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Highlights

Enzyme immobilization is a key enabling technolégyflow-biocatalysis.

Materials and immobilization protocols need to b#amed for continuous

applications.

Enzyme loading, recovered activity, space-timedyieind turnover numbers

must be reported when applying immobilized enzymékw.

Productivity and operational stability of immobé#i@ enzymes are maximized
through rationally engineering the protein-surfaderface, the material and the

reactor configuration

There is a positive correlation between the spewe-tyields and turnover

numbers of immobilized enzymes applied in flow



Abstract

Flow-biocatalysis mainly exploit immobilized enzyseor continuous chemical
manufacturing. In the last decade, the use of imimeld biocatalysts in flow is
growing rapidly, yet the immobilization protocolsed to be optimized. In this review,
we have discussed the most fundamental aspectg toosidered when designing
immobilized enzymes for productive and stable opema in flow. Furthermore, we
analyze the protein loading, the activity recovetlye space-time yieldS[Y), the
specific productivity and the turnover numb@&NJ, as complementary metrics to assess
the efficiency and longevity of immobilized enzymetegrated into flow-reactors. The
science of the immobilization engineers the suHatein interface, the material
features and the reactor design to achieve hightivea and robust heterogeneous
biocatalysts under continuous operations. Henceemaourage the flow-biocatalysis
community to accompany those engineering efforth wccurate assessments of both

activity and stability.

Keywords; biocatalysis, protein immobilization, advanced materials, packed-bed

reactors, flow-chemistry



INTRODUCTION

Modern chemistry demands more sustainable, efticégd environmentally friendly
manufacturing schemes that contribute to mitigaeehtarmful impact of our economic
development on climate. Biocatalysis and flow-sgsth are two fundamental areas to
meet that goal. In the last decade, there is aitiexavave of utilizing new enzymatic
reactions in flow tubular reactors for the continssynthesis of fine chemicals at the
bench scale [1,2]. Nevertheless, the transitiomdaoistrial implementation will require

facing new challenges at the level of both biogatahnd reactor development.

Enzyme immobilization is certainly the key enablitgghnology to push biocatalysis
into flow chemistry. Immobilization methods aim either fabricating heterogeneous
biocatalysts suitable to be integrated into padiked-+eactors (PBRs) or functionalizing
the walls of microreactors to make chemistry und@rofluidics environments [3-5].
Besides the reactor format, the catalytic activétiyd operational stability of the
immobilized enzymes must be maximizdédgure 1). Ultimately, the implementation
of the immobilized biocatalysts in flow needs taanscend the trial-and-error
approaches and advance towards more rational dedigat fulfill the process

requirements [2].

The immobilization itself enables the use of enzgrue continuous processes but does
not guarantee high conversions during long oparatiotimes, since not all
immobilization protocols render highly active andalde enzymes [6,7]. High
volumetric activity and operational stability canlpbe attained through controlling the

immobilization process both at molecular level nflice between the enzyme and the



solid material), and system level (interface betwé®e biocatalytic material and the
reactor configuration)Rigure 2). Recently, Paradisi, Weiss and Turner groups have
revised the state of the art of flow biocatalysssng immobilized enzymes, listing a
great number of examples including both single-steg step-wise biotransformations
[1,2,5,8]. Complementary to these reviews, our @no discuss the requirements for
fabricating heterogeneous biocatalysts to be apphiélow and accordingly analyze the

data reported in the most relevant and recent wiarkte field.

In this review, we dissect the innovative elementaspects of the enzyme
immobilization science for flow applications anddaess them through standard
quantitative metrics. To evaluate the impact ofitheobilization on flow-biocatalysis,
we need to quantify the enzyme load in the solidseh recovered activity upon the
immobilization, the space-yield tim&IY), specific productivity &) and the turnover
number TN) along the operation timeKigure 1). Having these numbers in hand, we
will assess the potential of most recent proofafaepts to meet the industrial demands

(up to 10 KGproductX kg_limmobilzed enzymes[9]-

Engineering activity at the solid interface.

The first aim of any immobilization methodology iscorporating enough active
enzymes into the reactor volume. The maxim8hY scales directly to the enzyme
activity and, hence, the reaction time decreasapnaxally. For comparative purposes,
the STY values must be accompanied by the flow thte substrate concentration and
the reactor volume (enzyme packed-bed) to assehlschtalytic activity and net yield
(conversion) of flow-reactors operated by immolatizenzymes. Hence, the STY itself

informs neither about the degree of conversion, ifudated yield nor the specific



enzyme activity packed in the reactor. The lattea iconsequence of both the quantity
of protein and the immobilized specific activity.hds, assessing the enzyme
effectiveness in flow-reactors demands to calcullageprotein loading (Mg Xcgrier)
and the relative recovered activity of the immaati enzymeKigure 1). Protein load
relates mainly to carrier materials, whereas thexi§ig activity depends on the protein-
material surface interface.

