CHEMCATCHEM

Supporting Information

Coke Formation during Propane Dehydrogenation over Ga—Rh Supported Catalytically Active Liquid Metal Solutions

Moritz Wolf, Narayanan Raman, Nicola Taccardi, Marco Haumann, and Peter Wasserscheid*© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-

Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. This manuscript is part of a Special Collection on the "French Conference on Catalysis".

Electronic Supporting Information: Coke formation during propane dehydrogenation over Ga-Rh Supported Catalytically Active Liquid Metal Solutions

Dr. Moritz Wolf,^a Narayanan Raman,^a Dr. Nicola Taccardi,^a Dr. Marco Haumann,^a Prof. Dr. Peter Wasserscheid^{*,a,b}

- a) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058 Erlangen, Germany.
- b) Forschungszentrum Jülich, "Helmholtz-Institute Erlangen-Nürnberg for Renewable Energies" (IEK 11), Egerlandstr. 3, 91058 Erlangen, Germany.

*Corresponding author. E-mail address: peter.wasserscheid@fau.de

Supplementary information

Description of coke functionalities/carbon oxide complexes

Oxidation of coke by O_2 has been hypothesised to proceed via the formation of a metastable carbon oxide complexes. The mechanism may be summarised with five steps (Equations S1-S5).^[1] At first, adsorption of O_2 on the carbon surface (C_f) initiates the formation of a metastable undissociated surface oxide -C(O₂) functionality (Equation S1), which is subsequently stabilised by evolution of CO (Equation S2). Thermal decomposition of the resulting dissociated surface oxide -C(O) or the -C(O₂) complex results in the combustion products CO and CO₂, respectively (Equation S2-S4). Furthermore, the stable complex -C(O) may react with O₂ to produce CO₂, while forming another -C(O) functionality with the next carbon surface atom (Equation 5).^[2] Any formed CO molecule is expected to undergo full oxidation to CO₂ at considerable concentrations of O₂, e.g. the concentration in ambient air.

$$-C_{\rm f} + O_2 \rightarrow -C(O_2) \tag{S1}$$

 $-C(O_2) + -C_f \rightarrow -C(O) + CO \tag{S2}$

$$-C(O) \to CO \tag{S3}$$

$$-C(O_2) \to CO_2 \tag{S4}$$

$$-C_{f} + -C(O) + O_{2} \rightarrow -C(O) + CO_{2}$$
(S5)

Classification of coke^[1b, 3]

Carbonaceous deposits in spent catalysts, which are analysed by means of temperature programmed oxidation (TPO), are often classified into a "soft" and "hard" coke fraction. The exclusive parameter for this classification is the oxidation temperature (e.g. the maximum of the CO_2 formation). The first peak at lower oxidation temperatures (typically below 400 °C) is attributed to the soft coke fraction. The differences in reactivity of these fractions in terms of oxidation by O_2 is typically assigned to the particular morphology. Soft coke often comprises predominantly amorphous structures, alkylated mono- and di-aromatics, and only small amounts of polyaromatics. Contrarily, hard coke has a higher degree of graphitisation, i.e. consists of mainly poly-condensed aromatic compounds. As the presence of hydrogen atoms in the carbonaceous structure increases the reactivity, soft coke often features a larger H/C ratio than hard coke. Lastly, soft coke may represent the precursor for hard coke, e.g. via graphitisation.

Determination of the activation energy and pre-exponential factor using the isoconversional method according to Starink^[4]

The linear trend line of the Arrhenius plot provides the slope *m* and the y-axis intersection y_0 (Equation S6). With both, the activation energy E_a and the pre-exponential factor *A* can be calculated according to Equations S7 and S8, respectively. The rate constant *k* is then calculated according to the Arrhenius equation (Equation S9).

