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Abstract

This is a guide to getting started in R. First, basic file commands and R conventions are reviewed.
Second, elementary statistical operations are illustrated. Third, the use of graphics packages are demon-
strated. Fourthly, data creation, import, and manipulation are discussed. Finally, the use of editors,
GUIs, and other R functions are briefly presented.

This material was developed for the “Introduction to R” workshop, presented with Harrison Dekker,
at the TASSIST Annual Conference, May 31, 2011, held in Vancouver, Canada.

1 Preliminaries

This document presents illustrative examples of R code. A file (Intropduction to_R.R) containing the R
commands necessary to reproduce the results is available on my [personal home page. This may be useful
for executing commands via cut-and-paste, or for review. This workshop presents a compressed version of
material used in my three-part workshop series at Rutgers. If you are interested in reviewing the longer
version, see my R Libguidel

There are many useful references to R, but this document in particular relies on the author’s study of
three books, R for SAS and SPSS Users (Mue09)), Data Manipulation with R (Spe08), and Introductory
Statistics with R (Dal08). In addition, the books ggplot2: Elegant Graphics for Data Analysis (Wic09) and
Lattice: Multivariate Data Analysis with R (Sar08) provide comprehensive descriptions of their respective
graphics packages, written by the authors of the packages themselves.

If you do not already have R, obtaining and installing it is easy. Since R is open source software,
licensed under the GPL, you can use it freely for just about anything except creating closed source software.
Information about R is available at the R project site, and the software itself is downloadable from (CRAN|
the Comprehensive R Archive Network, comprised of synchronized mirror sites around the world. Also, the
freedom of open source means that you can install R in as many locations as you like: all of your public
workstations, your web servers, your home machines, your netbook,USB drives, your friends’ machines, ...
you get the idea.

You can download Windows, Linux, or Mac versions. The Windows version of the base package is a
self-contained executable containing all necessary files to get your R installation running. The contrib
package contains additional modules, or packages, as they are known in R parlance. It is usually easier to
download and install packages individually as you need them, as explained below.

In Linux, it is possible to install R from source, but it will usually be more convenient to wait for the
latest version to be packaged for release in a major Linux distribution, such as Ubuntu or Fedora, and to
download and install it using that distribution’s tools. This simplifies the resolution of dependencies and
staying current with updates. Rpms and .deb files are also available from CRAN, but may not always be in
sync with the latest R version.

The Mac version is also available at CRAN as a downloadable package, although the author has little
experience with it.


http://www.rci.rutgers.edu/~rwomack/Introduction_to_R.R
http://libguides.rutgers.edu/content.php?pid=115296&sid=1208422
http://www.gnu.org/licenses/gpl.html
http://r-project.org
http://cran.r-project.org
http://personal.bgsu.edu/~mrizzo/Rmisc/usbR.htm

2 Getting Around in R

Once you have installed R, you are ready to run it: in Windows by clicking the R icon, or in Linux by
simply typing R at the terminal prompt. Now you are presented with the most challenging part of your R
experience, the empty command line. What to do?

You can operate R entirely from the command line, entering text in interactive mode. R is a full
statistical programming environment, and some of its greatest power comes from writing longer programs
that automate complex processes and can be run on demand. There are also optional GUIs that run on top
of R, providing a feel closer to software such as SPSS, but navigating the command line is the fundamental
way of interacting with the software. For now, let’s try typing some commands.

There are a few basic commands that will help you navigate your workspace. First, let’s find out where
we are.

Type
> getwd ()
[1] "/home/ryan/Desktop/2011"

This command will show you the default path for your R files.
Now type getwd, this time without the parentheses.

> getwd

function ()
.Internal(getwd())
<environment: namespace:base>

What you see now is the actual definition of the function in R. This is a nifty feature that gives you
a clue to one of the primary characteristics of R. It is simple yet powerful at the same time. Typing any
function name without its arguments will return the function itself. This becomes more interesting as you
access functions created by other contributors in their packages, and can see exactly how their tools work.
And you can use this functionality to easily modify existing functions and create your own. Any arguments
to a function are enclosed within parentheses. With nothing inside the parentheses (), R will use the default
values and settings for the function.

