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Strategies for ab initio Biomolecular Force Field
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Biomolecular vs. Small Molecule Force Fields
| |smallMolecule Force Field ___|Biomolecular ForceField

Goal Model a diverse chemical space of trillions of Model a limited space of up to a hundred common
compounds monomers
Chemistry ¢ Double bonds, strained rings, other moieties * Building blocks are common to all of biology
\ * May take significant energy to synthesize e Derived from familiar metabolic pathways
oY * Low concentrations, tight binding desirable * Produced by organisms in significant quantities
'/; * Toxicity is common, metabolism uncertain * |Ingested and recycled by metabolism
z
g ey * Hydration free energies * Secondary and tertiary structure of polymers
A K Hydration f i Second d tertiary structure of pol
fe Properties ¢ Binding free energies * Hydrogen-bonding propensities of common
\4\’; * Correct rotational profiles of critical bonds backbone and select side chains
B = * Hydration characteristics
& Training * Parameter libraries and interpolation * Improve selected parameters based on
Strategies ¢ Training set archives of quantum data previous successes

Validation <« Fleets of Tl or alchemical binding free energy ¢ 1000ns timescale simulations, replica exchange
Strategies calculations, windows in the 1-10ns timescale to study structural equilibria
NMR J-coupling, spin relaxation constants




The AMBER Protein Force Fields
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The IPolQ Charge Model and Related Force Field
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e The target electrostatic potential is an average of MP2 / cc-pvTZ calculations:

e The molecular conformation in vacuum, and...

* In areaction field due to a bath of (now, SPC-E/b) water

e Two charge sets emerge: one for simulations in water, the other for fitting

parameters with gas phase data..

Initial guess for
solute charge
distribution

Update to Lennard
Jones parameters ‘

Molecular simulations
to obtain solvent
reaction field potential

Thermodynamic
Integration to obtain
Hydration free energy

L=

e

REsP fit to obtain
new solute
charge distribution

=

Quantum calculations
to obtain solute
electrostatic potential
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Integrating IPolQ Charges with Bonded Terms

e The central challenge: deriving angle and torsion parameters with gas-phase
guantum energies for use with polarized charge distributions.
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The ff15ipqg Force Field
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The Benefits of Angle Optimization

e Ala(5) J-couplings: a concise backbone diagnostic

Original DFT-1  DFT-2 | K.L. Larsen Simultaneous fitting of both
ff14ipq 1.3* 2.6 1.5 1.4 equilibria and force constants
ff15ipg-V1 1.5 2.5 1.5 1.5 in harmonic terms:
ff15ipg-V2 0.7 2.0 0.8 0.7
ff15ipg-V3 0.5 2.7 1.0 0.6

ff15ipq 0.5 2.8 1.1 0.7

*Mean x? values are known to within 0.1Hz? or less

e ff15ipg covers the ff14ipq training set with equal
or better accuracy and can predict the energies
of new, strained conformations.

e Angle fitting appears to improve secondary

- 2
structure stability. U=k (x _ x1) +-




a-Helical Propensity in K19

e The helix is marginally less stable than the 40% target at 277K.
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(3-Sheet Propensity in GB1 Hairpin

e The hairpin is expected to be 50% folded at 295K. Convergence requires enhanced
sampling methods.
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Trp-Cage Folding

e The is expected to be 50% folded at 295K. Convergence requires enhanced
sampling methods.
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Trp-Cage Folding with Alternative Force Fields

e The unorthodox strategy behind ff15ipq proved to be better than alternatives,
although the charge polarization itself had the largest effect in a battery of tests.
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A CMAP-Based Force Field: ff19SB

e Following the logic of accounting for polarization effects in the bonded term fitting,
Tian et al. fitted CMAP and torsion potentials to DFT calculations in implicit

solvent.
(A) ff14SB+TIP3P (B) ff14SB+OPC (C) ff19SB+TIP3P (D) ff19SB+0OPC
" 2.5 = 2.5 2.5 f 2.5
M R?=0.38 R2=0.27 R2=0.62 R2=0.75
AL Slope=1.04 Slope=0.49 Slope=1.95 A Slope=1.27
% 2.0 2.0 2.0 2.0
- -
U : 5 5
‘\./ 0T 15 0 15 © 15 ©
Sl : § ; ;
-l D- Q. a.
: a [a + a a)
2 210 =10 =10 =
L
+
0.5 0.5 fl‘ 0.5
54
0.0 0.0 0.0
0.0 0.5 1.0 15 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
NMR Experiment NMR Experiment NMR Experiment NMR Experiment
ff14SB Helical Propensities by Residue ff19SB Helical Propensities by Residue




Options for Improving Biopolymer Force Fields

e Elaborate on the complexity:
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Additional Monopoles

.97}

Tabulated potentials for cross-terms

e |mprove the fitting process:
e |ncorporate solvation effects in torsion drives

e Mine additional, degenerate solutions for each parameter set fitted to QM data,
pare them down with experimental data.




