
Implementation of a multi GPU version of the

cuInspiral pipeline

Loriano Storchi, Leone B. Bosi

19 maggio 2011

1 Introduction

Moore’s Law is a violation of Murphy’s Law. Everything gets better and
better this is how Gordon Moore commented the law, that bears his name,
in 2005. Gordon E. Moore formulated the law by a simple observation. In
1965 he noted that number of components in integrated circuits had doubled
every two years from the invention of the integrated circuit in 1958. Thus,
he predicted that the trend would continue for at least ten years. Some years
after the law was reformulated by taking into account an higher growth, the
final formulation stated that integrated circuits would double in performance
every 18 months.

Along last 20 years hardware manufacturers introduced several architec-
ture innovation to maintain the trend dictated by Moore’s law, that is now
used in the semiconductor industry to guide long-term planning and to set
targets for research and development. Architectural innovations have gone
in the direction of introducing implicit and explicit parallelization concepts,
and this has been used as a way to go around the obvious miniaturization
limitations and frequency increment.

Starting from 2005 multi-core CPU have been introduced in the everyday
computing architecture, both in the embedded and standard systems. This
solution implements multiprocessing in a single physical package, namely the
full processor, replicating the whole computing core. The actual multi-core
CPU implements up to four/six cores per package. In case of the multi-core
CPU the performance gain is strictly related to the quality of the parallelized
software. Referring to this concept we have to quote Amdahl’s law, that
connect the parallelization gain with the fraction of the software that can
be parallelized in order to run on multiple cores simultaneously. The next
obvious step in this direction is the many-core architecture. Thus, computing

1

units where several tens of cores are connected together. The actual state
of art in many-core architecture is represented by GPU processors, where
hundreds of computing cores are implemented within a single package.

2 The cuInspiral prototype pipeline

The cuInspiral prototype pipeline has been developed using CUDA, the com-
puting engine of the NVIDIA Processors. The CUDA execution model is well
known, and it can be briefly summarized as a SIMD, or SIMT (Single In-
struction Multiple Thread), model, where each ”kernel” is executed N times
in parallel by N different CUDA threads into a GPU multi-core processors.
In the CUDA framework the programmer can define some spacial ”functions”
called ”kernel”, that are executed by the GPU. In a simplified vision it can be
quoted that the GPU works as a co-processor respect to the host computer,
executing the various kernel functions.

The pipeline can be briefly summarized as follow:

• Template generator: the first step is the generation of a template,
starting from star masses (m1,m2).

• Matched Filtering: the matched filtering formula is applied in fre quen-
cy domain between each polarization and the input signal.

• DFT: an inverse DFT is applied on each previous polarization correlator
output, in order to return in time domain.

• Correlator: the two polarization correlators are combines together. The
output is a time domain vector, called ”correlator output”.

• Find Max: we search for ”correlator output” values above threshold,
than could be associated with true detection.

all the above described operations are performed using not only a CPU
but also the GPU. We firstly re-engineerized the code to be used as a library
containing functions for the CB (Coalescing binary) detection pipeline fully
working on GPU device. After, using the cuInspiral software library, we
implemented a program called signaldetection that performs the detection of
coalescing binaries (CB) gravitational wave signal using a single GPU.

The workflow of signaldetection results to be simple. There are two main
input files, signal file and masses file, and two corresponding nested loops,
the first loop iterate over the input signal. So the program reads a data chuck
after the other until the is no more input signal. While the inner loop iterates

2

over an input list of star masses, every time a pair of masses has been read
the previously described pipeline is called. The output of signaldetection is
a series of correlators. Figure 1 summarize the described workflow.

Data conditioning &
 Init

DFT of the
signal

Read masses
(m1,m2)

Execute the main
pipeline

More masses ?

YES

NO

More Signal ?

YES

NO

Read a Signal
chunck

Print results adn Exit

Figura 1: Signaldetection workflow.

The next obvious step is the multi-GPU parallelization. We will discuss
this topic in the next section.

3 Multi-GPU parallelization scheme

We adopted two different parallelization schema, the first can be classified as
a ”master slave” and the second is a pure ”data parallel”. The implemen-
tation of the two approaches as been made using Posix Thread in the first
case, and MPI in the latter.

