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Abstract: In this chapter, neutrosophic triplet partial g - metric spaces are obtained. Then, some definitions 

and examples are given for neutrosophic triplet partial g - metric space. Based on these definitions, new theo-

rems are given and proved. In addition, it is shown that neutrosophic triplet partial g - metric spaces are dif-

ferent from the classical g - metric spaces, neutrosophic triplet metric spaces. Thus, we add a new structure in 

neutrosophic triplet theory. Also, thanks to neutrosophic triplet partial g – metric space, researchers can ob-

tain new fixed point theorems for neutrosophic triplet theory.  
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1 Introduction 
   

There are many uncertainties in daily life. The logic of classical mathematics is often insufficient to ex-

plain these uncertainties. Because it is not always possible to call a situation or event absolutely right 

or wrong. For example, we cannot always call the weather cold or hot. It can be hot for some, cold for 

some and cool for others. Similar situations in which we remain indecisive may appear in the profes-

sional proficiency assessment. It is often difficult to determine whether a work done or a product pro-

duced is always definite good or definite bad. Such a situation reduces the reliability of evaluating 

professional proficiencies. In order to cope with these uncertainties, Smarandache (1998) defined the 

concept of neutrosophic logic and neutrosophic set. In the concept of neutrosophic logic and neutro-

sophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-

membership. These degrees are defined independently of each other. A neutrosophic value is shown 

by (T, I, F). In other words, a condition is handled according to both its accuracy and its inaccuracy 

and its uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncer-

tainties in our lives. In addition, many researchers have made studies on this theory [2-27, 50 - 56].  

Recently, Baset et al. studied TOPSIS-CRITIC model for sustainable supply chain risk management 

[51]; Baset et al. obtained resource levelling problem in construction projects under neutrosophic envi-

ronment [52]. 
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In fact, in the concept of fuzzy logic and fuzzy sets [28] there is only a degree of membership. In addi-

tion, the concept of intuitionistic fuzzy logic and intuitionistic fuzzy set [29] includes membership de-

gree, degree of indeterminacy and degree of non-membership. But these degrees are defined de-

pendently of each other. Therefore, neutrosophic set is a generalized state of fuzzy and intuitionistic 

fuzzy set.                                                                                          

Also, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet 

groups (NTG) [30].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of 

“x”. Also, neutral of “x” must different from the classical neutral element. Therefore, the NTS is differ-

ent from the classical set. Furthermore, a neutrosophic triplet (NT) “x” is showed by   <x, neut(x), an-

ti(x)>. Also, many researchers have introduced NT structures [31-44]. Recently, Şahin, Kargın, Yücel 

and Özkartepe obtain neutrosophic triplet g – metric   spaces [45]. 

Furthermore, Mustafa and Sims introduced g - metric spaces [46] in 2006. g - metric space is general-

ized form of metric space. The g - metric spaces have an important role in fixed point theory. Recently, 

researchers studied g - metric space [46-48]. Also, Salimi and Vetro introduced partial g – metric spac-

es [49].  

In this chapter, we introduce neutrosophic triplet partial g - metric space (NTpgMS). In Section 2, we 

give definitions and properties for partial g - metric space (pgMS) [49], neutrosophic triplet sets (NTS) 

[30], neutrosophic triplet metric spaces (NTMS) [32] and neutrosophic triplet g – metric space 

(NTgMS) [45]. In Section 3, we define NTpgMS and we give some properties for NTpgMS. Also, we 

show that NTpgMSs are different from the pgMSs, NTMSs and NTgMSs, because the triangle inequal-

ity in the NTgMS, NTMS and pgMS differ from the triangle inequality in the NTpgMS. Then, we ex-

amine relationship between NTpgMS and NTgMS. In Section 4, we give conclusions. 

2 Preliminaries  

Definition 2.1: [30] Let # be a binary operation. A NTS (X, #) is a set such that for x ∊ X, 

i) There exists neutral of “x” such that x*neut(x) = neut(x)* x = x. 

ii) There exists anti of “x” such that x*anti(x) = anti(x)* x = neut(x).  

Also, a neutrosophic triplet “x” is denoted by (x, neut(x), anti(x)). 

Definition 2.2: [32] Let (N,*) be a NTS and dN:NxN→ ℝ+∪{0} be a function. If dN:NxN→ ℝ+∪{0} and (N, 

*) satisfies the following conditions, then 𝑑𝑁 is called NTM.  

a) x*y ∈ N; 

b) dN(x, y) ≥ 0; 

c) If x = y, then dN(x, y) = 0; 

d) dN(x, y) = dN(y, x); 
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e) If there exits at least a y ∊ N for each x, z ∊ N such that dN(x, z) ≤ dN(x, z*neut(y)), then 𝑑𝑁(x, 

z*neut(y)) ≤ dN(x, y) + dN(y, z).  

In this case, ((N,*), dN) is called a NTMS. 

Definition 2.3: [36] Let (N,*) be a NTS. If 𝑑𝑝:NxN→ ℝ+∪{0} function satisfies the following conditions, 

then 𝑑𝑝 is a NTpM. For all x, y, z ∈ N, 

a) x*y ∈ N, 

b) 𝑑𝑝 (x, y) ≥ 𝑑𝑝 (x, x) ≥ 0, 

c) If 𝑑𝑝 (x, y) =  𝑑𝑝 (x, x) = 𝑑𝑝 (y, y) = 0, then there exists at least one pair of elements x, y ∈ N such that 

𝑥 = 𝑦, 

d) 𝑑𝑝 (x, y) = 𝑑𝑝 (y, x), 

e) If for each pair of x, z ∊N, there exists at least one y ∊N such that 𝑑𝑝 (x, z) ≤ 𝑑𝑝 (x, z*neut(y)), then               

𝑑𝑝 (x, z*neut(y)) ≤ 𝑑𝑝 (x, y) + 𝑑𝑝 (y, z) - 𝑑𝑝 (y, y). 

In this case, ((N,*), 𝑑𝑝) is called a NTpMS. 