Note that R is case-sensitive so

> Getwd()

will not work.

If you type getwd( without closing the parentheses, you’ll notice that the > symbol changes to a + and
nothing else happens. Commands can be entered over multiple lines. Since the original command was not
completed, the + indicates that R is waiting for you to type something to complete a command. This often
happens if the final parenthesis is missed. Just type ) to complete the command, and you’ll be on your way.

We can perform mathematical operations in R with the usual operators.

> 2+ 2
[1] 4
We can also create and modify our own functions. For a simple and silly example of this, see the following;:

> funkyadd <- function(x, y) {
+ x+ty+1

+ }

> funkyadd (2, 2)

[1]1 5



The curly brackets enclose the actual functional expression. Once defined, the function can be reused
just as though it were part of the base R system.
You can change the working directory by typing

> setwd("pathname")

Within R, lots of Unix conventions are used, so paths are specified with a single forward-slash separator,
even on Windows systems. So setwd("C:/Documents and Settings/username/My Documents") would be
used to point to the My Documents directory in Windows.

You can list the objects in your workspace with 1s(), and remove them with rm("objectname"). Notice
that we don’t have much in our workspace yet, but we will after we have created some objects.

We have mentioned packages in passing already. Packages are add-ons or extensions to R’s functionality.
The base R installation will let you perform most basic statistical and graphing operations, but the real power
of R lies in the over 3000 packages distributed on CRAN (the number of packages is expanding virtually
exponentially). These packages provide ready-to-use implementations of all kinds of statistical methods,
representing the latest research and specialized techniques. Because of R’s open source nature, anyone can
create a package, and once checked for basic quality standards, the package can be distributed worldwide on
CRAN. This rapid adaptability is one reason for R’s success in the research community.

In order to use a package, you must install it. Let’s do this for some packages that we will need later.

install.packages("Hmisc")
install.packages("foreign")
install.packages ("ISwR")
install.packages("gdata")
install.packages ("Rcmdr")
install.packages("lattice")
install.packages ("ggplot2")
update.packages ()

V V.V VvV Vv Vv V.YV

R will ask us which mirror we want to use. Choose your favorite country (if you want speed, choose
Canadal). The dependencies=TRUE option will check for other packages that your package needs and install
those too. You probably want to do this, unless you are really fine-tuning your system or are a control freak!
But for today we will leave it out just to save some setup time. The final call to update the packages is
how you would maintain your system on a regular basis. This is much less time-consuming than the inital
installation. Empty parentheses will update all installed packages.

R will automatically locate packages that have been officially accepted into CRAN without trouble at
all. Also, since R is flexible and powerful, it is also relatively easy to create your own packages with your
own custom functions and data included, which you might distribute locally. For local packages, you’d have
to specify an explicit path to where R could find the package.

You can type library() to see all of the available packages that have been installed on your system.
The search() command will show what has been actively loaded in your current environment.

To load a specific package, use the library command again, but with an argument this time. We can now
see that it is loaded with search(). The order of packages listed by the search command is the order in
which the packages will be searched when a command is entered.

> library()
> library("ISwR")
> search()

[1] ".GlobalEnv" "diamonds" "cystfibr"

[4] "package:foreign" "diamonds" "package:ggplot2"
[7] "package:proto" "package:grid" "package:reshape"
[10] "package:plyr" "package:lattice" "cystfibr"

[13] "package:ISwR" "package:stats" "package:graphics"
[16] "package:grDevices" '"package:utils" "package:datasets"
[19] "package:methods" "Autoloads" "package:base"



To get help in R about a particular function or object, use the question mark. This will access a complete
functional reference or description of an object. Try ?library as an example. To launch the interactive help
system, allowing you to search help, browse functions, and read manuals, type help.start().

Finally, even though we haven’t yet created any data or output worth saving, we can learn how to
save and load our workspace. A simple save("objectname", file="yourfilename") command will save
a single item from a workspace (for example, a matrix that you created). To save the entire workspace, use
the save.image command. One of the very useful features of R is the ability to save not only data and
output files, but to save all functions and intermediate objects created in the course of a session as part of
the workspace. A complete workspace of this kind is usually saved with the extension .RData. The load
command loads a previously saved object.