Among the different strategies to enginesrface-protein binding (Figure 2A),
reversible interactions (i.e. physical adsorptionfifen preserve the activity of the
immobilized enzymes [10,11], yet the protein ora&ion is hardly controlled and the
enzyme leaching is plausible. To strengthen thdibgand direct the immobilization,
enzymes have been genetically fused to both bindmglules and peptide tags.
Through this strategy, both purification and imniiabtion are accomplished in just
one-step [12-15], easing the reactor preparatioitegtly using protein crude extracts.
Using protein-based cationic modules (Z-basic) swidl materials functionalized with
anionic groups, uniform surface coverage and higimobilized specific activity have
been achieved for phosphorylation, glycosylationsd aransamination reactions
operated in bothwall-coated reactors and PBRs [11, 12,16,17]. Likew
immobilization of His-tagged enzymes on porous ipi@s functionalized with metal
chelates yield both high loads (>100 mg/g) andlgtitaeffectiveness (>50%), resulting
in highly productive PBRs (335 g x L x h ™) [18]. However, implementing this
immobilization chemistry in wall-coated reactorgda difficulties during the material
functionalization [13]. Contrarily, irreversible mmobilization can guarantee stable
binding without enzyme leaching, although recydigbbf the reactor/material might
be problematic. Orthogonal or self-immobilizing he@ues using Spy, Halo and

streptavidin protein motifsand formylglycine-generating enzymes have bemsed in



microfluidic bed reactors or in wall-coated reast¢t9-23]. HaloTag™ technology
based on halogenases domains promotes a quickrisiele immobilization on porous
beads that can be readily integrated into PBRd) W-65 % recovered activity and

STYs of 1.58 @ x L™ x h'[14,15].

Material engineering (Figure 2B) aims at increasing the available surface for
immobilization, which depends on both materialspgirties and reactor configuration.
Hence, the internal surface of the packed matdhalsurface area generated during the
monoliths manufacturing, and the inner area of afigidic tubular reactors are
decisive parameters for the enzyme loading. Masimeexamples rest in the translation
from batch reactors to PBRs using medium mesopooousacroporous particles of
diverse nature, such as cross-linked agarose, -tntesl polyacrylic polymers, and
silica [18,24-28]. The combination of medium-higiotein loadings (10-100 mg/qg),
and dense packing into PBRs leads to a high catatyscentration, and hence high
STY. For example, the immobilization of an acyl traamake into hydrophilic agarose
carriers containing 1-10 mg %agier displays 73 % of immobilization yield and 30 %
of recovered activity leading to an unprecedentednid reaction time at high
conversion andSTY (106.25 @ x L™ x h?) [24]. Similarly, a transaminase is also
immobilized on agarose carrier through covalerdciinents (5 mg Xcgrier)) With a
recovered activity of 30 %, enabling the continuougation of amines to aldehydes
with STY of 0.91 g x L™ x h™. The high local enzyme concentration within PBRd a
the adequate mass transfer of the substrates exhlai short residence times. [25].
Xylanase was immobilized on methacrylic polymerdshssupports activated with
glyoxyl groups, achieving high protein loads (10#@ X Garier”). The high activity

into PBR OTY: 3453 g™ x L* x h ') decreased the reaction time for the



oligosaccharides production, although the enzynigigcdepended on protein loading
due to mass transfer resistances [26]. HEJN enables to use short residence times
(high flow rates), which might originate practigaioblems (e.g. high pressure drops).
In this regard, fabrication of new materials, adldw silica microspheres, allows
achieving high protein loads and high flow ratethaut suffering pressure drops [29].
Advances in exploiting the architecture of poroustenals can harness the application
and boost the flow implementation of complex bidegss (e.g. cofactor dependent
multi-enzyme cascades). For example, the co-imnzaltibn of phosphorylated
cofactors (PLP, FAQ and NAD) and enzymes onto the same solid material allows

operating without exogenous addition of cofactarsray continuous flow [22,30,31].