Definition 2.4: [45] Let (𝑋,∗) be a NTS. If the following conditions hold, then g: 𝑋 × 𝑋 × 𝑋 → 𝑅+ ∪ {0} 

is an NTgM. 

a) ∀𝑥, 𝑦 ∈ 𝑋 ; 𝑥 ∗ 𝑦 ∈ 𝑋, 

b) If 𝑥 = 𝑦 = 𝑧, then g(𝑥, 𝑦, 𝑧) = 0, 

c) If 𝑥 ≠ 𝑦, then g(𝑥, 𝑦, 𝑧) > 0, 

d) If 𝑧 ≠ 𝑦, then g(𝑥, 𝑥, 𝑦) ≤ g(𝑥, 𝑦, 𝑧), 

e) g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑧, 𝑦) =  g(𝑦, 𝑥, 𝑧) = g(𝑦, 𝑧, 𝑥) = g(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 

f) If there exists at least an  𝑎 ∈ 𝑋 for each 𝑥, 𝑦, 𝑧 ∈ 𝑋  such that 

 g(𝑥, 𝑦, 𝑧) ≤ g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)),  then 

 g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) . 

In this case, (X, *), g) is called NTgMS. 

Definition 2.5: [45] Let (X, *), g) be a NTgMS and {𝑥𝑛} be a sequence in this space. A point x ∈ X is said 

to be limit of the sequence {𝑥𝑛}, if lim
𝑛,𝑚 →∞

g(𝑥, 𝑥𝑛 , 𝑥𝑚) = 0 and {𝑥𝑛} is called NT g – convergent to x. 

Definition 2.6: [45] Let (X, *), g) be a NTgMS and {𝑥𝑛} be a sequence in this space. {𝑥𝑛} is called NT                

g – Cauchy sequence if lim
𝑛,𝑚,𝑙 →∞

g(𝑥𝑛 , 𝑥𝑚, 𝑥𝑙) = 0.  

Definition 2.7: [45] Let (X, *), g) be a NTgMS. If every {𝑥𝑛} NT g - Cauchy sequence is NT g - conver-

gent, then      (X, *), g) is called NT complete NTgMS. 

Definition 2.8: [49] Let 𝑋  be a neutrosophic triplet set. If the following conditions hold, then                                  

g: 𝑋 × 𝑋 × 𝑋 → 𝑅+ ∪ {0} is a pgM. For all a, x, y, 𝑧 ∈ X; 

a) If 𝑥 = 𝑦 = 𝑧, then g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑥, 𝑥) = g(𝑦, 𝑦, 𝑦) = g(𝑧, 𝑧, 𝑧), 



Neutrosophic Sets and Systems, Vol. 33, 2020  

 

M. Şahin, A. Kargın and M. Yücel. Neutrosophic Triplet Partial g - Metric Spaces 

 119  

b) g(𝑥, 𝑥, 𝑥) + g(𝑦, 𝑦, 𝑦) + g(𝑧, 𝑧, 𝑧) ≤ 3 g(𝑥, 𝑦, 𝑧), 

c)If x ≠y, then  
1

3
 g(𝑥, 𝑥, 𝑥) + 

2

3
 g(𝑥, 𝑥, 𝑥) <  g(𝑥, 𝑦, 𝑦), 

d) If y ≠ z, then   g(𝑥, 𝑥, 𝑦) - 
1

3
 g(𝑥, 𝑥, 𝑥) ≤  g(𝑥, 𝑦, 𝑧) - 

1

3
 g(𝑥, 𝑥, 𝑥), 

e) g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑧, 𝑦) =  g(𝑦, 𝑥, 𝑧) = g(𝑦, 𝑧, 𝑥) = g(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑦, 𝑥),  

f)  g(x, y, z) ≤ g(x, a, a) + g(a, y, z) – g(a, a, a). 

Definition 2.9: [49] Let (X, g) be a pgMS and {𝑥𝑛} be a sequence in this space. A point x ∈ X is said to 

be limit of the sequence {𝑥𝑛}, if lim
𝑛,𝑚 →∞

g(𝑥, 𝑥𝑛 , 𝑥𝑚) = g(𝑥, 𝑥, 𝑥) and {𝑥𝑛} is called NT p– g – convergent to 

x. 

3 Neutrosophic Triplet Partial g - Metric Space  

Definition 3.1: Let (A,*) be a NTS. If the function dNG: A × A × A → R+ ∪ {0} satisfies the below condi-

tions, then pNG is called a NTpgMS. For ∀x, y, z ∈ A; 

a) x ∗ y ∈ A, 

b) 0 ≤ pNG(x, x, x) ≤ pNG(x, y, z), 

c) If pNG(x, x, x) = pNG(y, y, y) = pNG(z, z, z) = pNG(x, y, z) = 0, then x = y = z, 

d) If z ≠ 𝑦, then pNG(x, x, y) ≤ pNG(x, y, z), 

e) pNG(𝑥, 𝑦, 𝑧) = pNG(𝑥, 𝑧, 𝑦) =  pNG(𝑦, 𝑥, 𝑧) = pNG(𝑦, 𝑧, 𝑥) = pNG(𝑧, 𝑥, 𝑦) = pNG(𝑧, 𝑦, 𝑥) 

f) If there exists at least an  a ∈ X for each x, y, z ∈ X  such that 

pNG(x, y, z) ≤ pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) , then 

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z) − pNG(a, a, a) . 

In this case, ((A,∗), pNG) is called NTpgMS. 

Example 3.2: Let X = {0,3,4,6,9} be a set. We show that (X, ∗) is a NTS on ℤ12.  Also, we obtain that 

neut(0) = 0,  anti(0) = 0;  neut(3) = 9,  anti(3) = 6; neut(4) = 4,  anti(4) = 4;  neut(6) = 6, 

anti(6) = 6; neut(9) = 9, anti(9) = 9. 

Thus, (X, . ) is a NTS and NTs are (0,0,0), (3,6,9), (4,4,4), (6,6,6) and (9,9,9). 

Now, we define the function  pNG: X × X × X → R+ ∪ {0}  such that 

pNG(x, y, z) = 1 + |4x − 4y| + |4x − 4z| + |4y − 4z|. We show that pNG is a NTpgM. 

a) From Table 1, it is clear that ∀x, y ∈ X; x ∗ y ∈ X 

* 0 3 4 6 9 

0 0 0 0 0 0 

3 0 9 0 6 3 

4 0 0 4 0 0 

6 0 6 0 0 6 

9 0 3 0 6 9 

Table 1: ”*” binary operator under ℤ12 
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b) It is clear that 0 ≤ pNG(x, x, x) = 1 ≤ pNG(x, y, z). 

c) pNG(x, y, z) = 1 + |4x − 4y| + |4x − 4z| + |4y − 4z| ≥ 0. 

d) If y ≠ z, it is clear that 

 pNG(x, x, y) = 1 + |4x − 4x| + |4x − 4y| + |4x − 4y| ≤ pNG(𝑥, 𝑦, 𝑧) = 1 + |4x − 4y| + |4x − 4z| + |4y − 4z|. 

e) By absolute value function, it is clear that  

 pNG(x, y, z) = pNG(x, z, y) =  pNG(y, x, z) = pNG(y, z, x) = pNG(z, x, y) = pNG(z, y, x), for every x, y, z ∈ X. 

f)  

 For 𝑥 = 0 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 6, 3) ≤ pNG(0 ∗ 6, 6 ∗ 6,3 ∗ 6) = pNG(0, 6, 6), we obtain that 

pNG(0, 6, 6) ≤ pNG(0, 3, 3) + pNG(3, 6, 6) − pNG(3, 3, 3).  