An Orthogonal Basis of Six Virtual Site Frames

Style 1 Style 2 Style 3
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Freshman chemistry might not inform EP placement

e The Lewis structure lone pairs are not the best places to locate EPs, in any cases that
| have yet examined. Take two simple side chains with lone pairs:
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Many EPs Can have a Moderate Effect on Accuracy

18
@ Nuclear-centered charges only

16 @® Extra points on backbone, polar

ide chain bond midpoints
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CMAP Fitting: Surfaces with Bicubic

Sp‘l‘ieﬂe\Sis to recognize the grid points as the unique, independent variables.
e Seek a linear expression for everything else based on those values.

Function Values
at Grid Points
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interpolated value
at (Ax, Ay)?




Bicubic Interpolation

e The interpolant at any point within a grid segment of size §_[] Sy is given below.

e What is needed, then, is an expression for the derivatives in terms of grid values.

p(Ax,Ay) = [1
aono
aio

where
ano
_a30

aon2

a2

asn

ai

a1 a2

£(0.0)
£(5:.0)
2 £(0,0)

| 5:./(5x.0)

(l()3_ _ 1
a3 Ay
ax | | (Ay)?
ass | _(Ay)*
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Derivatives of a Piecewise Cubic Spline
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Derivatives of a Piecewise Cubic Spline
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Bicubic Interpolation

e The derivative at any grid point is a weighted sum of the values at other grid points.

where

aso

aol

apl

azi

asi

(Ax)* (Ax)’

asn

ano

apo

ao

aoi

ai

aszi

asj

£(0,0)
f(8+,0)
5:./(0.0)
5:/(5x.0)

6103_ _ 1
ai| | Ay
ax | | (Ay)?
ass | _(A}’)3
f(0.Sy)
f(Sx.Sy)
5:/(0,5))

%f(s\ S\)
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f (S,0)
=£(0,0)
55/ (Sx,0)

I B

= S R
[

5/(0,5))
57 (Sx,Sy)
5x5\f(0 Sy)
525 (S ,Sy)

e The surface value anywhere is a linear combination of the values at the grid points!




Bicubic Interpolation

e |n practice, the stencils for interpolated values have a generality to their form: high
positive dependence on the nearest 1-4 points with weaker negative dependence on
other near neighbors, a wavelet-like form decaying exponentially with distance.
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e These stencils let us construct a matrix equation with one independent variable for
every grid point that can be populated with observations and the appropriate stencil
values to solve a bicubic spline.




Training CMAPs and Tabulated Functional Forms

A naive interpretation is However, molecules Math in the preceding
to train the function with cannot be restrained to slides: any data set with
data on exact grid points. exact coordinates. good coverage will do.
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Glycine CMAPs

Symmetry 180

oversights in
ff19SB’s map
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180 -90 0 90 180
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2.5 CMAP Energy 7-° -2.0

kcal/mol

90 0 90 180
Phi Value

Asymmetry +2.0
kcal/mol

High energy
— region common
to all maps

Even 6,500 data
points spread
throughout
populated regions
and some
high-energy
sampling do not
converge a



General Amino Acid CMAPs vs. Specific C_ Types

e When applied to amino acids in many 40 CMAP FF '
: 5 Y[ "1 AA o0 Charged
sy-stems, the benefits of the CMAPS are g | =2 -xUncharged L
still clear, but dampened relative to T3l T3 AA ®
individual amino acids. = . L
o
X * Residue-specific C_typing, as in ff14SBand  52.0f
', ff15ipg, may obtain better overall fits by DLt
; gy . L ff19SB Torsion FF
‘fi over-fitting in poorly sampled, larger 1.0f * All Systems
4 peptide structures. 0.5 ' '
- CMAP FF
4.0r m1 AA o0 Charged
4 o \We need to understand the over-fitting ' :% 22 % Uncharged $
problem we have, and the one we are 3.0r 2
stepping into. [ Pt
2.0r . F
r+$¢* g >
1.0.37‘?" : ff15ipg Torsion FF
. 5’ " +All Systems

Various Systems




Proposed Strategies in Biopolymer Force Field
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e Common sets of (N, H, C, O) backbone charges for (+) charged, (-) charged, and all
other amino acids, ESP fits challenged with approx. 64 conformations per residue.
Additional charge sets for 3 backbones and other common non-native residues.

e Common sets of backbone torsion and angle parameters paired with charge sets
for the above classifications, approx. 500 conformations per parameter.

e B3LYP-(min. aug.) def2-tzvPP quantum calculations
e Ace-Yaa-Xzz-Yaa-Nme tetrapeptides for charges, possibly bonded parameters

e Common sets of backbone charges and torsion parameters for DNA and RNA
backbones, similar level of quantum theory to amino acids.

e For carbohydrates, assign common charges to each C, O, N, and H atom based on
permutations of neighboring atoms and bonding structures in the ring. Torsion and
angle parameters of the ring follow suit.



Future Directions for Force Field Development

e |deally, our bonded parameters would be good enough to interpret raw quantum
data without re-optimizing to relax molecular mechanics DoFs.

e No ambiguity as to what coordinates should produce a particular energy

e Force Balance runs much faster on big data sets
e Train to gradients at particular atoms as well as the overall energy

s
vy - . \

PN

e Bond :: bond angle CMAPs could achieve this level of accuracy

g\

e Long-view, new interaction type: hydrogen bond corrections formulated as D-H :: A
distance, D-H-A angle tables with cubic spline interpolation
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