Enhancing the practical use of intensified enzymegactors is also being assisted by
reactor engineering that includes new reactor concepts and fabricagohnologies. 3D
printed reactors [32] and groove-typed channel oneactors have been tailored to
increase the loading capacity [33]. In wall-coatedctors theSTY scales reciprocally
with the diameter of the channel. Consequently higlumetric activities can be
reached with high surface-to-volume ratio at thecrofluidic scale, enabling the
operation under a kinetic control regime in theesloge of diffusion limitationsHigure
2C). These features can be exploited as a tool termdte the intrinsic kinetic
parameters of the immobilized enzymes [34] or tonoge both conversion angTYs
aided by timescale analysis [35] and mathematicadieting [16]. Studies comparing
the effect of reactor format &TY are scarce but useful [36]. In an illustrative rapée,

a comparison between different laccase/reactor dtsymevealed that the catechol
oxidation was more efficient when the enzyme wasahilized on the surface of

microchannels [37]. The immobilization into the @émrsurface of wall-coated reactors



usually aims at forming uniform monolayers by dieecimmobilization [12,16,17] or
by the controlled formation of thin films [38,3However, when the inner reactor area
is insufficient, surface coating with nanomateridi® nanoparticles, nanosprings,

nanotubes...)[40-43] and polymers [44] increase&tizyme loadings by 10-15 fold.

Finally, the monolithic reactors can combine thedjess of PBRs and wall-coated
microreactors since inner porous surface is crefdedenzyme immobilization but
structured channels are developed to order the. fldiica monoliths enable high
loading (92 % yield, up to 80 mg %.gier~ ) and are suitable to work under high flow
rate at low backpressure, obtaining hi§hYs ( up to 1229 g h' L™) [45,46]. For
instance, macrocellular silica monoliths prepared @& sol-gel method based on
emulsion templating [47,48] have been used foratteorption and covalent grafting of
transaminases (16 % activity recovered). Besidessimonoliths can be also formed
with biopolymers [49] like agarose [50,51]Through this approach, several
thermostable enzymes have been entrapped, recgv8@r®0 % activity upon the
immobilization process. Alternatively, carrier-freemobilization has been proven very
effective to achieve high enzyme loadings. Herding protein aggregation can be
genetically programmed by protein domains fusethtoenzymes, in order to trigger
the self-assembly of a 3D gel network within mieactors [19-21]. Such packed-bed
retains several dehydrogenases and NADH to conisiyoasymmetrically reduce

prochiral ketones [20].

Engineering stability at the solid interface.
Enzymes normally fail to fulfill the robustness weagments demanded by the

implementation of intensified continuous processksmobilization has been the



classical solution to stabilize native enzymes, &estly have been synergistically
combined with protein engineering for adapting eneg to work under non-
physiological conditions. For example, Merck & CondaCodexis Inc. successfully
immobilized several engineered enzymes (galactosdase and kinases) for the
synthesis of the antiviral Islatravir, gaining camhtover the synthetic process and
dramatically reducing the number of synthetic stepsomparison with the chemical
synthesis [52]. Furthermore, immobilization techugg allow us stabilizing both native
and engineered enzymes, and enable their integratio flow-reactors to intensify
these valuable processes. As occurred for the itgctigeveral aspects like the
immobilization chemistry, the material propertiesldhe reactor configuration need to
be optimized to make robust heterogeneous biosalffigure 2). As a working
metrics to illustrate the contribution of theseexdp, we have calculated i) the specific
enzyme productivity, which informs of the time-aaged efficient use of the enzyme,
and ii) the turnover numbefl{l), that means the enzyme operational stability unde
operation conditions. It should be emphasized TiNg does not mean total turnover
numbers, since the reported data rarely exploreofiggational limit given by enzyme

inactivations (e.g. short times and low substratecentration are used).

Engineering thenaterial-protein interface is critical to stabilize immobilized enzymes
(Figure 2D). The enzyme stability relies both on the reveligfband valency of the

enzyme-carrier interaction. It is widely acceptéd/] and lastly supported by single-
molecule experiments [53], that irreversible mwdtent attachments contribute to the
structural stabilization of immobilized enzymesntpeoli et al demonstrated that one
transaminase frorvibrio fluvialis immobilized through glyoxyl chemistry on agarose