For 𝑥 = 0 , 𝑦 = 3 , 𝑧 = 9 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0,3,9) ≤ pNG(0 ∗ 6,3 ∗ 6,9 ∗ 6) = pNG(0,6,6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 3, 3) + pNG(3, 6, 6) − pNG(3, 3, 3).  

For 𝑥 = 0 , 𝑦 = 9 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 9, 3) ≤ pNG(0 ∗ 6, 9 ∗ 6,3 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 0 , 𝑦 = 6 , 𝑧 = 9 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 6, 9) ≤ pNG(0 ∗ 6, 6 ∗ 6,9 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 3, 3) + pNG(3, 6, 6) − pNG(3, 3, 3).  

For 𝑥 = 0 , 𝑦 = 9 , 𝑧 = 6 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 9, 6) ≤ pNG(0 ∗ 6, 9 ∗ 6,6 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 3, 3) + pNG(3, 9, 6) − pNG(3, 3, 3).  

For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 6, 9) ≤ pNG(3 ∗ 9, 6 ∗ 9,9 ∗ 9) = pNG(3, 6, 9), we obtain that 

pNG(9, 6, 9) ≤ pNG(3, 6, 9) + pNG(9, 6, 9) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 9 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 9, 6) ≤ pNG(3 ∗ 9, 9 ∗ 9,6 ∗ 9) = pNG(3, 9, 6), we obtain that 

 pNG(3, 9, 6) ≤ pNG(3, 9, 9) + pNG(9, 9, 6) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 0 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 0, 6) ≤ pNG(3 ∗ 9, 0 ∗ 9,6 ∗ 9) = pNG(3, 0, 6), we obtain that 

 pNG(3, 0, 6) ≤ pNG(3, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 6, 0) ≤ pNG(3 ∗ 9, 6 ∗ 9,0 ∗ 9) = pNG(3, 6, 0), we obtain that 

 pNG(3, 6, 0) ≤ pNG(3, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 9 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 9, 0) ≤ pNG(3 ∗ 9, 9 ∗ 9,0 ∗ 9) = pNG(3, 9, 0), we obtain that 

 pNG(3, 9, 0) ≤ pNG(3, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 0 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 0, 9) ≤ pNG(3 ∗ 9, 0 ∗ 9,9 ∗ 9) = pNG(3, 0, 9), we obtain that 
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 pNG(3, 0, 9) ≤ pNG(3, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 0 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 0, 3) ≤ pNG(6 ∗ 9, 0 ∗ 9,3 ∗ 9) = pNG(6, 0, 3), we obtain that 

 pNG(6, 0, 3) ≤ pNG(6, 9, 9) + pNG(9, 0, 3) − hpNGg(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 3 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 3, 0) ≤ pNG(6 ∗ 9, 3 ∗ 9,0 ∗ 9) = pNG(6, 3, 0), we obtain that 

pNG(6, 3, 0) ≤ pNG(6, 9, 9) + pNG(9, 3, 0) − pNG(3, 3, 3).  
For 𝑥 = 6 , 𝑦 = 3 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 3, 9) ≤ pNG(6 ∗ 9, 3 ∗ 9,9 ∗ 9) = pNG(6, 3, 9), we obtain that 

 pNG(6, 3, 9) ≤ pNG(6, 9, 9) + pNG(9, 3, 9) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 9 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 9, 3) ≤ pNG(6 ∗ 9, 9 ∗ 9,3 ∗ 9) = pNG(6, 9, 3), we obtain that 

 pNG(6, 9, 3) ≤ pNG(6, 9, 9) + pNG(9, 9, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 0 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 0, 9) ≤ pNG(6 ∗ 9, 0 ∗ 9,9 ∗ 9) = pNG(6, 0, 9), we obtain that 

 pNG(6, 0, 9) ≤ pNG(6, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 9 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 9, 0) ≤ pNG(6 ∗ 9, 9 ∗ 9,0 ∗ 9) = pNG(6, 9, 0), we obtain that 

 pNG(6, 9, 0) ≤ pNG(6, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 0 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 0, 3) ≤ pNG(9 ∗ 9, 0 ∗ 9,3 ∗ 9) = pNG(9, 0, 3), we obtain that 

 pNG(9, 0, 3) ≤ pNG(9, 9, 9) + pNG(9, 0, 3) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 3 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9,3,0) ≤ pNG(9 ∗ 9,3 ∗ 9,0 ∗ 9) = pNG(9,3,0), we obtain that 

 pNG(9,3,0) ≤ pNG(9,9,9) + pNG(9,3,0) − pNG(9,9,9).  

For 𝑥 = 9 , 𝑦 = 3 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 3, 6) ≤ pNG(9 ∗ 9, 3 ∗ 9,6 ∗ 9) = pNG(9, 3, 6), we obtain that 

 pNG(9, 3, 6) ≤ pNG(9, 9, 9) + pNG(9, 3, 6) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 6, 3) ≤ pNG(9 ∗ 9, 6 ∗ 9,3 ∗ 9) = pNG(9, 6, 3), we obtain that 

 pNG(9, 6, 3) ≤ pNG(9, 9, 9) + pNG(9, 6, 3) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 0 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 0, 6) ≤ pNG(9 ∗ 9, 0 ∗ 9,6 ∗ 9) = pNG(9, 0, 6), we obtain that 

 pNG(9, 0, 6) ≤ pNG(9, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 6 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 6, 0) ≤ pNG(9 ∗ 9, 6 ∗ 9,0 ∗ 9) = pNG(9, 6, 0), we obtain that 

pNG(9, 6, 0) ≤ pNG(9, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 0 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 0, 3) ≤ pNG(0 ∗ 6, 0 ∗ 6,3 ∗ 6) = pNG(0, 0, 6), we obtain that 

 pNG(0, 0, 6) ≤ pNG(0, 6, 6) + pNG(6, 0, 6) − pNG(6, 6, 6).  
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For 𝑥 = 0 , 𝑦 = 3 , 𝑧 = 0 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 3, 0) ≤ pNG(0 ∗ 6, 3 ∗ 6,0 ∗ 6) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 0 , 𝑧 = 0 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 0, 0) ≤ pNG(3 ∗ 6, 0 ∗ 6,0 ∗ 6) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 6, 6) + pNG(6, 0, 0) − pNG(6, 6, 6).  