$$y = m x + y_0 \tag{S6}$$

$$E_a = \frac{m \,\mathrm{R}}{1.0008} \tag{S7}$$

$$A = \frac{m}{1.0008} \exp(y_0)$$
(S8)

$$k = A \exp\left(\frac{-E_a}{RT}\right) \tag{S9}$$

Preparation of Rh/Al₂O₃ catalyst

Rh(NO₃)₃ (with a nominal Rh concentration of 1 mg L⁻¹) were added. The water was evaporated under vacuum (1 mbar) at 50 °C. The resulting off-white powder was calcined for 12 h at 450 °C. The obtained off-white material was transferred to the reduction reactor and reduced with a stream of pure H₂ (60 mL min⁻¹), at 300 °C for 3 h. The resulting grey powder was analysed by means of inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Supplementary graphs

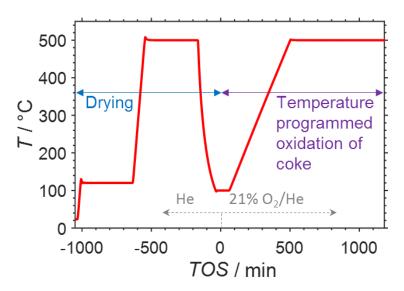


Figure S1: Experimental procedure during high-resolution thermogravimetry coupled with mass spectrometry using a XEMIS sorption analyser.

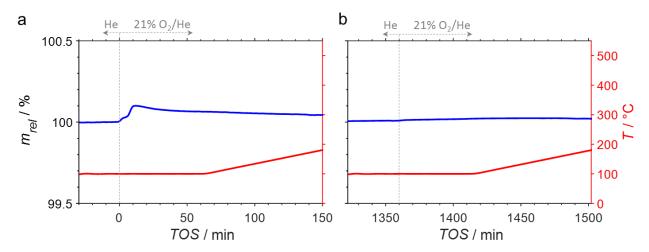


Figure S2: Sample weight relative to the weight prior to exposure to 21% O₂/He at 100 °C during the initial isotherm of (a) the first and (b) the second consecutive temperature programmed oxidation (1 °C min⁻¹) sequence of as-prepared SCALMS with an atomic Ga/Rh ratio of 125 as monitored via high-resolution thermogravimetry coupled with mass spectrometry. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

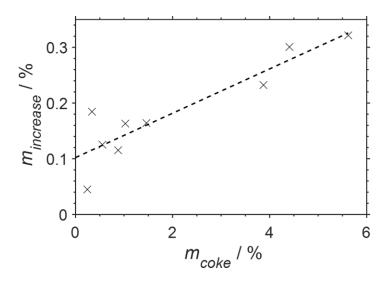


Figure S3: Dependence of the initial weight increase and the identified amount of coke during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS, a spent Ga/Al₂O₃ (Ga/Rh = ∞), as well as a spent Rh/Al₂O₃ (Ga/Rh = 0) reference catalyst as monitored via high-resolution thermogravimetry coupled with mass spectrometry. All catalysts were previously applied in propane dehydrogenation at 450-550 °C.

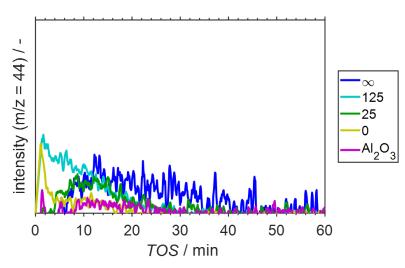


Figure S4: Formation of CO₂ during the isotherm at 100 °C upon first exposure to oxygen during temperature programmed oxidation of spent SCALMS with atomic Ga/Rh ratios of 25 and 125, the spent Ga/Al₂O₃ (Ga/Rh = ∞) and Rh/Al₂O₃ (Ga/Rh = 0) reference catalysts, as well as the bare Al₂O₃ support material as monitored via high-resolution thermogravimetry coupled with mass spectrometry. All catalysts were previously applied in propane dehydrogenation at 450 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

