SIMOCE (ANI|P2020 17690),
and has received funding from FEDER Funds through COMPETE program

and from National Funds through FCT under the project

UID/EEA/00760/2019 and SFRH/BD/109248/2015.

aware control. This layer is directly dependent on the
hardware sensors used.

The resource management will be done in the context
awareness action layer that interprets the sensors’ data and
defines the right control procedure. This layer should be built
to enable the desired action. The action can be at least one of
several types, such as partial control, power control or a
warning system. However, this layer is tailormade for the
desired functionality that the developer wants to give to the
IoT device. In this paper, it will be shown two deployments,
one for status control actions and another for safety actions.

The proposed IoT device as the goal to be integrated with
a resource that can be controlled in a manual or external way;
without exclusively using the IoT to control it. This way, our
IoT device should monitor the controllable resource in order
to detect, identify and react to the users’ changes. The
correction monitoring layer is responsible to identify the
current controllable resource status. The monitor of the
resource can demand hardware sensors that must be included
in the hardware sensors module. If the device is unable to fully
understand the resource’s context or status the context-aware
autonomous control will fail over time. The actions of the user
must be considered and cannot be ignored in a context-aware
system. Therefore, this correction monitoring software layer
is extremely important to promote the right function of the
system.

The resource control layer is responsible to control the
actuator hardware in an efficient and coordinated way. Similar
to contextual data monitoring layer, the resource controller
layer will build the bridge between the software world and the
hardware world. This layer will be used by the two middle
layers: the context awareness (re)action layer, and the
correction monitoring layer.

The software architecture, of Figure 2, was designed using
hierarchical layers. Because the normal microcontrollers do
not provide multi-thread, the layers are executed sequentially
by their hierarchic order. It starts in the Contextual data
monitoring layer and ends in the Resource control layer.

III. DEPLOYMENT SCENARIOS

For the propose of this paper, two IoT devices, using the
proposed hardware and software architectures, were
developed and deployed in our facilities for uninterrupted
context-aware autonomous control of two resources: a
television; and an air conditioner.

Both deployment applications have equal processing units
and communication protocols. However, the sensors and
actuators are different from each application. The processing
unit used is the NodeMCU Module [14] and MQTT is used as
the communication protocol. This combination of the
NodeMCU with MQTT protocol was successfully tested and
used in [15].

The NodeMCU Module is based on ESP8266 Wi-Fi
system on a chip from Espressif Systems. This is a low-cost
module that integrates a processing unit with 128 kBytes
memory and a Wi-Fi chip. The integration of processing unit
and Wi-Fi chip is ideal for IoT devices. The NodeMCU
Module is an open source platform that uses Lua as
programing language and gives the developer the opportunity
to create a custom firmware build using only the necessary
modules (e.g. GPIO, MQTT, DHT or DS18B20) [16].

In our research centre, we have the open source MQTT
broker Eclipse Mosquitto [17]. Therefore, the obvious
communication protocol was to implement the MQTT over
the TCP/IP protocol in the NodeMCU Module. The MQTT
protocol, is each application deployed, is implemented as
subscriber and publisher. The following communications are
possible in each application:

• Publish sensor data – the data from each sensor
connected to the IoT device is published in the MQTT
broker, for each sensor is created a new MQTT topic;

• Subscribe to control actions – the actuator of the IoT
device can be directly controlled by external users
using the proper MQTT topic “control”;

• Subscribe to activation actions – the IoT device
context-aware autonomous control can be activated or
deactivated by using the proper MQTT topic
“activate”.

Both IoT devices use infrared Light Emitting Diodes
(LED) to control their controllable resources – mimicking the
typical television remote control. However, the used
NodeMCU framework timer function cannot provide a fast-
enough clock to enable the direct connection and use of an
infrared LED emitter. The framework can only provide a 1
kHz clock. To achieve the necessary frequency of 38 kHz, an
astable multivibrator circuit must be created. Figure 3 shows
the circuit that enables the use of infrared emitters with the
NodeMCU module. The circuit uses an NE555 to work as the
oscillator to reproduce the infrared signal.