For 𝑥 = 0 , 𝑦 = 0 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 0, 6) ≤ pNG(0 ∗ 9, 0 ∗ 9,6 ∗ 9) = pNG(0, 0, 6), we obtain that 

 pNG(0, 0, 6) ≤ pNG(0, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 6 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 6, 0) ≤ pNG(0 ∗ 9, 6 ∗ 9,0 ∗ 9) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 0 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 0, 0) ≤ pNG(6 ∗ 9, 0 ∗ 9,0 ∗ 9) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 0 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 0, 9) ≤ pNG(0 ∗ 9, 0 ∗ 9,9 ∗ 9) = pNG(0, 0, 9), we obtain that 

 pNG(0, 0, 9) ≤ pNG(0, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 9 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 9, 0) ≤ pNG(0 ∗ 9, 9 ∗ 9,0 ∗ 9) = pNG(0, 9, 0), we obtain that 

 pNG(0, 9, 0) ≤ pNG(0, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 0 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 0, 0) ≤ pNG(9 ∗ 9, 0 ∗ 9, 0 ∗ 9) = pNG(9, 0, 0), we obtain that 

 pNG(9, 0, 0) ≤ pNG(9, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 3 , 𝑧 = 0 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 3, 0) ≤ pNG(3 ∗ 6, 3 ∗ 6, 0 ∗ 6) = pNG(6, 6, 0), we obtain that 

 pNG(6, 6, 0) ≤ pNG(6, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 0 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 0, 3) ≤ pNG(3 ∗ 6, 0 ∗ 6, 3 ∗ 6) = pNG(6, 0, 6), we obtain that 

 pNG(6, 0, 6) ≤ pNG(6, 6, 6) + pNG(6, 0, 6) − pNG(6, 6, 6).  

For 𝑥 = 0 , 𝑦 = 3 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(0, 3, 3) ≤ pNG(0 ∗ 6, 3 ∗ 6,3 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 3 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 3, 6) ≤ pNG(3 ∗ 9, 3 ∗ 9,6 ∗ 9) = pNG(3, 3 ,6), we obtain that 

 pNG(3, 3, 6) ≤ pNG(3, 9, 9) + pNG(9, 3, 6) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 6, 3) ≤ pNG(3 ∗ 9, 6 ∗ 9,3 ∗ 9) = pNG(3, 6, 3), we obtain that 

 pNG(3, 6, 3) ≤ pNG(3, 9, 9) + pNG(9, 6, 3) − pNG(9, 9, 9).  
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For 𝑥 = 6 , 𝑦 = 3 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 3, 3) ≤ pNG(6 ∗ 9, 3 ∗ 9, 3 ∗ 9) = pNG(6, 3, 3), we obtain that 

 pNG(6, 3, 3) ≤ pNG(6, 9, 9) + pNG(9, 3, 3) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 3 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 3, 9) ≤ pNG(3 ∗ 9, 3 ∗ 9, 9 ∗ 9) = pNG(3, 3, 9), we obtain that 

 pNG(3, 3, 9) ≤ pNG(3, 9, 9) + pNG(9, 3, 9) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 9 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 9, 3) ≤ pNG(3 ∗ 9, 9 ∗ 9, 3 ∗ 9) = pNG(3, 9, 3), we obtain that 

 pNG(3, 9, 3) ≤ pNG(3, 9, 9) + pNG(9, 9, 3) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 3 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 3, 3) ≤ pNG(9 ∗ 9, 3 ∗ 9, 3 ∗ 9) = pNG(9, 3, 3), we obtain that 

 pNG(9, 3, 3) ≤ pNG(9, 9, 9) + pNG(9, 3, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 0) ≤ pNG(6 ∗ 9, 6 ∗ 9, 0 ∗ 9) = pNG(6, 6, 0), we obtain that 

 pNG(6, 6, 0) ≤ pNG(6, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 0 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 0, 6) ≤ pNG(6 ∗ 9, 0 ∗ 9, 6 ∗ 9) = pNG(6, 0, 6), we obtain that 

 pNG(6, 0, 6) ≤ pNG(6, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 6 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 6, 6) ≤ pNG(0 ∗ 9, 6 ∗ 9, 6 ∗ 9) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 9, 9) + pNG(9, 6, 6) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 3) ≤ pNG(6 ∗ 9, 6 ∗ 9, 3 ∗ 9) = pNG(6, 6, 3), we obtain that 

 pNG(6, 6, 3) ≤ pNG(6, 9, 9) + pNG(9, 6, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 3 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 3, 6) ≤ pNG(6 ∗ 9, 3 ∗ 9, 6 ∗ 9) = pNG(6, 3, 6), we obtain that 

 pNG(6, 3, 6) ≤ pNG(6, 9, 9) + pNG(9, 3, 6) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 6, 6) ≤ pNG(3 ∗ 9, 6 ∗ 9, 6 ∗ 9) = pNG(3, 6, 6), we obtain that 

 pNG(3, 6, 6) ≤ pNG(9, 9, 9) + pNG(9, 6, 6) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 3) ≤ pNG(6 ∗ 9, 6 ∗ 9, 3 ∗ 9) = pNG(6, 6, 3), we obtain that 

pNG(6, 6, 3) ≤ pNG(6, 9, 9) + pNG(9, 6, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 9) ≤ pNG(6 ∗ 9, 6 ∗ 9, 9 ∗ 9) = pNG(6, 6, 9), we obtain that 

 pNG(6, 6, 9) ≤ pNG(6, 9, 9) + pNG(9, 6, 9) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 9 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 9, 6) ≤ pNG(6 ∗ 9, 9 ∗ 9, 6 ∗ 9) = pNG(6, 9, 6), we obtain that 

 pNG(6, 9, 6) ≤ pNG(6, 9, 9) + pNG(9, 9, 6) − pNG(9, 9, 9).  
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For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 6, 6) ≤ pNG(3 ∗ 9, 6 ∗ 9, 6 ∗ 9) = pNG(3, 6, 6), we obtain that 

