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1 Introduction

To estimate heat output from several cauldrons on Mýrdalsjökull ice–cap between the years 2016 and 2019, elevation
changes from digital elevation models (DEMs) of the glacier surface, deduced from Pléiades optical satellite images,
are compared with simulated topographical changes of the glacier surface over the same time period.

The simulation solves for ice �ow using a Full–Stokes �nite element model. Based on the estimated ice �ow
velocities the free surface of the glacier is transported in the �ow over time. An inequality constrained solution
procedure is used to enforce the naturally occurring boundary condition that the surface elevation of a glacier can
not fall below the elevation of its bedrock.

Utilizing the computed topographical changes in a comparison with DEM data allows for an estimate of ice vol-
ume change di�erences. These di�erences are attributed to basal melting beneath each respective cauldron because
the simulations do not include basal processes. Based on these volume change di�erences estimates of the required
amount of heat energy to melt the missing ice volumes can be calculated.

2 Model Description

Within the model domain, two elevation �elds are tracked: the ice surface elevation (S) and the bedrock elevation
(B). Glaciers exist wherever S > B within the model domain, elsewhere the landscape is considered to be ice–free
(S = B). The natural constraint that the ice surface elevation can not fall below the bedrock elevation:

S ≥ B, (1)

must be ful�lled at every point in time and space within the model.
Velocities for the slow, gravity–driven �ow of ice are computed with the stationary incompressible Stokes equa-

tions (see Jarosch, 2008; Wirbel et al., 2018, for details). In order to describe the evolution of the “free” surface as a
consequence of ice motion and speci�c mass balance rate, the following advection equation is used:

)S
)t = −uℎ ⋅ ∇ℎS + uz + ȧ, (2)

where uℎ = (ux , uy ) are the horizontal ice surface velocity components, uz is the vertical ice surface velocity com-
ponent and ȧ the speci�c surface mass balance rate in m s−1. Eq. 2, which is known as the “kinematic boundary
condition” in �uid dynamics (e.g. White, 2010), is here used in a glaciological context by including the speci�c mass
balance rate (e.g. Hutter, 1983). Even though the model is capable of utilizing a time dependent mass balance rate,
for the study here ȧ = 0 is assumed and all e�ects of actual mass balance processes are dealt with through a surface
elevation bias correction (cf. Sect. 5).

Due to the constraint Eq. 1 puts on Eq. 2, the free–surface evolution of glaciers becomes a variational inequality
(Kinderlehrer and Stampacchia, 1980), which requires adequate treatment to ensure mass conservation.

Details on the model implementation and model performance evaluation can be found in Wirbel and Jarosch
(2020).
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3 Model Tuning

Two parameters are to be estimated in the non–linear Stokes equation (e.g. Jarosch, 2008, eqs. 8 and 9) that forms the
dynamic basis of the simulated ice motion. These two parameters are well known as the Glen rate factor A and the
nonlinearity exponent n (e.g. Glen, 1955). Assuming n = 3 (e.g. Cu�ey and Paterson, 2010) leaves A to be estimated.

Surface velocity measurements at a stake ("K01d" measured in 2018) and from two continuous GPS stations ("K2"
in 2018 and "K6" in 2017), which are all slow moving, are used to tune for A (see Fig. 2 for locations.) The mean
motion vectors from the GPS stations were calculated outside jökulhlaup periods to ensure no in�uence from basal
processes on the tuning process. It is assumed that the 2017 data at "K6" is valid for 2018 as the cauldron shape of
"C6" did not change signi�cantly between 2017 and 2018.

Based on simulated surface velocities utilizing the 2018 surface DEM and the 2019 bedrock DEM (cf. Tab. 1),
four di�erent performance measure can be calculated, which are displayed in Fig. 1.

The root mean squared error, mean bias and skill score all indicate that A = 2.6 × 10−24 Pa−3 s−1 is the most
favourable value. Pearson’s correlation coe�cient values are all above 0.99 and do not indicate a clear favourite. In
the following simulations n = 3 and A = 2.6 × 10−24 Pa−3 s−1 are used as the Glen’s �ow law parameters.

4 Input Data Processing

Several DEM datasets are required for the simulations to be carried out which are listed in Tab. 1.
Preexisting data holes in the surface datasets were patched with 2010 Lidar data as well as 2014 surface data.

When calculating ice thickness data, H = S − B, quite often negative values are found outside the central region of
Mýrdalsjökull. Such negative ice thickness values indicate that B (the bedrock) is located higher than S (the surface).
The 2019 bedrock data (cf. Tab. 1) was corrected individually for each surface dataset to ensure that H ≥ 20 m for
the whole model domain (cf. Fig. 2). For these ice thickness corrections the respective surface dataset was kept �xed
and the accompanying bedrock data was adjusted.