> save.image("mydata.RData")
> load("mydata.RData")

3 Statistical Functions

The data files used in this section are part of the “ISwR” package that accompanies Introductory Statistics
with R (Dal08). This is the package we just loaded in the example above.

> library("ISwR")
> ~7°(ISwR)

No documentation for 'ISwR' in specified packages and libraries:
you could try '??7ISwR'

> data()
> library(help = ISwR)

Notice that ISwR doesn’t have any associated help file, but we can see that there are many datasets
included in it by executing the data() command or library(help=packagename).

R can easily produce summary statistics. To illustrate this, let’s load a particular dataset. We do this
with the data command. We will use the cystfibr dataset from ISwR, which contains data on lung function
in cystic fibrosis patients from a medical study. In a well-documented package, like ISwR, we can find this
out by typing ?7cystfibr. This is another example of R’s ability to package data and supporting data and
documentation in a single, easy-to-distribute file.

Next we run the summary command to get a quick overview of the dataset.

> data(cystfibr)
> 7 (cystfibr)
> summary (cystfibr)

age sex height weight bmp
Min. : 7.00 Min. :0.00 Min. :109.0 Min. :12.9 Min. :64.00
1st Qu.:11.00 1st Qu.:0.00 1st Qu.:139.0 1st Qu.:25.1 1st Qu.:68.00
Median :14.00 Median :0.00 Median :156.0 Median :37.2 Median :71.00
Mean :14.48 Mean :0.44 Mean :152.8 Mean :38.4 Mean :78.28
3rd Qu.:17.00 3rd Qu.:1.00 3rd Qu.:174.0 3rd Qu.:51.1 3rd Qu.:90.00
Max. :23.00 Max. :1.00 Max. :180.0 Max. :73.8 Max. :97.00

fevl rv frc tlc pemax
Min. :18.00 Min. :168.0 Min. :104.0 Min. : 81 Min. : 65.0
1st Qu.:26.00 1st Qu.:188.0 1st Qu.:127.0 1st Qu.:101 1st Qu.: 85.0
Median :33.00 Median :225.0 Median :139.0 Median :113 Median : 95.0
Mean :34.72 Mean :255.2 Mean :155.4 Mean :114 Mean :109.1
3rd Qu.:44.00 3rd Qu.:305.0 3rd Qu.:183.0 3rd Qu.:128 3rd Qu.:130.0
Max. :57.00 Max. :449.0 Max. :1268.0 Max. 1147 Max. :195.0



It is easy to run basic descriptive statistics in R. For example, to get the mean of a variable like age in
this dataset, just type mean(cystfibr$age), using the $ notation to refer to age in the cystfibr object.
Note that if we type mean(age), we get an error. Since R can handle multiple datasets and objects in its
workspace at once, it does not make assumptions about what you might want. But to make things easier,
we can use the attach function as follows to specify the default dataset. Now our shorthand works, and will
continue to work until we detach the dataset.

> mean(cystfibr$age)
[1] 14.48
> attach(cystfibr)

The following object(s) are masked from 'cystfibr (position 4)':

age, bmp, fevl, frc, height, pemax, rv, sex, tlc, weight
The following object(s) are masked from 'cystfibr (position 13)':

age, bmp, fevl, frc, height, pemax, rv, sex, tlc, weight
The following object(s) are masked from 'package:ISwR':

tlc
> mean (age)
[1] 14.48

There are also techniques for breaking down results by group. The by function is one easy way to do this.
It takes three arguments: the dataset, the variable to group by, and the function to apply. So, the following
will give us two separate summaries (0 is male, 1 is female):

> by(cystfibr, cystfibr["sex"], summary)

sex: 0
age sex height weight bmp
Min. : 7.00 Min. :0 Min. :109.0 Min. :13.10 Min. :64.00
1st Qu.: 9.75 1st Qu.:0 1st Qu.:134.0 1st Qu.:22.40 1st Qu.:68.25
Median :15.50 Median :0 Median :165.5 Median :43.65 Median :78.50
Mean :15.21 Mean :0 Mean :155.9 Mean :41.36 Mean :79.71
3rd Qu.:19.75 3rd Qu.:0 3rd Qu.:174.8 3rd Qu.:53.73 3rd Qu.:92.00
Max. :23.00 Max. :0 Max. :180.0 Max. :73.80 Max. :97.00
fevl rv frc tlc