 pNG(3, 6, 6) ≤ pNG(3, 9, 9) + pNG(9, 6, 6) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 9 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 9, 0) ≤ pNG(9 ∗ 9, 9 ∗ 9, 0 ∗ 9) = pNG(9, 9, 0), we obtain that 

 pNG(9, 9, 0) ≤ pNG(9, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 0 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 0, 9) ≤ pNG(9 ∗ 9, 0 ∗ 9, 9 ∗ 9) = pNG(9, 0, 9), we obtain that 

 pNG(9, 0, 9) ≤ pNG(9, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 9 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 9, 9) ≤ pNG(0 ∗ 9, 9 ∗ 9, 9 ∗ 9) = pNG(0, 9, 9), we obtain that 

 pNG(0, 9, 9) ≤ pNG(0, 9, 9) + pNG(9, 9, 9) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 9 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 9, 3) ≤ pNG(9 ∗ 9, 9 ∗ 9, 3 ∗ 9) = pNG(9, 9, 3), we obtain that 

 pNG(9, 9, 3) ≤ pNG(9, 9, 9) + pNG(9, 9, 3) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 3 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 3, 9) ≤ pNG(9 ∗ 9, 3 ∗ 9, 9 ∗ 9) = pNG(9, 3, 9), we obtain that 

 pNG(9, 3, 9) ≤ pNG(9, 9, 9) + pNG(9, 3, 9) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 9 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(3, 9, 9) ≤ pNG(3 ∗ 9, 9 ∗ 9, 9 ∗ 9) = pNG(3, 9, 9), we obtain that 

 pNG(3, 9, 9) ≤ pNG(3, 9, 9) + pNG(9, 9, 9) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 9 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 9, 6) ≤ pNG(9 ∗ 9, 9 ∗ 9, 6 ∗ 9) = pNG(9, 9, 6), we obtain that 

 pNG(9, 9, 6) ≤ pNG(9, 9, 9) + pNG(9, 9, 6) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 6 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 6, 9) ≤ pNG(9 ∗ 9, 6 ∗ 9, 9 ∗ 9) = pNG(9, 6, 9), we obtain that 

 pNG(9, 6, 9) ≤ pNG(9, 9, 9) + pNG(9, 6, 9) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 9 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 9, 9) ≤ pNG(6 ∗ 9, 9 ∗ 9, 9 ∗ 9) = pNG(6, 9, 9), we obtain that 

 pNG(6, 9, 9) ≤ pNG(6, 9, 9) + pNG(9, 9, 9) − pNG(9, 9, 9).  

For 𝑥 = 0 , 𝑦 = 0 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(0, 0, 0) ≤ pNG(0 ∗ 9, 0 ∗ 9, 0 ∗ 9) = pNG(0, 0, 0), we obtain that 

 pNG(0, 0, 0) ≤ pNG(0, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 3 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 3, 3) ≤ pNG(3 ∗ 6, 3 ∗ 6, 3 ∗ 6) = pNG(6, 6, 6), we obtain that 

 pNG(6, 6, 6) ≤ pNG(6, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 6) ≤ pNG(6 ∗ 9, 6 ∗ 9, 6 ∗ 9) = pNG(6, 6, 6), we obtain that 

 pNG(6, 6, 6) ≤ pNG(6, 9, 9) + pNG(9, 6, 6) − pNG(9, 9, 9).  
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For 𝑥 = 9 , 𝑦 = 9 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 9, 9) ≤ pNG(9 ∗ 9, 9 ∗ 9, 9 ∗ 9) = pNG(9, 9, 9), we obtain that 

 pNG(9, 9, 9) ≤ pNG(9, 9, 9) + pNG(9, 9, 9) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 0 , 𝑧 = 0 , 𝑎 = 4 , 𝑛𝑒𝑢𝑡 (𝑎) = 4; 

since pNG(4, 0, 0) ≤ pNG(4 ∗ 4, 0 ∗ 4, 0 ∗ 4) = pNG(4, 0, 0), we obtain that 

 pNG(4, 0, 0) ≤ pNG(4, 4, 4) + pNG(4, 0, 0) − pNG(4, 4, 4).  

For 𝑥 = 4 , 𝑦 = 0 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(4, 0, 3) ≤ pNGhdg(4 ∗ 6, 0 ∗ 6, 3 ∗ 6) = pNG(0, 0, 6), we obtain that 

 pNG(4, 0, 3) ≤ pNG(4, 6, 6) + pNG(6, 0, 3) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 3 , 𝑧 = 0 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(4, 3, 0) ≤ pNG(4 ∗ 6, 3 ∗ 6, 0 ∗ 6) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 0 , 𝑧 = 4 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 0, 4) ≤ pNG(3 ∗ 6, 0 ∗ 6, 4 ∗ 6) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 6, 6) + pNG(6, 0, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 4, 0) ≤ pNG(3 ∗ 6, 4 ∗ 6, 0 ∗ 6) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 6, 6) + pNG(6, 0, 0) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 0 , 𝑧 = 4 , 𝑎 = 4 , 𝑛𝑒𝑢𝑡 (𝑎) = 4; 

since pNG(4, 0, 4) ≤ pNG(4 ∗ 4, 0 ∗ 4, 4 ∗ 4) = pNG(4, 0, 4), we obtain that 

 pNG(4, 0, 4) ≤ pNG(4, 4, 4) + pNG(4, 0, 4) − pNG(4, 4, 4).  

For 𝑥 = 4 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 4 , 𝑛𝑒𝑢𝑡 (𝑎) = 4; 

since pNG(4, 4, 0) ≤ pNG(4 ∗ 4, 4 ∗ 4, 0 ∗ 4) = pNG(4, 4, 0), we obtain that 

 pNG(4, 4, 0) ≤ pNG(4, 4, 4) + pNG(4, 4, 0) − pNG(4, 4, 4).  

For 𝑥 = 0 , 𝑦 = 4 , 𝑧 = 4 , 𝑎 = 4 , 𝑛𝑒𝑢𝑡 (𝑎) = 4; 

since pNG(0, 4, 4) ≤ pNG(0 ∗ 4, 4 ∗ 4, 4 ∗ 4) = pNG(0, 4, 4), we obtain that 

 pNG(0, 4, 4) ≤ pNG(0, 4, 4) + pNG(4, 4, 4) − pNG(4, 4, 4).  