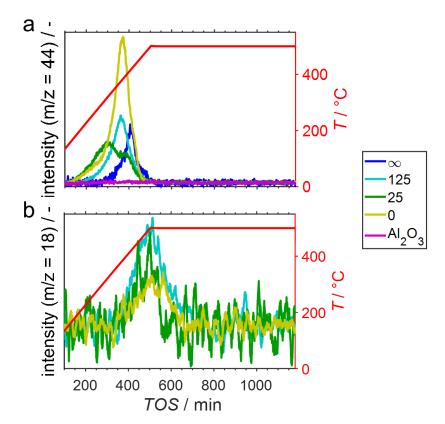


Figure S5: Formation of (a) CO_2 and (b) H_2O during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with atomic Ga/Rh ratios of 25 and 125, the spent Ga/Al₂O₃ (Ga/Rh = ∞) and Rh/Al₂O₃ (Ga/Rh = 0) reference catalysts, as well as the bare Al₂O₃ support material as monitored via high-resolution thermogravimetry coupled with mass spectrometry. All catalysts were previously applied in propane dehydrogenation at 450 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

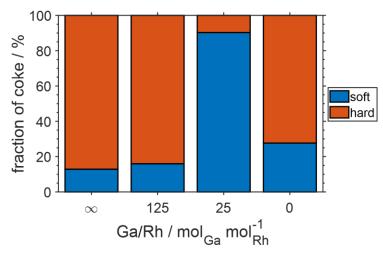


Figure S6: Identified fractions of soft and hard coke in the spent SCALMS with atomic Ga/Rh ratios of 25 and 125, as well as the spent Ga/Al_2O_3 (Ga/Rh = ∞) and Rh/Al₂O₃ (Ga/Rh = 0) reference catalysts. All catalysts were previously applied in propane dehydrogenation at 450 °C.

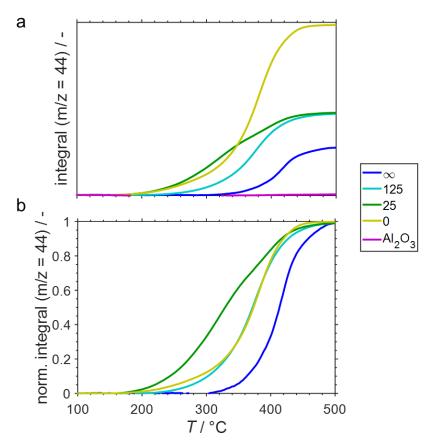


Figure S7: (a) Cumulative and (b) normalised cumulative formation of CO₂ during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with atomic Ga/Rh ratios of 25 and 125, the spent Ga/Al₂O₃ (Ga/Rh = ∞) and Rh/Al₂O₃ (Ga/Rh = 0) reference catalysts, as well as the bare Al₂O₃ support material as monitored via high-resolution thermogravimetry coupled with mass spectrometry. All catalysts were previously applied in propane dehydrogenation at 450 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

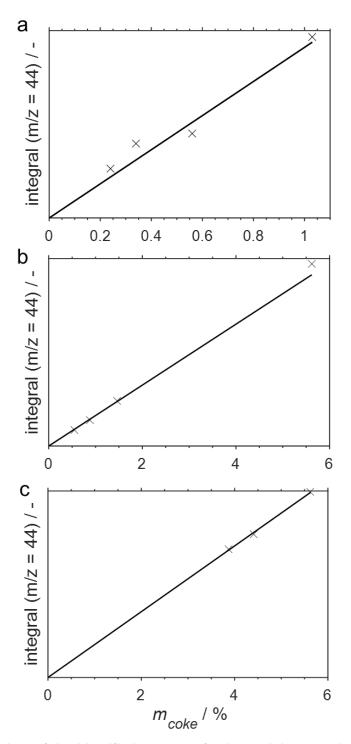


Figure S8: Parity plots of the identified amount of coke and the cumulative formation of CO₂ during temperature programmed oxidation (1 °C min⁻¹) of (a) spent SCALMS with atomic Ga/Rh ratios of 25 and 125, as well as the spent Ga/Al2O3 (Ga/Rh = ∞) and Rh/Al2O3 (Ga/Rh = 0) reference catalysts after application in propane dehydrogenation at 450 °C, (b) spent SCALMS with an atomic Ga/Rh ratio 125 after propane dehydrogenation at 450, 480, 500, and 550 °C, and (c) spent SCALMS with various atomic Ga/Rh ratios after propane dehydrogenation at 550 °C as monitored via high-resolution thermogravimetry coupled with mass spectrometry.