Min. :22.00 Min. :171.0 Min. :104.0 Min. : 95.0

1st Qu.:33.25 1st Qu.:184.8 1st Qu.:127.8 1st Qu.:101.5

Median :38.50 Median :215.0 Median :135.0 Median :106.0

Mean :39.86 Mean :234.9 Mean 1148 .4 Mean :113.6

3rd Qu.:48.00 3rd Qu.:249.8 3rd Qu.:153.2 3rd Qu.:125.5

Max. :57.00 Max . :441.0 Max . :268.0 Max. :147.0

pemax

Min. : 70.0

1st Qu.: 95.0

Median :100.0

Mean :117.5

3rd Qu.:152.5

Max. :195.0



sex: 1

age sex height weight bmp
Min. : 7.00 Min. 01 Min. :112.0 Min. :12.90 Min. :165.00
1st Qu.:11.50 1st Qu.:1 1st Qu.:144.5 1st Qu.:29.55 1st Qu.:67.50
Median :14.00 Median :1 Median :153.0 Median :34.80 Median :70.00
Mean :13.55 Mean 01 Mean :148.8 Mean :34.64 Mean 176.45
3rd Qu.:16.50 3rd Qu.:1 3rd Qu.:157.0 3rd Qu.:39.65 3rd Qu.:89.50
Max. :19.00 Max. 01 Max. :176.0 Max. :60.10 Max. :93.00

fevl rv frc tlc pemax
Min. :18.00 Min. 1158 Min. :118.0 Min. : 81.0 Min. : 65.00
1st Qu.:22.00 1st Qu.:210 1st Qu.:126.5 1st Qu.:102.0 1st Qu.: 85.00
Median :28.00 Median :253 Median :146.0 Median :120.0 Median : 90.00
Mean :28.18 Mean 1281 Mean :164.3 Mean :114.5 Mean : 98.45
3rd Qu.:30.00 3rd Qu.:337 3rd Qu.:194.5 3rd Qu.:127.0 3rd Qu.:115.00
Max. :45.00 Max. 1449 Max. :245.0 Max. :136.0 Max. :134.00

A final basic descriptive function is the table function. With one argument, it simply reports frequences.
Two arguments generates a cross-tabulation, and three or more arguments will represent output broken down
into multiple tables.

> table(sex)

sex
0 1
14 11

> table(age, sex)

sex
age 01
7T 11
8 21
9 10
1101
1211
1311
1411
150 1
16 0 1
17 2 2
1911
2010
2330

> table(height, age, sex)

3.1 Statistical Tests

Manipulating data, formatting tables, and tweaking graphics output can all be somewhat complicated in R,
as shown elsewhere in these sessions. But, for the most part, the application of statistical tests is quite easy
and straightforward. After all, this is what R was built to do. In most cases, all we need to do is find R’s
name for the function that applies a particular test. The function can be run without any parameters to
produce sensible default output, or it can be tweaked via the specification of those parameters.

Let’s try this for a one-sample ¢ test. We won’t go into any discussion of the statistics behind the ¢ test
or when it is valid. We’ll just use it to illustrate how R works. The R function is simply t.test.



> t.test(pemax)

One Sample t-test

data: pemax
t = 16.3173, df = 24, p-value = 1.713e-14
alternative hypothesis: true mean is not equal to 0O
95 percent confidence interval:
95.31792 122.92208

sample estimates:
mean of x

109.12

> mean (pemax)
[1] 109.12
> t.test(pemax, mu = 100)

One Sample t-test

data: pemax
t = 1.3638, df = 24, p-value = 0.1853
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
95.31792 122.92208

sample estimates:
mean of x

109.12

In this data, pemax is the “maximum expiratory pressure”’, a measure of lung capability. The default
t.test checks whether pemax is significantly different than zero, which it clearly is in this case. Since the
mean of pemax is 109.12, it might make more sense to test something closer to that. By specifing mu, we
provide the value to test for. In this case, the true mean of pemax could be 100, since 100 lies within the
confidence interval. An alternative method of specifying the t.test is to use the conf.level argument.