For 𝑥 = 4 , 𝑦 = 0 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 0, 6) ≤ pNG(4 ∗ 9, 0 ∗ 9, 6 ∗ 9) = pNG(0, 0, 6), we obtain that 

 pNG(0, 0, 6) ≤ pNG(0, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 6 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 6, 0) ≤ pNG(4 ∗ 9, 6 ∗ 9, 0 ∗ 9) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 4, 0) ≤ pNG(6 ∗ 9, 4 ∗ 9, 0 ∗ 9) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 0 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 0, 4) ≤ pNG(6 ∗ 9, 0 ∗ 9, 4 ∗ 9) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  
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For 𝑥 = 4 , 𝑦 = 0 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 0, 9) ≤ pNG(4 ∗ 9, 0 ∗ 9, 9 ∗ 9) = pNG(0, 0, 9), we obtain that 

 pNG(0, 0, 9) ≤ pNG(0, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 9 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 9, 0) ≤ pNG(4 ∗ 9, 9 ∗ 9, 0 ∗ 9) = pNG(0, 9, 0), we obtain that 

 pNG(0, 9, 0) ≤ pNG(0, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 0 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 0, 4) ≤ pNG(9 ∗ 9, 0 ∗ 9, 4 ∗ 9) = pNG(9, 0, 0), we obtain that 

 pNG(9, 0, 0) ≤ pNG(9, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 9 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 4, 0) ≤ pNG(9 ∗ 9, 4 ∗ 9, 0 ∗ 9) = pNG(9, 0, 0), we obtain that 

 pNG(9, 0, 0) ≤ pNG(9, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 3 , 𝑧 = 3 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) =6; 

since pNG(4, 3, 3) ≤ pNG(4 ∗ 6, 3 ∗ 6, 3 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 3 , 𝑧 = 4 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) =6; 

since pNG(4, 3, 4) ≤ pNG(4 ∗ 6, 3 ∗ 6, 4 ∗ 6) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 4 , 𝑧 = 3 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) =6; 

since pNG(4, 4, 3) ≤ pNG(4 ∗ 6, 4 ∗ 6, 3 ∗ 6) = pNG(0, 0, 6), we obtain that 

 pNG(0, 0, 6) ≤ pNG(0, 6, 6) + pNG(6, 0, 6) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 4 , 𝑧 = 4 , 𝑎 = 3 , 𝑛𝑒𝑢𝑡 (𝑎) =6; 

since pNG(3, 4, 4) ≤ pNG(3 ∗ 6, 4 ∗ 6, 4 ∗ 6) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(6, 6, 6) + pNG(6, 0, 0) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 3 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(4, 3, 6) ≤ pNG(4 ∗ 9, 3 ∗ 9, 6 ∗ 9) = pNG(0, 3, 6), we obtain that 

 pNG(0, 3, 6) ≤ pNG(0, 9, 9) + pNG(9, 3, 6) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 6 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(4, 6, 3) ≤ pNG(4 ∗ 9, 6 ∗ 9, 3 ∗ 9) = pNG(0, 6, 3), we obtain that 

 pNG(0, 6, 3) ≤ pNG(0, 9, 9) + pNG(9, 6, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 4 , 𝑧 = 3 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(6, 4, 3) ≤ pNG(6 ∗ 9, 4 ∗ 9, 3 ∗ 9) = pNG(6, 0, 3), we obtain that 

 pNG(6, 0, 3) ≤ pNG(6, 9, 9) + pNG(9, 0, 3) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 3 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(6, 3, 4) ≤ pNG(6 ∗ 9, 3 ∗ 9, 4 ∗ 9) = pNG(6, 3, 0), we obtain that 

 pNG(6, 3, 0) ≤ pNG(6, 9, 9) + pNG(9, 3, 0) − pNG(9, 9, 9).  

For 𝑥 = 3 , 𝑦 = 6 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(3, 6, 4) ≤ pNG(3 ∗ 9, 6 ∗ 9, 4 ∗ 9) = pNG(3, 6, 0), we obtain that 

 pNG(3, 6, 0) ≤ pNG(3, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  
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For 𝑥 = 3 , 𝑦 = 4 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) =9; 

since pNG(3, 4, 6) ≤ pNG(3 ∗ 9, 4 ∗ 9, 6 ∗ 9) = pNG(3, 0, 6), we obtain that 

 pNG(3, 0, 6) ≤ pNG(3, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 3 , 𝑧 = 9 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(4, 3, 9) ≤ pNG(4 ∗ 6, 3 ∗ 6, 9 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 9 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(4, 9, 3) ≤ pNG(4 ∗ 6, 9 ∗ 6, 3 ∗ 6) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 6, 6) + pNG(6, 6, 6) − pNG(6, 6, 6).  

For 𝑥 = 9 , 𝑦 = 4 , 𝑧 = 3 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(9, 4, 3) ≤ pNG(9 ∗ 6, 4 ∗ 6, 3 ∗ 6) = pNG(6, 0, 6), we obtain that 

 pNG(6, 0, 6) ≤ pNG(6, 6, 6) + pNG(6, 0, 6) − pNG(6, 6, 6).  

For 𝑥 = 9 , 𝑦 = 3 , 𝑧 = 4 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(9, 3, 4) ≤ pNG(9 ∗ 6, 3 ∗ 6, 4 ∗ 6) = pNG(6, 6, 0), we obtain that 

 pNG(6, 6, 0) ≤ pNG(6, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 9 , 𝑧 = 4 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 9, 4) ≤ pNG(3 ∗ 6, 9 ∗ 6, 4 ∗ 6) = pNG(6, 6, 0), we obtain that 

 pNG(6, 6, 0) ≤ pNG(6, 6, 6) + pNG(6, 6, 0) − pNG(6, 6, 6).  

For 𝑥 = 3 , 𝑦 = 4 , 𝑧 = 9 , 𝑎 = 6 , 𝑛𝑒𝑢𝑡 (𝑎) = 6; 

since pNG(3, 4, 9) ≤ pNG(3 ∗ 6, 4 ∗ 6, 9 ∗ 6) = pNG(6, 0, 6), we obtain that 

 pNG(6, 0, 6) ≤ pNG(6, 6, 6) + pNG(6, 0, 6) − pNG(6, 6, 6).  

For 𝑥 = 4 , 𝑦 = 4 , 𝑧 = 4 , 𝑎 = 4 , 𝑛𝑒𝑢𝑡 (𝑎) = 4; 

since pNG(4, 4, 4) ≤ pNG(4 ∗ 4, 4 ∗ 4, 4 ∗ 4) = pNG(4, 4, 4), we obtain that 

 pNG(4, 4, 4) ≤ pNG(4, 4, 4) + pNG(4, 4, 4) − pNG(4, 4, 4).  