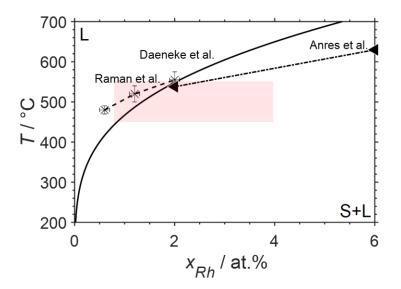


Figure S9: Studied domain for propane dehydrogenation using various compositions of SCALMS (red rectangle) superimposed on the liquidus line of the Ga-Rh phase diagram (solid) according to ref. ^[5], two experimental data points for the solubility of Rh in Ga (triangle connected by dash-dotted line to guide the eye) according to ref. ^[6], as well as an experimentally obtained solubility data from XPS measurements (crosses connected by dashed line to guide the eye) according to ref. ^[7].

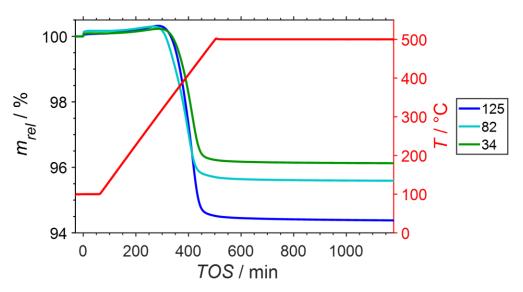


Figure S10: Sample weight relative to the weight prior to exposure to 21% O₂/He at 100 °C during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with various atomic Ga/Rh ratios as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The catalysts were previously applied in propane dehydrogenation at 550 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

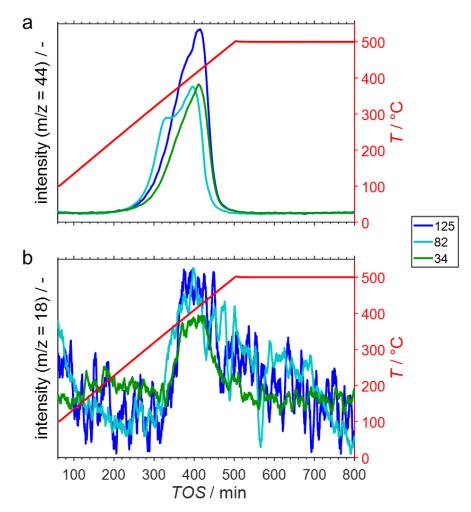


Figure S11: Formation of (a) CO_2 and (b) H_2O during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with various atomic Ga/Rh ratios as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The catalysts were previously applied in propane dehydrogenation at 550 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O_2 flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

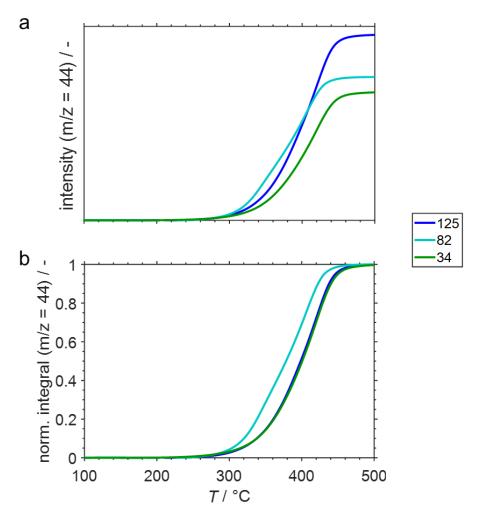


Figure S12: (a) Cumulative and (b) normalised cumulative formation of CO₂ during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with various atomic Ga/Rh ratios as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The catalysts were previously applied in propane dehydrogenation at 550 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

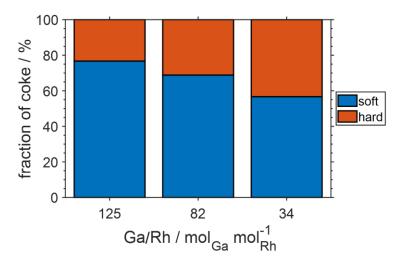


Figure S13: Identified fractions of soft and hard coke in the spent SCALMS with various atomic Ga/Rh ratios after propane dehydrogenation at 550 °C.