Figure 3. Astable multivibrator circuit for the infrared emitter

A. Television control

The proposed IoT device architecture was used to create a
system able to control the brightness of a television (TV). The
TV is used in our building to show the real-time building’s
consumption and generation, as well as some weather
measurements. The TV is located in a hall and the idea behind
the IoT device deployment is to minimize TV’s consumption
by monitoring the presence of persons inside the hall.

As a requirement, to prevent system failures, the IoT
device will only control TV’s brightness. The IoT device will
not control the turn-off and turn on the TV. However, a smart
plug, connected to the TV, is responsible to turn on the TV at
8:00 a.m. and turn it off at 8:00 p.m. during the working days.
The used smart plug is a TP-Link HS110 with energy
monitoring capabilities.

To control TV’s brightness, the IoT device will change the
TV’s energy saving mode, from the minimum to maximum.
The minimum energy saving mode uses a high brightness and
produces a consumption of around 95 W. The maximum

energy saving mode will decrease the TV’s brightness and
consumption, where the consumption will be around 35 W.

Regarding software implementation, the flowchart of
Figure 4 was implemented. The context awareness (re)action
layer will put energy saving mode at minimum every time a
person is detected in the hall and after 7 minutes without
movement, the IoT device will change the TV to its maximum
energy saving mode. When the PIR sensor detects someone in
the hall, the IoT device sends a signal to change the energy
saving mode, making it go to the maximum brightness mode
(i.e. energy saving at minimum).

Figure 4. IoT device for television with the software layers

The correction monitoring layer will use the external
energy sensor provided by the TP-Link HS110 smart plug.
Using the TV’s consumption, the IoT device can detect the
current TV’s energy saving mode and if the energy saving is
not the desired, the IoT device can correct the TV’s energy
saving mode. The correction monitor layer checks TV’s
consumption every minute.

Figure 5 shows the TV’s menu where energy saving is
chosen. In our system, only two energy saving modes are used.
The LG TV used did not provide a direct infrared signal to
switch from the energy saving mode.

Figure 5. Television's energy-saving menu

To change the energy saving mode, the following
sequence of signals are needed to be emitted by the IoT
device:

i. Open the energy saving menu – this infrared signal,
opens the energy saving menu (Figure 5);

ii. Energy saving signal – after the menu is open, the
same infrared signal is sent repeatedly to change the
selected energy saving mode, the IoT device will use
the data from the smart plug to identify the current
energy saving mode and then calculate the necessary
repetitions to achieve the desired energy saving
mode;

iii. Ok signal – after the right selection, it is sent the ok
signal to activate the selected energy saving mode.

B. Air conditioner control

The IoT device for air conditioner control was developed
for security reasons to prevent unnecessary consumption
while protecting the air conditioner unit from continuous use.
In our laboratories, the air conditioner units are old and
sometimes students and researchers let the units working
through the night, weekends and holidays. For more than
once, problems with the units appear because of the
continuous operation. To prevent future problems, an IoT
device was developed and deployed to detect if the room is
closed and then turn off the air conditioner unit.

The IoT device is only able to turn off the air conditioner
unit when it is operating in the context-aware autonomous
control. If the room is empty and dark for 7 minutes, and if
there is some consumption produced by the air conditioner
unit, then the IoT device will send the turn-off infrared signal.
The IoT device uses the room’s light to detect if the room is
dark – meaning that the room was closed and there is not
artificial or natural light. The IoT device also has a PIR sensor
to detect movement in the room. Figure 6 shows the developed
board used to control the air conditioner.

Figure 6. IoT device for the air conditioner unit

Because the hardware board for the television is similar to
the air conditioner – only differentiate themselves because the
use of DHT22 – the same board can be used in both case
studies. However, the software is entirely different from each
case study.

Following the modules of Figure 1, the air conditioner IoT
device has: as processing unit a NodeMCU, as integrated
sensors a PIR and a Light Dependent Resistor (LDR), as
actuator four infrared LED, and has communication protocol
MQTT.