For 𝑥 = 4 , 𝑦 = 4 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 4, 6) ≤ pNG(4 ∗ 9, 4 ∗ 9, 6 ∗ 9) = pNG(0, 0, 6), we obtain that 

 pNG(0, 0, 6) ≤ pNG(0, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 6 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 6, 4) ≤ pNG(4 ∗ 9, 6 ∗ 9, 4 ∗ 9) = pNG(0, 6, 0), we obtain that 

 pNG(0, 6, 0) ≤ pNG(0, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 4 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 4, 4) ≤ pNG(6 ∗ 9, 4 ∗ 9, 4 ∗ 9) = pNG(6, 0, 0), we obtain that 

 pNG(6, 0, 0) ≤ pNG(0, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 4 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 4, 9) ≤ pNG(4 ∗ 9, 4 ∗ 9, 9 ∗ 9) = pNG(0, 0, 9), we obtain that 

 pNG(0, 0, 9) ≤ pNG(0, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 9 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 9, 4) ≤ pNG(4 ∗ 9, 9 ∗ 9, 4 ∗ 9) = pNG(0, 9, 0), we obtain that 

 pNG(0, 9, 0) ≤ pNG(0, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  
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For 𝑥 = 9 , 𝑦 = 4 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(9, 4, 4) ≤ pNG(9 ∗ 9, 4 ∗ 9, 4 ∗ 9) = pNG(9, 0, 0), we obtain that 

pNG(9, 0, 0) ≤ pNG(9, 9, 9) + pNG(9, 0, 0) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 6 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 6, 6) ≤ pNG(4 ∗ 9, 6 ∗ 9, 6 ∗ 9) = pNG(0, 6, 6), we obtain that 

 pNG(0, 6, 6) ≤ pNG(0, 9, 9) + hpNG
(9, 6, 6) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 4 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 4, 6) ≤ pNG(6 ∗ 9, 4 ∗ 9, 6 ∗ 9) = pNG(6, 0, 6), we obtain that 

 pNG(6, 0, 6) ≤ pNG(6, 9, 9) + pNG(9, 0, 6) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 6 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 6, 4) ≤ pNG(6 ∗ 9, 6 ∗ 9, 4 ∗ 9) = pNG(6, 6, 0), we obtain that 

pNG(6, 6, 0) ≤ pNG(6, 9, 9) + pNG(9, 6, 0) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 6 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 6, 9) ≤ pNG(4 ∗ 9, 6 ∗ 9, 9 ∗ 9) = pNG(0, 6, 9), we obtain that 

 pNG(0, 6, 9) ≤ pNG(0, 9, 9) + pNG(9, 6, 9) − pNG(9, 9, 9).  

For 𝑥 = 4 , 𝑦 = 9 , 𝑧 = 6 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(4, 9, 6) ≤ pNG(4 ∗ 9, 9 ∗ 9, 6 ∗ 9) = pNG(0, 9, 0), we obtain that 

 pNG(0, 9, 0) ≤ pNG(0, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 9 , 𝑧 = 4 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 9, 4) ≤ pNG(6 ∗ 9, 9 ∗ 9, 4 ∗ 9) = pNG(6, 9, 0), we obtain that 

 pNG(6, 9, 0) ≤ pNG(6, 9, 9) + pNG(9, 9, 0) − pNG(9, 9, 9).  

For 𝑥 = 6 , 𝑦 = 4 , 𝑧 = 9 , 𝑎 = 9 , 𝑛𝑒𝑢𝑡 (𝑎) = 9; 

since pNG(6, 4, 9) ≤ pNG(6 ∗ 9, 4 ∗ 9, 9 ∗ 9) = pNG(6, 0, 9), we obtain that 

 pNG(6, 0, 9) ≤ pNG(6, 9, 9) + pNG(9, 0, 9) − pNG(9, 9, 9).  

Therefore, pNG is a NTpgM. 

 

Corollary 3.3:  

1) The NTpgMS differs from the pgMS. Because, there is not a * binary operation in pgMS. Also, trian-

gle inequalities are different in this spaces.  

2) The NTpgMS differs from the NTMS due to triangle inequalities. 

3) The NTpgMS differs from the NTgMS. Because the triangle inequality in the NTgMS differs from 

the            triangle inequality in the NTpgMS. Also, in a NTpgMS, it can be that pNG(x, x) ≠ 0. 

Theorem 3.4: Let ((𝑋,∗), pNG) be a NTpgMS and dp: 𝑋 × 𝑋 → 𝑅+ ∪ {0} be a function such that  

dp(𝑥, 𝑦) = pNG(𝑥, 𝑦, 𝑦) + pNG(𝑥, 𝑥, 𝑦). Then, dp is a NTpM.  

Proof: 

i) Since ((𝑋,∗), pNG) is a NTpgMS, it is clear that for ∀𝑥, 𝑦 ∈ 𝑋; 𝑥 ∗ 𝑦 ∈ 𝑋. 

ii) Since pNG is a NTpgMS, 0 ≤ dp(𝑥, 𝑥) ≤ dp(𝑥, 𝑦) implies that  
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0 ≤ pNG(𝑥, 𝑥, 𝑥) + pNG(𝑥, 𝑥, 𝑥) ≤ pNG(𝑥, 𝑦, 𝑦) + pNG(𝑥, 𝑥, 𝑦). 

iii) Since pNG is a NTpgMS, if dp(𝑥, 𝑥) = dp(𝑦, 𝑦) = dp(𝑥, 𝑦) = 0, then we obtain x = y. 

iv) Since pNG is a NTpgMS, we obtain 

 dp(𝑥, 𝑦) = pNG(𝑥, 𝑦, 𝑦) + pNG(𝑥, 𝑥, 𝑦) = pNG(𝑦, 𝑥, 𝑥) + pNG(𝑦, 𝑦, 𝑥) = dp(𝑦, 𝑥). 

v) We assume that there exists at least an element a ∈ 𝑋  for each x, y and z such that                                             

pNG(x, y, z) ≤ pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)). Thus, if we assume a = x, It is clear that  

dp(x, y) ≤ dp(x, y*neut(a)).  

Also, since ((X,∗), pNG)is a NTpgMS, it is obvious that            

pNG(x, y, z) ≤ pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z) − pNG(a, a, a). 