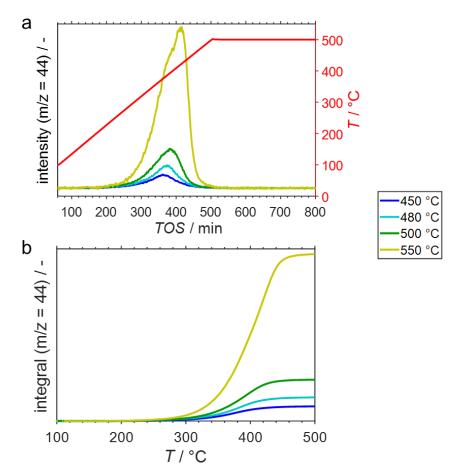


Figure S14: (a) Formation of CO_2 and (b) cumulative formation of CO_2 during temperature programmed oxidation (1 °C min⁻¹) of spent SCALMS with an atomic Ga/Rh ratio of 125 as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The catalysts were previously applied in propane dehydrogenation at 450, 480, 500, and 550 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

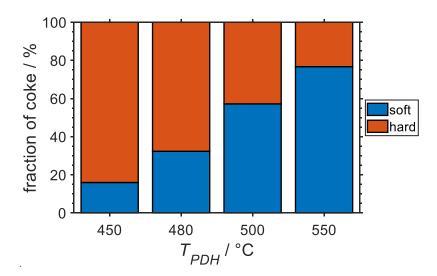


Figure S15: Identified fractions of soft and hard coke in the spent SCALMS with an atomic Ga/Rh ratio of 125 after propane dehydrogenation at 450, 480, 500, and 550 °C.

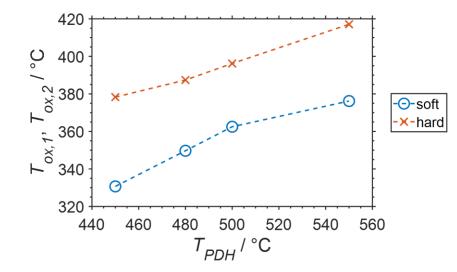


Figure S16: Peak positions of the deconvoluted contribution of soft and hard coke to the overall formation of CO₂ during temperature programmed oxidation of spent SCALMS with an atomic Ga/Rh ratio of 125 after propane dehydrogenation at 450, 480, 500, and 550 °C as monitored via high-resolution thermogravimetry coupled with mass spectrometry.

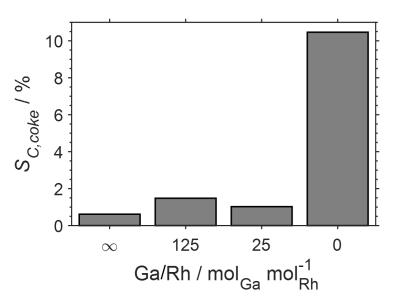


Figure S17: Integral carbon based selectivity towards coke during propane dehydrogenation at 450 °C of the SCALMS with atomic Ga/Rh ratios of 25 and 125, as well as the spent Ga/Al_2O_3 (Ga/Rh = ∞) and Rh/Al₂O₃ (Ga/Rh = 0) reference catalysts.

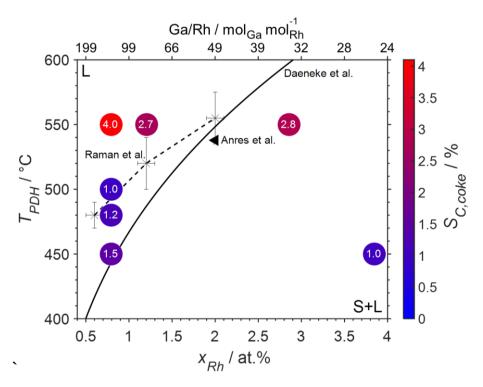


Figure S18: Integral carbon based selectivity towards coke (circles) of the various Ga-Rh SCALMS compositions at different temperatures superimposed on the liquidus line of the Ga-Rh phase diagram (solid) according to ref. ^[5], an experimental data point for the solubility of Rh in Ga (filled triangle) according to ref. ^[6], as well as an experimentally obtained solubility data from XPS measurements (crosses connected by dashed line to guide the eye) according to ref. ^[7].