3

The first approach can be briefly summarized by the following C psuedo-
code:

main()

{

for (i=0; i<num_of_thread; i++)

{

inititialize (thread_data[i]);

create_thread (thread_id[i], slave_thread, thread_data[i]);

}

inititialize (reader_thread_data);

create_thread (thread_id[num_of_thread], reader_thread,

reader_thread_data);

do

{

correlator_barrier;

if (nomorecorrelator)

break;

reduce (correlator);

print (correlator);

}

while (!end_of_signal)

for (i=0; i<num_of_thread; i++)

pthread_join (thread_id[i]);

pthread_join (thread_id[num_of_thread]);

}

slave_thread (thread_data)

{

cuda_set_device(thread_data.devicenumber);

init_and_allocate_data;

while(1)

4

{

signal_is_ready_barrier;

if (finalize)

break;

copy_signal_from_CPU_to_GPU;

signal_moved_to_gpu_barrier;

fft_on_GPU (signal);

for (i=threadid; i<dim; i+=num_of_thread)

{

generate_template;

matched_filter;

inverse_FFT;

combines_correlators_together;

find_max;

}

transfer_data_GPU_to_CPU;

correlator_barrier;

}

nomorecorrelator = true;

correlator_barrier;

deallocate_data

}

reader_thread (reader_thread_data)

{

open (signal_file);

read (signal);

signal_is_ready_barrier;

do

5

{

signal_moved_to_gpu_barrier;

read(signal);

if (end_of_file)

finalize = 1;

signal_is_ready_barrier;

} while (end_of_file)

}

It come straightforward to note that there are several threads invol-
ved in the computation: main thread, the reader thread and finally seve-
ral slave thread. The main thread is the one that creates the other th-
reads and coordinates the work. The reader thread, the name is quite self-
explicative, reads the input signal. Finally each slave thread performs the
main computation, each one using a different GPU.

The whole procedure can be briefly described as follows. The main thread
creates N + 1 threads, where N is the number of GPU we want to use. After
this initialization step it only needs to synchronize with all the slave thread
using the correlator barrier, any time the results are ready to be processed.
Thus, the main thread performs a reduction in order to find the max values
between all the computed correlators.

The reader thread is the thread reading the input signal step by step. It
works under the condition of a couple of barriers, namely the signal is ready barrier
and the signal moved to gpu barrier. As soon as the signal has been read the
thread synchronizes with all the slaves using the signal is ready barrier. Af-
ter this barrier the slaves start moving the signal from the CPU to the GPU,
when the data transfer is completed a new synchronization occurs through
signal moved to gpu barrier. After the second barrier the reader thread can
start reading an extra slice of the signal, and the slaves can start the main
computation.

Each slave, or worker, thread needs to get synchronized with both the
main and the reader thread. Each slave calls a barrier at the beginning of the
computation to read the signal, and a barrier at the end of the computation
to move the results from the GPU to the CPU. It is quite obvious that each
slave is free to perform the computation while the reader thread reads the
signal. Besides that, each slave performs the matched filter procedure on a
different GPU using a subset from the complete template set. This process

6

is enough to distribute the total computational burden between the different
GPU.

3.1 Executing of FFT on the CPU

A possible next step in the direction of overlapping GPU and CPU com-
putation time, is to let the CPU performing the FFT of the input signal.
This step induces a minor modification to the code, so that the fft on GPU
(signal) operations are no loger performed and instead the FFT is performed
by the reader thread immediatly after the input signal has been read. We
may expect that this new approach will become favorable as soon as we have
enough star masses, so that the time needed by the GPU to execute the main
pipeline is comparable with the one needed by the CPU to perform the FFT.

In any case we can take advantage of many core CPU using the multi-
threaded version of the FFTW. In order to be sure to use the best possible
configuration for each size of the data chuck, we performed some tests. Some
of them used a different number of threads and was observed, as it is well
know, that in general the use of a number of threads greater than the number
of physical cores is a good choice. Thus, we firstly optimized the number of
threads to use given the FFT size, and afterwards we used this number of
threads to run the whole code. The results obtained are preliminary but
overall satisfactory.

3.2 Multi-GPU using MPI

Finally we adopted a different scheme using MPI instead of POSIX Thread.
This new approach can be briefly summarized by the following C psuedo-
code:

int main (int argc, char *argv[])

{

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Status status;

cudaSetDevice (rank);

7

init_and_allocate_date;

read(signal);

do

{

FFT_on_GPU(signal);

for (int i = rank; i < masses_dim; i += size)

{

generate_template;

matched_filter;

inverse_FFT;

combines_correlators_together;

find_max;

}

transfer_data_GPU_to_CPU;

MPI_Barrier(MPI_COMM_WORLD);

MPI_Reuuce;

if (rank == 0)

print_results;

read(signal);

}

while (EOF_of_signal);

free_and_finalize;

MPI_Finalize ();

}

The workflow is much simpler compared to the previously discussed ap-
proach. In fact, in this case we run as many processes as GPU we want to
use. For instance, if we want to perform our computation using N GPU we
run the same number N of MPI processes. Each process will run the main

8

pipeline on a subset of the total amount of star masses. At the end of the
computation a reduction of the computed correlators is needed to obtain the
final results to be printed.