Hence, we obtain  

pNG(x, y, y) + pNG(x, x, y) ≤  

pNG(x, a, a) + pNG(x, x, a) + pNG(x, x, a) + pNG(a, y, y) + pNG(a, a, y) − pNG(a, a, a) − pNG(a, a, a).  

Thus, we have dp(x, y) ≤ dp(x, a) + dp(a, y) − dp(a, a).  

Theorem 3.5: Let ((X, *), pNG) be a NTpgMS. If for all x ∈ X,  pNG(x, x, x) = 0, then ((X, *), pNG) is a 

NTgMS. 

Proof: We suppose that (X,*) is a NTS and ((X, *), pNG) is a NTpgMS.  

i) Since ((X, *), pNG) is a NTpgMS; then for all x, y ∈ X; x*y ∈ X. 

ii) Since pNG(x, x, x) = 0, it is clear that 0 ≤ pNG(x, x, x) = 0 ≤ pNG(x, y, z). 

iii) Since ((X, *), pNG) is a NTpgMS, it is clear that if 𝑥 ≠ 𝑦, then pNG(𝑥, 𝑦, 𝑧) > 0. 

iv) Since ((X, *), pNG) is a NTpgMS, it is clear that if y ≠ z, then pNG(x, x, y) ≤ pNG(x, y, z). 

v) Since ((X, *), pNG) is a NTpgMS, it is clear that  

pNG(x, y, z) = pNG(x, z, y) = pNG(y, x, z) = pNG(y, z, x) = pNG(z, x, y) = pNG(z, y, x). 

vi) We assume that there exists at least an element 𝑎 ∈ 𝑋 for each x, y, z such that  

pNG(x, y, z) = pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)), then 

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z) − pNG(a, a, a). 

Since pNG(x, x, x) = 0, we obtain that  

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z). 

Thus, ((X, *), pNG) is a NTpgMS.  

Theorem 3.6: Let ((X,∗), dNG) be a NTgM. Then, the function pNG(x, y, z) = dNG(x, y, z) + k , k ∈ R+ is an 

NTpgMS. 

Proof: 

i) Since dNG is a NTgMS, for all x, y ∈ X; x*y ∈ X. 

ii) Since dNG is a NTgMS, we obtain dNG(x, x, x, ) ≤ dNG(x, y, z). Thus, it is clear that  

 pNG(x, x, x) = dNG(x, x, x) + k ≤ pNG(x, y, z) = dNG(x, y, z) + k. 
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iii) pNG(x, y, z) = dNG(x, y, z) + k > 0. 

iv) Since dNG is a NTgMS, if y ≠ z, then dNG(x, x, y) ≤ dNG(x, y, z). Thus, it is clear that 

pNG(x, x, y) = dNG(x, x, y) + k ≤ pNG(x, y, z) = dNG(x, y, z) + k 

v) Since dNG is a NTgMS, we obtain 

 dNG(x, y, z) = dNG(x, z, y) = dNG(y, x, z) = dNG(y, z, x) = dNG(z, x, y) = dNG(z, y, x)  . Thus, it is clear that 

dNG(x, y, z) + k = dNG(x, z, y) + k = dNG(y, x, z) + k = dNG(y, z, x) + k = dNG(z, x, y) + k = dNG(z, y, x) + k.  

Therefore, 

pNG(x, y, z) = pNG(x, z, y) = pNG(y, x, z) = pNG(y, z, x) = pNG(z, x, y) = pNG(z, y, x) . 

vi) We assume that there exists at least an  𝑎 ∈ 𝑋 for each 𝑥, 𝑦, 𝑧 ∈ 𝑋  such that 

  dNG(x, y, z) ≤ dNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)).  Thus, we obtain  

pNG(x, y, z) = dNG(x, y, z) + k ≤  

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) = dNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) + k.                          (1) 

Also, since dNG is a NTgMS, we obtain       

dNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ dNG(x, a, a) + dNG(a, y, z). Therefore, we obtain      

dNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) + k ≤ dNG(x, a, a) + k + dNG(a, y, z) + k - k.  Thus,                        

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z) − 𝑘  =  

pNG(x ∗ neut(a), y ∗ neut(a), z ∗ neut(a)) ≤ pNG(x, a, a) + pNG(a, y, z) − pNG(a, a, a).                                    (2) 

From (1) and (2), this condition is hold. 

In this case, ((X,∗), pNG) is called a NTpgMS. 

Corollary 3.7: A NTpgMS can be obtained from a NTgMS. 

Definition 3.8: Let ((X, *), pNG) be a NTpgMS and {𝑥𝑛} be a sequence in this space. A point x ∈ X is said 

to be the limit of the sequence {𝑥𝑛} , if lim
𝑛,𝑚 →∞

pNG(𝑥, 𝑥𝑛 , 𝑥𝑚) − pNG(𝑥, 𝑥, 𝑥) = 0 and {𝑥𝑛} is called a NT                

pg – convergent to x. 

Definition 3.9: Let ((X, *), pNG) be a NTpgMS and {𝑥𝑛} be a sequence in this space. {𝑥𝑛} is called a NT         

pg – Cauchy sequence if there exists at least a x ∈X such that  lim
𝑛,𝑚,𝑙 →∞

pNG(𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙) − pNG(𝑥, 𝑥, 𝑥) = 0.  

Definition 3.10: Let ((X, *), pNG) be a NTpgMS. If every {𝑥𝑛} NT pg - Cauchy sequence is a NT                        

pg - convergent, then ((X, *), pNG) is called a NT complete NTpgMS. 

 

Conclusion  

In this study we first obtained NTpgMS. We show that NTpgMS is different from pgMS, NTgMS and 

NTMS. Also, we show that a NTpgMS will provide the properties of a NTgMS under which condi-

tions are met. Thus, we added a new structure to neutrosophic triple structures. Also, thanks to neu-

trosophic triplet partial g – metric space, researchers can obtain new fixed point theorems for neutro-

sophic triplet theory and neutrosophic triplet partial g - normed space, neutrosophic triplet partial g – 

inner product space. 
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Abbreviations 

gM: g - metric 

gMS: g - metric space 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NTpM: Neutrosophic triplet partial metric 

NTpMS: Neutrosophic triplet partial metric space 

NTgM: Neutrosophic triplet g - metric  

NTgMS: Neutrosophic triplet g - metric space 

NTpgM: Neutrosophic triplet partial g - metric  

NTpgMS: Neutrosophic triplet partial g - metric space 
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