Figure S19: (a) Sample weight relative to the weight prior to exposure to $21\% O_2$ /He at $100 \degree C$ and (b) formation of CO_2 during temperature programmed oxidation of spent SCALMS with an atomic Ga/Rh ratio of 125 at heating rates of 0.5, 1, 2, and 5 °C min⁻¹ as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The catalysts were previously applied in propane dehydrogenation at 500 °C. Conditions of the experiment: He flow 100 mL_N min⁻¹ for TOS<0; He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>0; GHSV 30000 mL_N g⁻¹ h⁻¹.

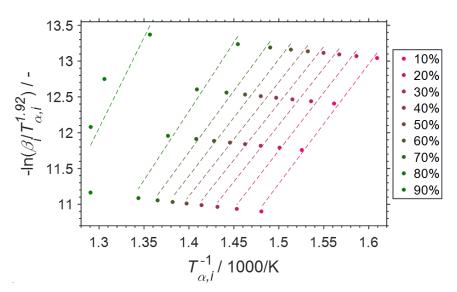


Figure S20: Isoconversional analysis in the Arrhenius plot according to Starink^[4] of various conversion levels of coke (α , filled circles) with linear trendlines (dashed) as monitored by the weight change using high-resolution thermogravimetry during temperature programmed oxidation in 21% O₂/He at different heating rates (β_i) for a spent SCALMS with an atomic Ga/Rh ratio of 125. The catalyst was previously applied in propane dehydrogenation at 500 °C.

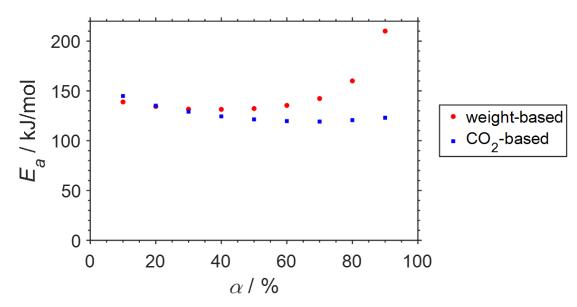


Figure S21: Comparison of the activation energies (E_a) at various conversion levels of coke (α) as derived from the Arrhenius plot based on the weight change or the formation of CO₂ during temperature programmed oxidation in 21% O₂/He of a spent SCALMS with an atomic Ga/Rh ratio of 125 as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The analysis is based on the isoconversional method by Starink^[4] and the catalyst was previously applied in propane dehydrogenation at 500 °C.

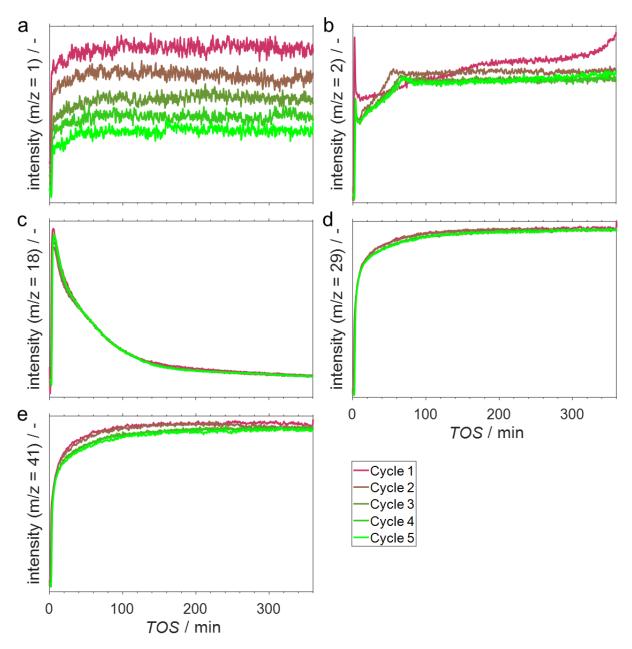


Figure S22: Selected mass-to-charge ratios representing (a) almost exclusively propene, (b) almost exclusively H_2 (c) exclusively H_2O , (d) exclusively propane, (e) combined propane and propene during the dehydrogenation cycles at 500 °C as monitored via with mass spectrometry. Conditions of the experiment: He flow 80 mL_N min⁻¹ and C₃H₈ flow 20 mL_N min⁻¹; GHSV 30000 mL_N g⁻¹ h⁻¹.