To take the right advantages of such an IoT device, the
board also included a DHT22 temperature and humidity
module. All the sensor data is published in MQTT topics.
Also, besides the turning off signal used in the context-aware
autonomous control, the IoT device is able to send a complete
set of signals to allow the entire remote control of the air
conditioner unit.

Because NodeMCU has a limit flash memory size of 4
Mbytes; in its default version, the storage of all the air
conditioner infrared signals was simply not possible. The
solution was to use an external server to store all the infrared
signals. Figure 7 shows the sequence diagram of the IoT
device when receiving an MQTT message for air conditioner
control, where the IoT device will query the external server
for the right infrared code and then will emit the signal using
the infrared LED. The external server was developed in
Node.js using the Express module for a fast and easy
implementation of a RESTful server.

Figure 7. Infrared signal request

The IoT device for the air conditioner was built for
security and energy saving. It differs from the previous TV
IoT device that demands a continuous operation. The air
conditioner IoT device uses an alarm logic of detecting a
specific situation and then act. The context awareness
(re)action layer will identify the moment when the room is
dark and without movement for more than 7 minutes and then
it will turn the air conditioner off if it has consumption.

For this IoT device, the correction monitoring layer was
not implemented. This layer is for continuous control in order
to correct failures along the controlled period. Because the air
conditioner IoT device assumes an alarm logic, there is no
need for having a correction monitoring layer.

IV. DEPLOYMENT RESULTS

This section presents the results in each deployed IoT
device. As will be seen, the proposed architecture was
successfully developed, and the results demonstrate the
efficiency of context-aware autonomous control in the
television and the air conditioner unit.

A. Television deployment

As stated before, the television smart plug imposes a
schedule from 8:00 a.m. to 8:00 p.m. Figure 8 shows the

television consumption between 7:30 a.m. and 8:30 p.m.
When the television is turned on using the smart plug
scheduled control, their consumption goes to the maximum of
95 W. However, the IoT device’s correction monitoring layer
will automatically detect the wrong consumption and change
the energy saving to the minimum consumption of 35 W.

During the day, is visible the movement of the people
inside the building. The chart in Figure 8 also presents, in
green bars, the movement sensor activation. The researches
arrive near 9:00 a.m. and have a clear impact on television
consumption. Because the television is located near the
kitchen, the movement sensor is triggered every time a
researcher arrives or leaves the kitchen, goes for a coffee, goes
to stores his/her food or have some lunch or snack.

In Figure 8, is visible the 7 minutes that the IoT device
waits until the end of the last movement to act on television.
Therefore, every time a movement is detected the television
stays at the highest brightness mode for 7 minutes straight.

The deployed of the IoT device enabled the context-aware
autonomous control resulting in a decrease of consumption
energy of 56% – from 1.14 kWh/day to 0.64 kWh/day.
Previously the consumption of television was the same during
the day – from 8:00 a.m. to 8:00 p.m. – using the lowest energy
saving mode.

B. Air conditioner deployment

The air conditioner unit goal is to detect and prevent
situations where the air conditioner was left on. Figure 9
shows the results of the air conditioner control in a day that
the unit was left on. The chart of Figure 9 shows the air
conditioner consumption, the lux intensity inside the room and
the movement sensor between 3:00 p.m. and 7:00 p.m.

Has can be seen in Figure 9, the air conditioner unit works
nearly every 10 minutes. The PIR sensor only detects
significant heating movements. Therefore, the movement
sensor is usually not triggered even though there are users
inside the room. At 3:45 p.m. all but one lamp inside the room
are turned off, living only the external light and a single lamp
turned on. At this moment, the room only had a person
working inside. The lux sensor is in one wall of the room.