An unstructured computational mesh with variable mesh size is used for the simulations. 50 m mesh size is used
within the focus regions (cf. Fig. 2) which gradually decreases towards 200 m on the edges of the model domain.
These mesh size variations ensure high resolution in the areas of interest, where input data quality is high as well.
At the same time, a variable mesh size optimizes computational cost spent on the simulations.

5 Results

Simulations are carried out for di�erent time intervals based on the input datasets from Tab. 1 and the tuned model
parameters (cf. Sect. 3). An overview of the performed model runs is given in Tab. 2. Between the years 2018
and 2019 a longer time period is used at cauldrons C10 and C11 to estimate heat output. The respective simulation
"S2018b" (cf. Tabs 2 and 3) is 25 days longer and uses "Surface 2019 B" (cf. Tab. 1) to calculate surface elevation
di�erences. This longer time period has been chosen due to a jökulhlaup occurring between September 28th and
October 3rd (Magnússon et al., 2020) from those two cauldrons.

Starting from a input data pair (i.e. surface and bedrock DEM), the model described in Sect. 2 is used to predict
glacier surface evolution over time. When the target date (i.e. the next years surface DEM date) is reached, a
di�erence map between modelled prediction and actual surface data is calculated (see Fig. 3 as an example). These
di�erence maps are created on regular, 20 m spatial resolution grids, on which the model data has been interpolated.

In this step an elevation bias correction is applied to minimize the elevation di�erence between the model–data
di�erence map and the respective DEM data in a certain area around each cauldron. The bias correction is meant
to compensate for elevation changes caused by surface mass balance, errors in both initial and �nal DEM as well
as model simulation errors. In Fig. 2 the mass balance bias correction areas are plotted in orange. These areas
correspond to the nearest ice divides (C16 and NB as well C10 and C11) and/or the nearest area outside the corre-
sponding cauldron area where the di�erence between observed and simulated elevation change is approximately a
spatial constant. The applied bias correction values are listed in Tab. 4.

Based on the computed surface elevation di�erence maps, individual focus regions are then integrated to get ice
volume di�erences. Assuming a latent heat of fusion L = 333550.0 J kg−1 and density � = 910 kg m−3 for ice, the
computed ice volume di�erences can be converted in thermal energy required to melt the respective ice volume. A
time averaged heat �ux is subsequently calculated by distributing the computed thermal energy equally over the
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time period of the model simulation. Results for all model runs and focus regions are presented in Tab. 3. The
total heat output for all modelled cauldrons varies between 462.4±62.9 MW and 663.9±73.1 MW over the three years
period, with a mean annual heat �ux of 582.6±39.3 MW. Figures 3, 4, 5 and 6 display di�erence maps (model - DEM)
for the respective years, corresponding to the four model runs (cf. Tab. 2). The annual mean bias (cf. Tab. 4) has
been added to these maps to make them comparable.

Heat �ux uncertainties are estimated based on uncertainty in the bias correction applied, obtained in the corre-
sponding reference area. Uncertainty in ice volume lost beneath the cauldrons depends on how applicable the bias
correction is, obtained from the reference area, for the corresponding cauldron area. In areas of well established bed
DEM the spatial variability of the di�erence between the �nal simulated and observed glacier surface is generally
low outside the cauldrons. We therefore assume ±1 m uncertainty in the applied bias corrections for all cauldron
areas. Based on focus region area (cf. Tab. 5) and assuming symmetric uncertainty, the uncertainty of ice mass lost
beneath the cauldrons can be calculated for each focus region which are listed in Tab. 5. These ice mass uncertainties
are converted to time averaged heat �ux estimate uncertainties with the same method as described above and are
given in Tab. 3. To propagate uncertainties1 it is further assumed that heat �ux uncertainties are normal distributed
and the ± uncertainty values listed are one sigma estimates from the error normal distribution.
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Figure 1: Tuning results for di�erent rate factors A (in units of 10−24 Pa−3 s−1) based on surface velocities at "K01d",
"K2" and "K6" from 2018. Clockwise from top-left, root mean squared error, mean bias, Pearson’s R (Pearson’s
correlation coe�cient) and skill score.