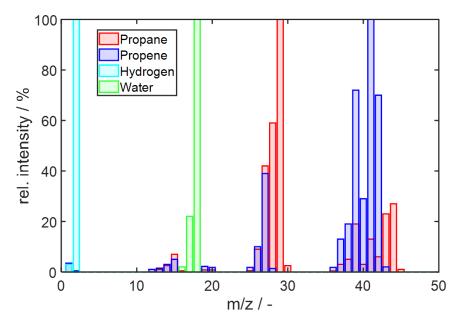


Figure S23: Mass spectra according to NIST^[8] of molecules of interest for propane dehydrogenation over SCALMS.

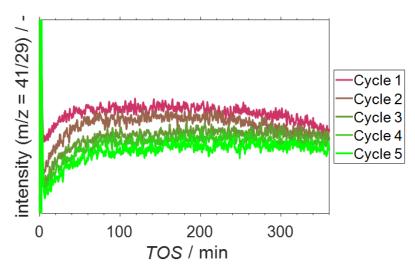


Figure S24: Mass-to-charge ratio of 41 combining propane and propene over 29 representing exclusively propane during the dehydrogenation cycles at 500 °C as monitored via mass spectrometry. Conditions of the experiment: He flow 80 mL_N min⁻¹ and C₃H₈ flow 20 mL_N min⁻¹; GHSV 30000 mL_N g⁻¹ h⁻¹.

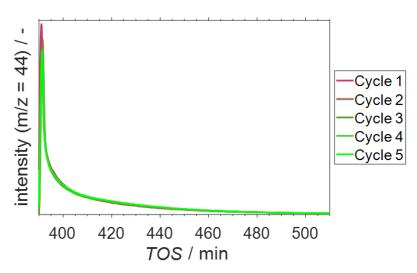


Figure S25: Formation of CO₂ during 5 cyclic regenerations at 500 °C upon propane dehydrogenation using a SCALMS with an atomic Ga/Rh ratio of 125 as monitored via with mass spectrometry. Conditions of the experiment: He flow 79 mL_N min⁻¹ and O₂ flow 21 mL_N min⁻¹ for TOS>390 min; GHSV 30000 mL_N g⁻¹ h⁻¹.

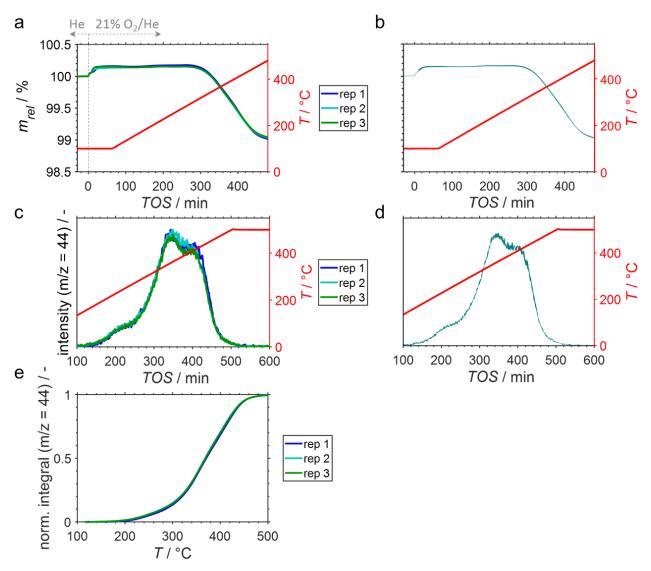


Figure S26: (a) Sample weight relative to the weight prior to exposure to 21% O_2 /He at 100 °C and (c) formation of CO_2 with (b,d) the corresponding confidence intervals during reproducibility studies (three repetitions) of temperature programmed oxidation (1 °C min⁻¹) of the same spent SCALMS as monitored via high-resolution thermogravimetry coupled with mass spectrometry. The selected confidence level was 95%. Conditions of the experiment: He flow 79 mL_N min⁻¹ and O_2 flow 21 mL_N min⁻¹ for TOS>390 min; GHSV 30000 mL_N g⁻¹ h⁻¹.