Figure 8. Television context-aware autonomous control

Client Node.js	API

HTTP	GET	request HTTP	GET	IR	signal

IR	signal

HTTP	204 Emit	IR	signal

IoT device

0
1
2
3
4
5

0
20
40
60
80

100
120

07
:3

0:
00

07
:5

0:
00

08
:1

0:
00

08
:3

0:
00

08
:5

0:
00

09
:1

0:
00

09
:3

0:
00

09
:5

0:
00

10
:1

0:
00

10
:3

0:
00

10
:5

0:
00

11
:1

0:
00

11
:3

0:
00

11
:5

0:
00

12
:1

0:
00

12
:3

0:
00

12
:5

0:
00

13
:1

0:
00

13
:3

0:
00

13
:5

0:
00

14
:1

0:
00

14
:3

0:
00

14
:5

0:
00

15
:1

0:
00

15
:3

0:
00

15
:5

0:
00

16
:1

0:
00

16
:3

0:
00

16
:5

0:
00

17
:1

0:
00

17
:3

0:
00

17
:5

0:
00

18
:1

0:
00

18
:3

0:
00

18
:5

0:
00

19
:1

0:
00

19
:3

0:
00

19
:5

0:
00

20
:1

0:
00

20
:3

0:
00

M
o

ve
m

en
t

C
o

n
su

m
p

ti
o

n
 (

W
)

Hours

Persons movement TV consumption

Figure 9. Air conditioner contextual actuation

At 6:28 p.m., the last person leaves the room and the last
lamp is turned off. At this moment, the PIR sensor detects the
person movement and stays triggered until 6:30 p.m. After the
light is zero and there is no movement inside, the IoT device
waits 7 minutes to see if the room remains closed – during this
time the air conditioner has energy consumption because the
IoT device did not yet detect that the room is closed. At 6:39,
when the IoT device detects that the room is closed, there is
no air conditioner consumption, and because of that, the
system does not perform any action, being in the monitoring
mode. When at 6:39 p.m. the air conditioner starts its motor
and produces energy consumption, the system detects it and
send right away a turn off infrared signal. Therefore, at 6:39
p.m. the air conditioner starts consuming but it is almost
immediately stopped.

V. DISCUSSION AND CONCLUSIONS

The use of IoT products in our homes are more and more
normal. These products take several forms and functionalities,
from smart televisions to smart pots passing by the smart
plugs. They allow users to have a better understand and
control over their home’s appliances and resources. They also
enable the dissemination of concepts such as smart homes and
energy management demand response programs.

However, much of IoT devices have the intention to
produce remote monitoring and/or control. They, by
themselves, are not able to autonomously control a resource
or area according to its context. They have some
functionalities for autonomous control and they can interact
with other IoT devices to produce a contextual control but are
unable to have efficient and good quality context-aware
autonomous control.

The current approach in IoT devices for home control to
achieve contextual control demands multiple IoT devices with
a centralized point where the contextual control is performed.
This centralized architecture is debatable and demands the
users to buy multiple devices. This paper proposes a
distributed solution where each IoT device has its own
context-aware autonomous control without needing external
hardware.

This paper proposed hardware and software architectures
for a context-aware autonomous IoT device. The simple
architecture demonstrated to be very effective for the two
different case studies presented. Both IoT devices
deployments use the MQTT protocol for remote control and
monitor. They can be integrated with Home Assistant to work
with market solutions such as TP-Link HS110 smart plug.

The proposed architecture was used in television and in an
air conditioner unit. In the television case, the IoT device
monitors the brightness according to the users’ position. In
case of the air conditioner, the IoT device is able to prevent

the unit from work during the night and during periods where
the room is closed and without anyone.

The proposed approach has the advantage of the context-
aware autonomous control being inside the IoT device without
the need for a centralized solution. However, the IoT
architecture gives the possibility to remotely (de)activate the
contextual control, control the actuator and monitor the
connected sensors. Other advantages are its simplicity and
modularity that enables the use of the proposed architectures
in multiple situations where a context-aware autonomous
control is desired or necessary. As a disadvantage, the
proposed architectures required more hardware and should be
tailor-made for each situation.