It is important to stress that the main goal of this approach is the use
of MPI, fot gaining the possibility of running the same code in a cluster of
GPU. Thus, by having a typical cluster of workstations with several nodes,
and each node with one or more GPU, we can run our MPI code as it is.

3.3 Preliminary results

In this section some preliminary results obtained by running our code using
up to four NVIDIA Tesla C1060 Computing Processors are reported. The
GPUs were installed on an host computer running two Intel Xeon CPU E5520
2.27GHz, thus eight physical cores.

We performed in first place some numerical simulations for testing the
correctness of the entire processes. We did implement our code in order
to use single precision arithmetic, instead of double precision one. This
has been done in order to exploit the full power of the GPU. It is well
known that starting from the NVIDIA GT200 GPU the hardware has been
equipped also with double precision units. But still the peak performance
of the double precision units it is lower than the single precision units. By
obtaining numerical results, it was showed that only few percentage points
in accuracy were lost.

In Table 3.3 we report the results obtained using different number of star
masses (i.e. templates), and an input data chuck of 219 points. The results
are reported using the three different approaches implemented, thus:

• fft GPU: is the firstly described POSIX thread implementation, where
the FFT is executed by the GPU.

• fft CPU: the second implementation described, where the FFT is
executed by the CPU.

• MPI: the MPI implementation.

In Table 3.3 we report the computation time for the execution of signal-
detection with a single GPU, and the time for the execution of the described
implementations using 2, 3, or 4 GPUs. While in Table 3.3 we report the
same results above but using an input data chunk of 223 points.

Overall the results obtained show a number of things. Firstly, the MPI
implementation has to be chosen especially when using more star masses.

9

It seems to be favorable probabbly due to the lower complexity of the com-
munications. Indeed in the case of POSIX thread the presence of multiple
barriers appears to affect the performances. The other interesting conside-
ration is that, when using more star masses, thus more templates, the im-
plementation executing the FFT on the CPU is favorable. This results was
certainly expected and confirms the good overlap between CPU and GPU
computation.

3.4 Conclusions

The most plausible computing scenario of the near future is a combination
of CPU and GPU technologies, as an evolution of most recent AMD’s APU
or Intel’s Knight ferry technologies. We already showed that it is possible
to exploit GPU power in Coalescing Binaries Detection. This means that
manycore programming will not be a choice, because it will be status-of-art
of near future.

In order to understand the real capabilities of these new architectures,
it is fudamental to hilight the obtained results. Our tests, based on a fully
Multi-GPU implementation of a Coalescing Binaries Detection pipeline, that
includes specifically an input data conditioning, signal Post Newtonian gene-
rator up to PN 3.5 and a complete matched fitlering procedure with colored
noise.

Compared to CPU implementation of the same algorithms, results show
an average gain factor (normalized by price) of about 50, using a single C1060
GPU. This can be translated in a number of applyied matched filtering per
seconds of about 30. Obviously this number depends on vector size. This
numbers are about length of 223 samples. Using shorter vector it is possible
to achieve higher gains. We performed the same test with the new NVIDIA
Fermi GPU (i.e. the Tesla C2050), it resulted that this number increase up to
120 templates per second. The Multi-GPU version of the pipeline, which
gives another increasing factor of 3.5 using 4 GPU, led us to an impressive
result of about 400 templates per second processed.

4 Bibliography

• Leone B. Bosi, Loriano Storchi, ”Impact of GPU Technology on gra-
vitational wave physics and signal detection systems”, E4 Workshop
2010, Bologna, Italy, 16-17 September 2010.

• ”Einstein gravitational wave Telescope conceptual design study”, ET-
0106A-10, S Aoudia, P Amaro-Seoane, F Barone, L Bosi, S Braccini,

10

(a) Number of masses : 120

Single

GPU

5.87 s

GPU 2 3 4

fft GPU 2.98 s 3.06 s 2.97 s
fft CPU 2.99 s 2.52 s 2.50 s
MPI 3.94 s 3.41 s 3.20 s

(b) Number of masses : 240

Single

GPU

9.47 s

GPU 2 3 4

fft GPU 5.09 s 3.99 s 3.59 s
fft CPU 5.00 s 4.01 s 3.80 s
MPI 5.74 s 4.65 s 4.21 s

(c) Number of masses : 480

Single

GPU

17.03 s

GPU 2 3 4

fft GPU 8.68 s 6.73 s 5.79 s
fft CPU 9.04 s 6.85 s 6.09 s
MPI 9.57 s 7.15 s 5.97 s

(d) Number of masses : 960

Single

GPU

32.28 s

GPU 2 3 4

fft GPU 17.09 s 12.37 s 11.11 s
fft CPU 16.50 s 12.72 s 10.82 s
MPI 16.41 s 14.32 s 10.32 s