> t.test(pemax, mu = 90, conf.level = 0.99)

One Sample t-test

data: pemax
t = 2.8591, df = 24, p-value = 0.008651
alternative hypothesis: true mean is not equal to 90
99 percent confidence interval:
90.4158 127.8242

sample estimates:
mean of x

109.12

This tests whether 90 is within the 99% confidence interval for pemax, which it is not (just barely!).
Other tests of this type work in the same way. You can use the Wilcoxon signed rank test, for example, with
similar arguments, by using the R function wilcox.test. Or you can apply tests like Fisher’s and x? with
commands like fisher.test and chisq.test.

It is easy to use the built-in help to inspect the parameter options for functions. Simply type ?functionname,
e.g., 7chisq.test.



3.2 Regression

Regression is also easy to apply in R. Simple linear regression is handled by the 1m function (think linear
model). Again, use the ~ operator. The basic form is Im(x~y) where x is the dependent and y is the
independent variable (x is a function of y). Let’s try it out on pemax as a function of tlc, total lung
capacity.

> 1m(pemax ~ tlc)

Call:
Im(formula = pemax ~ tlc)

Coefficients:
(Intercept) tlc
149.9191 -0.3579

Note that the default output is scanty, providing us only with the coefficients of the equation. The rest
of the information is there, waiting to be extracted. One way to do this is with the summary function. We
can also easily store our regression output for further manipulation.

> summary(1lm(pemax ~ tlc))

Call:
Im(formula = pemax ~ tlc)

Residuals:
Min 1Q Median 3Q Max
-42.331 -20.541 -6.246 16.943 81.227

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 149.9191 46.5501 3.221 0.00379 **
tlc -0.3579 0.4041 -0.886 0.38493

Signif. codes: 0 ‘**x”> 0.001 ‘*%> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 33.59 on 23 degrees of freedom
Multiple R-squared: 0.03298, Adjusted R-squared: -0.00906
F-statistic: 0.7845 on 1 and 23 DF, p-value: 0.3849

> regoutput <- Im(pemax ~ tlc)
> names (regoutput)

[1] "coefficients" "residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

> regoutput$residuals

1 2 3 4 5 6 7

-5.888596 -16.962258 2.690275 -20.541129 -17.698871 -27.688452 -42.330564

8 9 10 11 12 13 14

-3.056758 -34.109580 -6.246483 -5.919855 -16.614790 -11.267323 -37.709291

15 16 17 18 19 20 21

20.227467 27.027323 51.943242 16.606194 16.943242 -35.930275 -28.772533
22 23 24 25

58.3956630 50.153806 -14.477887 81.227467



The names command shows us the component objects in the regression output, which can then be
individual displayed or manipulated.

There are lots of other built in functions for working with regression output in R, like predict, anova,
cor.test, and more.

We can also plot our regression output, which produces four default graphics: a plot of residuals vs.
fitted output, a Q-Q plot, a scale-location plot, and a residuals vs. leverage plot.

> plot(regoutput)
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Let’s leave further discussion of graphics to the next section.
We can also perform multiple regression. This is as simple as adding additional arguments to the regres-
sion function, as follows:

> summary(lm(pemax ~ tlc + age + sex))

Call:
Im(formula = pemax ~ tlc + age + sex)

Residuals:
Min 1Q Median 3Q Max
-55.310 -12.248 6.415 17.037 47.612

Coefficients:



Estimate Std. Error t value Pr(>|tl)
(Intercept) 25.4115 54.3429 0.468 0.64488

tlc 0.2435 0.3704 0.657 0.51810
age 4.2342 1.2696  3.361 0.00295 *x*
sex -12.1769 11.1098 -1.096 0.28547

Signif. codes: 0 ‘**x? 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 27.13 on 21 degrees of freedom
Multiple R-squared: 0.4238, Adjusted R-squared: 0.3415
F-statistic: 5.149 on 3 and 21 DF, p-value: 0.007968

As you might expect, there are also methods for stepwise regression, logistic regression, and essentially
any methodology you might care to apply. But we will stop here. This is, after all, only an introduction!