Supplementary tables

Table S1: Elemental compositions of characterised and applied SCALMS, as well as of the Ga/Al_2O_3 and Rh/Al_2O_3 reference samples.

Atomic Ga/Rh ratio	Ga / wt%	Rh / wt%
0	0	0.19
25	5.65	0.33
34 82	5.90	0.26
82	5.90	0.11
125	5.94	0.07
∞		0

Table S2: Characteristic temperatures during temperature programmed oxidation of spent SCALMS by means of high-resolution thermogravimetric analysis coupled with mass spectrometry (HRTGA-MS).

Catalyst	PDH temperature	Ton	Tox	T _{ox,1}	T _{ox,2}	T 50
Ga/Rh = 0	450	344	382	344	384	386
Ga/Rh = 25	450	282	331	320	407	345
Ga/Rh = 125	450	345	381	331	378	384
Ga/ Rh = ∞	450	390	419	376	417	421
Ga/Rh = 125	480	351	389	350	387	388
Ga/Rh = 125	500	356	399	363	396	393
Ga/Rh = 125	550	370	423	387	424	399
Ga/Rh = 34	550	373	420	371	415	401
Ga/Rh = 82	550	348	406	336	395	378

Where the temperature with the greatest slope corresponds to the temperature of maximum oxidation rate (T_{ox}), i.e. the maximum weight loss. The extrapolated onset temperature of coke oxidation (T_{on}) is the point of intersection of the tangent at T_{ox} with the maximum weight during TPO.^[9] The maximum of the two peaks after deconvolution defines the alternative temperatures of maximum oxidation ($T_{ox,1}$, $T_{ox,2}$) based on formation of CO₂. The temperature at which 50% of coke are oxidised (T_{50}) is determined via cumulative integration of the MS signals.

References

- [1] a) C. Le Minh, R. A. Jones, I. E. Craven, T. C. Brown, *Energ. Fuel.* **1997**, *11*, 463-469; b)
 C. Le Minh, C. Li, T. C. Brown, in *Catalyst Deactivation 1997*, *Vol. 111* (Eds.: C. H. Bartholomew, G. A. Fuentes), **1997**, pp. 383-390.
- [2] a) S. Ahmed, M. H. Back, J. M. Roscoe, *Combust. Flame* **1987**, 70, 1-16; b) Z. Du, A. F. Sarofim, J. P. Longwell, C. A. Mims, *Energ. Fuel.* **1991**, 5, 214-221.
- [3] a) R. Prajapati, K. Kohli, S. K. Maity, *Fuel* 2019, 239, 452-460; b) J. S. Vaughan, C. T. Oconnor, J. C. Q. Fletcher, *J. Catal.* 1994, 147, 441-454.
- [4] M. J. Starink, *Thermochim. Acta* **2003**, *404*, 163-176.

- T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. De Castro, D. Esrafilzadeh, S. J. Barrow,
 M. D. Dickey, K. Kalantar-Zadeh, *Chem. Soc. Rev.* 2018, 47, 4073-4111.
- [6] P. Anres, M. Gaune-Escard, J. P. Bros, J. Alloys Compd. 1998, 265, 201-208.
- [7] N. Raman, S. Maisel, M. Grabau, N. Taccardi, J. Debuschewitz, M. Wolf, H. Wittkämper, T. Bauer, M. Wu, M. Haumann, C. Papp, G. Görling, E. Spiecker, J. Libuda, H.-P. Steinrück, P. Wasserscheid, ACS Catal. 2019, 9, 9499-9507.
- [8] *NIST Chemistry WebBook, SRD 69*, National Institute of Standards and Technology, <u>https://webbook.nist.gov</u>, **2019**.
- [9] J. Inczédy, T. Lengyel, A. M. Ure, in *Compendium of Analytical Nomenclature*, 3 ed., Blackwell Science, Oxford, **1998**, p. Chapter 5.2.