(e) Number of masses : 1920

Single

GPU

63.68 s

GPU 2 3 4

fft GPU 32.95 s 24.70 s 20.79 s
fft CPU 33.37 s 24.81 s 20.84 s
MPI 30.69 s 22.39 s 19.93 s

(f) Number of masses : 3840

Single

GPU

130.40 s

GPU 2 3 4

fft GPU 66.50 s 52.11 s 44.00 s
fft CPU 69.87 s 52.82 s 46.61 s
MPI 61.33 s 45.36 s 40.99 s

(g) Number of masses : 7680

Single

GPU

283.29 s

GPU 2 3 4

fft GPU 162.38 s 121.27 s 106.92 s
fft CPU 180.76 s 124.92 s 105.68 s
MPI 157.07 s 112.14 s 91.32 s

(h) Number of masses : 15360

Single

GPU

958.30 s

GPU 2 3 4

fft GPU 546.12 s 361.42 s 306.05 s
fft CPU 558.06 s 380.86 s 301.72 s
MPI 569.44 s 347.19 s 258.96 s

Tabella 1: Speedup using an input data chuck of 219 elements

11

(a) Number of masses : 120

Seriale 90.17 s

GPU 2 3 4

fft GPU 53.76 s 48.87 s 38.83 s
fft CPU 45.16 s 40.10 s 45.92 s
MPI 61.83 s 54.95 s 49.73 s

(b) Number of masses : 240

Seriale 145.75 s

GPU 2 3 4

fft GPU 72.82 s 54.74 s 45.73 s
fft CPU 73.05 s 54.15 s 46.00 s
MPI 89.28 s 71.93 s 63.37 s

(c) Number of masses : 480

Seriale 257.38 s

GPU 2 3 4

fft GPU 126.96 s 92.03 s 74.61 s
fft CPU 128.81 s 93.00 s 75.50 s
MPI 144.21 s 107.42 s 91.66 s

(d) Number of masses : 960

Seriale 482.47 s

GPU 2 3 4

fft GPU 237.16 s 166.71 s 131.77 s
fft CPU 241.06 s 168.85 s 132.20 s
MPI 254.19 s 182.59 s 144.93 s

(e) Number of masses : 1920

Seriale 932.53 s

GPU 2 3 4

fft GPU 457.13 s 318.00 s 246.48 s
fft CPU 464.82 s 321.03 s 245.65 s
MPI 470.73 s 331.84 s 275.17 s

(f) Number of masses : 3840

Seriale 1835.18 s

GPU 2 3 4

fft GPU 901.21 s 624.99 s s 478.74 s
fft CPU 915.03 s 627.08 s s 477.75 s
MPI 913.53 s 629.43 s s 485.94 s

(g) Number of masses : 7680

Seriale 3651.28 s

GPU 2 3 4

fft GPU 1814.03 s 1259.75 s 956.18 s
fft CPU 1859.06 s 1235.98 s 954.73 s
MPI 1832.76 s 1258.90 s 959.85 s

(h) Number of masses : 15360

Seriale 7578.05 s

GPU 2 3 4

fft GPU 3839.54 s 2590.53 s 2011.64 s
fft CPU 3850.16 s 2596.82 s 2009.53 s
MPI 3719.47 s 2505.81 s 1895.30 s

Tabella 2: Speedup using an input data chuck of 223 elements

12

C Bradaschia, J van den Brand, C Van Den Broeck, G Cella, J Colas,
K Danzmann, T Dent, R De Rosa, V Fafone, P Falferi, R Flaminio,
J Franc, F Frasconi, A Freise, D Friedrich, G Gemme, E Genin, C Gräf,
S Hild, K Kokeyama, B Krishnan, M Lorenzini, H Lück, E Majorana,
M Mantovani, B Mours, H Müller-Ebhardt, R Nawrodt, G Parguezt, A Pasqualetti,
M Punturo, P Puppo, D Rabeling, T Regimbau, S Reid, F Ricci, A Rocchi,
S Rowan, L Santamaŕıa B Sathyaprakash, L Storchi, S Tarabrin, A Thüring,
P Weßels

• Matteo De Bonis, ”Pseudo-Random number generators on GPU”, Uni-
versitá degli Studi di Perugia Facoltá di Scienze MM.FF.NN. Corso
di Laurea in Informatica, Relatori: Leonello Servoli, Loriano Storchi,
Leone Bosi

• Lanfranco Fontana,”Using MPI and Pthreads in the parallelization of
multi-GPU algorithms for the identification of gravitational signals”,
Universitá degli Studi di Perugia Facoltá di Scienze MM.FF.NN. Corso
di Laurea in Informatica, Relatori: Leonello Servoli, Loriano Storchi,
Leone Bosi

13