porous microbeads works 22 fold more efficientlyflow (5.35 m@oductX mgenzyme'l X



h™) than in batch [54]. After operating the reactbf2 mL x min-1 for 500 minutes,
the enzymelN was 19000, which demonstrates the high operatistaddility of the
resulting heterogeneous biocatalyst. Using bothstime carrier and immobilization
chemistry, Contente et al reported an outstandiegiic productivity of 960 mMgoductX
MGenzyme X h' for the synthesis of melatonin using irreversibbund acyl transferase
from Mycobacterum smegmatis. After 24 h of operation, the immobilized biocgsl
gave rise to &N of 3.36 x 16[24]. This extremely higiiN has even been overtaken by
the xylanase fromStreptomyces halstedii JM8 immobilized on metacrylate porous
carriers activated with glyoxyl groups applied ftlne continuous synthesis of
xylooligosaccharides (XOS). The stability of thistérogeneous biocatalyst was
challenged in a PBR operating at extremely higtvftates (10 mL x min), reporting a
specific productivity of 3277 m@s ™ X Mgnzyme X W' for 120 h of operation, which
meant anTN of 2.6 x 18 [26]. This latter value falls within that one reportied the
glucose isomerase immobilized on carriers activateth glutaraldehyde, that are
utilized for the fructose syrup industrial prodocti[55]. Therefore, aldehyde chemistry
reveals enormously efficient to achieve highly praiidve and stable heterogeneous
biocatalysts for flow processes.

On the other hand, carriers activated with epoxitiege been exploited to immobilize
and apply an engineered transaminase f@momobacterium violaceum (W60C) for
the continuous kinetic resolution of amines. Aftesting different epoxide groups
linkers, Abahaziet al discovered that the most hydrophilic bi-epoxidesuited in the
most efficient heterogeneous biocatalysts withecsie productivity of 4.97 mgoductX
MGenzyme ~ X i and an enzym@&N of 4265 after 60 minutes of operation [56]. Epoxy

and aldehyde chemistries have also been exploitedgraft monoliths for the



immobilization of transaminases and lyases, althotleir volumetric activity and

operational stability were lower than those repbfte the PBRs [45,48].

Enzyme stabilization through aldehydes and epoxmleseeds establish irreversible
bonds that anchor the enzymes through the abumseldhit, of their surface Lys. These
chemistry result in random immobilizations wheredicting and controlling protein
orientation is extremely difficult. Without renoung to the stabilization, protein
orientation can be controlled through a combinatdndirected immobilization and
covalent multivalent attachment on heterofuncticzatiers. These solid materials are
functionalized with two types of reactive group8ingty groups (i.e metal chelates) that
drive the selective binding through the tags (i.ls-tdg), and reactive groups (i.e
epoxide, aldehydes) that establish irreversiblealmmt bonds mainly with the Lys
residues surrounding the tag. The group of Paradisimmobilized and stabilized His-
tagged transaminases and alcohol dehydrogenasmgyiththis approach [28]. These
heterogeneous biocatalysts were further integratedPBRs for the continuous
manufacturing of primary and secondary alcohol$aiobng more than 80% yield after

up to 5 operation day3 Niansaminase 3960) [28].

Besides engineering the protein-material interfahe, hydrophic/hydrophilic balance
(material engineering) of the material surfaces have revealed fundarhéataender
highly stable immobilized enzymes when operatingmydrous (or quasi-anhydrous)
media, Figure 2E). Bohmer et al.,, have immobilized different Higged
transaminases on controlled pore silica functiaeali with polymers of different
polarity and conjugated with Eecomplexes for the site-selective enzyme bindir).[5

The more hydrophilic surfaces rendered more stablgymes when submitted to low



water contents using apolar solvent like toluenedés continuous operation using neat
toluene, this heterogeneous biocatalyst operate®0®4 Mgroduct X MGnzyme: X h'
during 5 days which corresponds tdld of 1000, a significantly lower value than the

ones observed for transaminases operating undeoasgibuffer conditions [18].

Macroscopically, the stability of the enzymes irnwgal in continuous processes can also
be maximized througlneactor engineering (Figure 2F). This approach is frequently
used when synthetic cascades, often chemo-enzyntascades, meet stability
incompatibilities between the different catalystguired for each reaction stggs]. In
this context, the spatial segregation of (bio)gatal is mandatory. This challenge is
normally faced by connecting two reactors in-linet loperating them at different
reaction conditions. As example, Grabner et alnected a PBR containing a phenolic
acid decarboxylase fromacillus megaterium entrapped on alginate beads to perform
the decarboxylation reaction at 30° C with a sed@B®R loading a Pd-heterogeneous
catalyst to sequentially catalyze the Heck reacap85° C[59]. Besides increasing the
temperature of the second reactor, the reactionianededed to be reformulated
between the two PBRs to sequentially perform thssps in flow. Under this
configuration, the immobilized decarboxylases pnésg an specific productivity of
0.12 M@roductX MGnzyme ~ X W' during 23 hours, which meantTal for the enzyme of
103, much lower than the overserved for other emsynmmobilized through
irreversible bonds on pre-existing carriers. Cortipantalizing the two catalysts in two

PBRs, the incompatible chemo-enzymatic cascaddesathle.