Name Date Filename according to Eyjólfur Magnússon
Surface 2016 2016.09.27 Myrdalsjokull_20160927_no_gcps-4x4m_fill20m_

Int-ICP-DEM_bl_0_geoid_median_11x11_bl_med_2m_
utgildi_vert_cor_mv_DEM_1sep2017_lagad_innan_oskju.
grd

Surface 2017 2017.09.01 myrdalsjokull_20170901_no_gcps-4x4m_fill20m_
int-dem_bl_ogildi_hor_shift_mv_lidar_4m_west_vert_
cor_bl_3m_med_utgildi_geoid_fyllt_i_eydur_med_filt.
grd

Surface 2018 2018.09.30 Myrdalsjokull_20180930_no_gcps-4x4m_fill20m_Int_
JP2-DEM_geoid_shift_4m_south_plus_4p48m_bl_med_1m_
utgildi_og_count_fyllt_med_14sept_cor_to_30sept_
svlagad2.grd

Surface 2019 A 2019.09.28 Myrdalsjokull_20190928-4x4m_fill20m_Int-DEM_geoid_
shift_4msouth_4mwest_hallandi_cor.grd

Surface 2019 B 2019.10.23 Myrdalsjokull_20191023-4x4m_fill20m_Int-DEM_geoid_
hallandi_cor_4meast_4msouth.grd

Bedrock 2019 2019.10.XX bed_oct2019.grd

Table 1: DEM datasets used in this study.
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Figure 2: Overview map of the focus regions on Mýrdalsjökull ice–cap with contour lines of the 2018 September
map. Glen’s rate factor tuning locations are marked in green and the individual mass balance bias correction areas
are in orange. For cauldrons "16 and neighbours" the mass balance bias correction area is indicated with an arrow.

Simulation Name Start Date End Date Model Time Step [hours] # Velocity Datasets # Surface Datasets
S2016 2016.09.27 2017.09.01 678 12 99
S2017 2017.09.01 2018.09.30 788 12 116
S2018a 2018.09.30 2019.09.28 720 13 111
S2018b 2018.09.30 2019.10.23 720 13 117

Table 2: Simulations performed in this study. The model time step de�nes the creation of the velocity �eld data,
surface elevation data is created on a substantially smaller time step which is dynamically adjusted by the model.

Name Days C1 and C2 C5 and C6 C10 and C11 C13 and C14 C16 and NB. Annual Total
[m] [MW] [MW] [MW] [MW] [MW] [MW]

S2016 339 198.2±46.2 70.3±38.5 102.6±17.1 88.6±23.0 204.3±30.1 663.9±73.1
S2017 394 160.2±39.7 51.3±33.1 31.5±14.7 89.7±19.8 129.7±25.9 462.4±62.9
S2018a 364 215.9±43.0 70.0±35.8 – 80.2±21.5 157.0±28.1 –
S2018b 389 – – 98.5±14.9 – – –
S2018 total 621.5±67.9
Total mean 582.6±39.3

Table 3: This table displays the overall heat output from di�erent cauldron regions over time. Time–span of model
runs in days is displayed in the second column. The row labelled "S2018 total" displays the total sum for 2018, which
is calculated by combining "S2018a" and "S2018b".
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Figure 3: Di�erence map between model prediction and DEM data on 2017.09.01 in colors. Gray areas are outside
the displayed data range. The mean bias according to Tab. 4 has been applied.

Property C1 and C2 C5 and C6 C10 and C11 C13 and C14 C16 and NB. Annual Mean
Bias corr. 2017 [m] 6.6099 6.1542 5.3134 7.3937 6.0517 6.3046
Bias corr. 2018 [m] 3.8119 3.9573 3.2617 5.7251 4.1501 4.1812
Bias corr. 2019 [m] 2.2583 2.5433 1.9695 3.6278 2.019 2.4836

Table 4: Bias corrections for the years 2017, 2018 and 2019 correspond to the end dates of the individual simulations.
They are applied as "model elevation" - "DEM elevation" + "Bias corr." to compute the �nal, corrected di�erence
maps.

Property C1 and C2 C5 and C6 C10 and C11 C13 and C14 C16 and NB.
Focus Region Area [km2] 4.4528 3.7107 1.6495 2.2221 2.9068
Ice mass uncertainty [1e9 kg] ±4.0521 ±3.3767 ±1.5010 ±2.0221 ±2.6452

Table 5: Area of individual focus regions which are used in the uncertainty estimates alongside ice mass uncertainty
based on the symmetric ±1 m elevation bias.
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Figure 4: Di�erence map between model prediction and DEM data on 2018.09.30 in colors. Gray areas are outside
the displayed data range. The mean bias according to Tab. 4 has been applied.
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Figure 5: Di�erence map between model prediction and DEM data on 2019.09.28 in colors. Gray areas are outside
the displayed data range. The mean bias according to Tab. 4 has been applied. This map is valid for cauldrons C1,
C2, C5, C6, C13, C14, C16 and C16 neighbours.
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Figure 6: Di�erence map between model prediction and DEM data on 2019.10.23 in colors. Gray areas are outside
the displayed data range. The mean bias according to Tab. 4 has been applied. This map is valid for cauldrons C10
and C11.
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