The main concern that should be considered is the security
of communications and data. The users’ data must be
protected to maintain security and privacy. The presented
work was developed and deployed in a research building
where no outside server connection was used. The data was
stored locally in the research group network. Nonetheless,
future implementation of the proposed architectures must
consider security and privacy issues in each development.

The proposed hardware and software architectures can
provide, as proven in this work, context-aware autonomous
control using a unique IoT device in an efficient and effective
control.

REFERENCES

[1] Min Li, Wenbin Gu, Wei Chen, Yeshen He, Yannian Wu, Yiying

Zhang, “Smart Home: Architecture, Technologies and Systems,”
Procedia Computer Science, vol. 131, pp. 393-400, 2018. Doi:
10.1016/j.procs.2018.04.219

[2] L. Gomes, F. Sousa, Z. Vale, “An Intelligent Smart Plug with Shared
Knowledge Capabilities,” Sensors, vol. 18, 2018. Doi:
10.3390/s18113961

[3] E. Demir, E. Köseoğlu, R. Sokullu, B. Şeker, “Smart Home Assistant
for Ambient Assisted Living of Elderly People with Dementia,”
Procedia Computer Science, vol. 113, pp. 609-614, 2017. Doi:
10.1016/j.procs.2017.08.302

[4] V. Vujović, M. Maksimović, “Raspberry Pi as a Sensor Web node for
home automation,” Computers & Electrical Engineering, vol. 44, pp.
153-171, 2015. Doi: 10.1109/TASE.2018.2789658

[5] Statista. Smart Home Report 2018 – Control and Connectivity; Statista:
Hamburg, Germany, 2018.

[6] Home Assistant documentation. [Online] Available:
https://www.home-assistant.io/docs/ (access on 9 January 2019)

[7] Mycroft AI documentation. [Online] Available:
https://mycroft.ai/documentation/ (access on 9 January 2019)

[8] C. Lu, C. Wu, M. Weng, W. Chen and L. Fu, "Context-Aware Energy
Saving System With Multiple Comfort-Constrained Optimization in
M2M-Based Home Environment," IEEE Transactions on Automation
Science and Engineering, vol. 14, pp. 1400-1414, July 2017. Doi:
10.1109/TASE.2015.2440303

[9] S. Prasad Gochhayat, P. Kaliyar, M. Conti, P. Tiwari, V.B.S. Prasath,
D. Gupta, A. Khanna, “LISA: Lightweight context-aware IoT service
architecture,” Journal of Cleaner Production, vol. 212, 2019. Doi:
10.1016/j.jclepro.2018.12.096

[10] S. K. Datta, C. Bonnet and N. Nikaein, "An IoT gateway centric
architecture to provide novel M2M services," 2014 IEEE World Forum
on Internet of Things (WF-IoT), Seoul, 2014, pp. 514-519.
Doi: 10.1109/WF-IoT.2014.6803221

[11] Vallati, C., Mingozzi, E., Tanganelli, G. et al. Wireless Pers Commun,
vol. 87, 2016, pp. 1071-1091. Doi: 10.1007/s11277-015-2639-0

[12] J. Mocnej, W. K.G. Seah, A. Pekar, I. Zolotova, “Decentralised IoT
Architecture for Efficient Resources Utilisation,” IFAC-
PapersOnLine, vol. 51, 218, pp. 168-173. Doi:
10.1016/j.ifacol.2018.07.148

[13] MQTT protocol specification. [Online] Available:
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-
v3r1.html (access on 9 January 2019)

[14] NodeMcu documentation [Online]. Available:
https://nodemcu.readthedocs.io/en/master/ (access on 9 January 2019)

[15] M. Kashyap, V. Sharma, N. Gupta, “Taking MQTT and NodeMcu to
IOT: Communication in Internet of Things,” Procedia Computer
Science, vol. 132, pp. 1611-1618, 2018. Doi:
10.1016/j.procs.2018.05.126

[16] NodeMCU custom builds [Online] Available: https://nodemcu-
build.com/ (access on 9 January 2019)

Mosquitto MQTT broker [Online] Available: https://mosquitto.org/ (access
on 9 January 2019