Conclusion

The use of immobilized enzymes in flow requires ieregring the protein-carrier
interface, the material and the reactor configorato maximize the productivity and
the robustness of the heterogeneous biocatalystsr wontinuous operations. In this
review, we identify the protein loading, the recae activity, STY and enzyme
turnover number as the relevant metrics to as$essperational specific productivity
and stability of immobilized enzymes. We remarkt thach value by itself is unable to
inform about both effectiveness and robustnessefimmobilized enzyme packed into
a plug-flow reactor.

From the most recent advances in flow-biocatalysisig immobilized enzymes, we
have extracted, and even calculated for the mastypted cases, the abovementioned
metrics. These data were mapped in an industrialsizape usin§TY of 100 g x [* x

h™ andTN of 1C as borders. In this 2D-map, we find a positiva@ation between the
natural logarithms ofSTY and TN turnover, regardless the type of enzyme,
immobilization and reactor desigiigure 3). Based on these numbers, we conclude
that engineering activity and stability tends tbdw a parallel path, giving rise to cases
that mainly occupy low/low and high/high activitidbility windows Contrarily, we
also find some few cases where the enzyme immahbiiz improves the react@Y
(activity) to higher extent than the enzyme TN Hgity) - examplek [45] - or vice
versa - exampleo [27]. Nevertheless, the realistic evaluationha bperational stability
(total turnover number) will require further stuslighat bring enzymes to their
inactivation limits. So far, this metric analysisust be fed with much more
experimental data involving all the enzymes tygesdnsolidate the trend suggested by

Figure 3. Therefore, more rational and predictable desigosfabricate more



reproducible heterogeneous biocatalyst must comengal with an accurate
parameterization following the metrics herein pregah We envision that new
biocatalytic reactions under non-physiological atods will pose new challenges to

develop efficient and robust heterogeneous biogsttal
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Annotations

e 15 Covalent directed immobilization by using thaléTag™ technology promotes a
quick irreversible one step purification-immobiliwen on porous beads that can be
readily integrated into PBRs, with 40-65 % recodeeetivity. The approach allows

reaching higlsTYs.

e 20. Biopolymers-based monoliths are formed by gealéy programmed protein
aggregation. A 3D gel network is developed whéeeSTY is maximized due to the

high enzyme loading achieved

e 24. Immobilization of a versatile acylase on agarbeads activated with glyoxyl
groups. This heterogeneous biocatalyst integraténl a PBR produces melatonin at

multi-gram scale in 5 minutes residence time.

ee 26. A xylanase immobilized on methacrylate beats/ated with glyxoyl groups
and integrated into PBRs operates the flow-synshefskylooligosacharides at 10 mL x
min-1 flow rate with the highest productivity eveeported to the best of our

knowledge.

ee 45, Silica monoliths enable high loading (92 %ddji@ip to 80 Mg X Guier~) and are
suitable to work under high flow at low backpressat highSTY (1229 g x H x L™).

Protein-surface chemistry can be adapted to imptfoz@eecovered activity.

e 58. His-tagged transaminases immobilized on hyahopporous glass particles
activated with metal chelates operate under quasygrous conditions for 5 days at

low productivities though.
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Figure 1: Most relevant metrics to assess the acity and the stability of immobilized enzymes
under continuous operation.The recovered activity is defined as the percehtevaf the immobilized

specific activity (U X M@oein ! regarding its soluble counterpart.
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Figure 2: Fundamental aspects to be considered whamgineering an immobilized enzyme for flow

applications. Properties and strategies to engineer the ac{itoty green panels) and the stability (bottom
orange panels) of the immobilized enzymes, rel&ettie following aspects; protein-carrier interfgée

and D), material properties (B and E), and reamboifiguration (C and F)
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Figure 3. 2D-Map of metrics that define the produdlity and operational stability of immobilized
enzymes in continuous operationsThis graph plots the natural logarithms of theregpondindSTY and

TN values calculated for the most recent and releyapers that describe the use of immobilized
enzymes in flow. Different enzyme families are esganted with different colors. Data occupy différen
windows depending on the productivity and operatiatability of each immobilized enzyme. 100 g'x L
! x h* and TN of 10° were set as windows borders. Each letter correfptmthe literature references as
follows; a (22); b (22); ¢ (22); d(59); e (57)(28); g (54); h (56); i (46) j (11); k (45); | (18 (24); n

(17); o (27); p (12); q (37); 1 (26); s (14)(41).
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