4 Graphics: three methods

Only a few of the graphs generated by the code are included in this PDF, in order to keep the file size down.
Run the code on your own to view all of the examples.

Base R has the graphics package built in. This package is powerful enough to create many kinds of
graphical output, but it requires the explicit passing of many parameters to accomplish tasks. You must
state what you want to draw and where to draw it. Complex plots can be built up in layers using the results
from several different programming steps. This can be an advantage or a disadvantage, depending on the
situation. The creation of multi-panel comparison graphs using graphics can be cumbersome.

The lattice package makes the creation of multi-panel graphs easy. It also implements more sophisti-
cated management of parameters and default settings, with the result that “pretty” output is usually easy
to obtain.

The ggplot2 package incorporates some features of lattice, and applies the Grammar of Graphics ap-
proach to creating graphics (Wil05)). This approach breaks the creation of the graphic into conceptual parts.
The language used to create the graphic on the computer mirrors the logical process of converting data to
visualization. As applied in ggplot2, this approach leads to graphics that are easier to program and modify
than the default approach. And yes, ggplot2 is a revision of the original ggplot. Because the names of the
graphics commands in each of these packages are different, it is possible to load them simultaneously and
invoke selected commands from each package according to the task at hand.

This section will provide representative illustrations of these three techniques. Note that these are in
no way exhaustive. R is noted for its power and flexibility in graphical output, and there are many other
different packages and approaches to creating graphs. A good place to explore more is the R Graph Gallery
at the Addicted to R website, which contains both sample graphs and R code examples.

4.1 Base graphics

For our initial examples, we will use the diamond dataset in ggplot2. Load it and take a look at the
description of variables, including carat, cut, colour, clarity, and price. Note that this dataset has more than
50,000 observations. We will see that R handles this amount of data with ease.

library(lattice)
library(ggplot2)
data(diamonds)
*?" (diamonds)
attach(diamonds)

vV V. Vv Vv Vv

The following object(s) are masked from 'diamonds (position 4)':

carat, clarity, color, cut, depth, price, table, x, y, z

10


http://addictedtor.free.fr/graphiques/

The following object(s) are masked from 'diamonds (position 7)':

carat, clarity, color, cut, depth, price, table, x, y, z

For convenience, we attached the dataset so that we do not have to worry about explicitly calling the
dataset at all times.

Now let’s investigate our data by plotting a scatterplot. We check price versus carat (weight). In
graphics, the command is simply plot.

> plot(price ~ carat)
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If we want to plot our data, then draw a regression line on top, this is accomplished in two steps. The
abline function draws a straight line. Note that we can include an R function (1m) as a argument to the
abline function. Additional steps are layered on top of the original plot. If you make a mistake, you must
start again: there is no way to erase a line.

> plot(price ~ carat)
> abline(lm(price ~ carat), col = '"red")

11



& o o
° o
o o
o
o o o ° o
o o
o — ° o
9 0
o
g ©
° o
o
o 8 %
o o — oo
.:8
o
o
o
o
o _|
o
Lo
o_
I I I
1 2 3 4 5

carat

If we want to dress up our graph by labeling axes, changing colors, and such, this can be accomplished
by setting various parameters. See the following example:

> plot(price ~ carat, col = "steelblue", pch = 3, main = "Diamond Data",
+ xlab = "weight of diamond in carats", ylab = "price of diamond in dollars",
+ x1im = c(0, 3))

4.2 lattice

While the lattice package can replicate most of the graphs we have already seen, it excels at something that
is difficult to do without manipulating data in base graphics: lattice makes it easy to produce multiple
graphs based on grouping characteristics. For example, the scatterplot syntax in lattice is quite similar to
base graphics, but we can use | to condition our graph on any variable. We can even get quite elaborate by
also using the groups option, which plots points differently by group. It can even do this in three dimensions
with cloud.

> xyplot(price ~ carat | clarity)
> xyplot(price ~ carat | cut, groups = clarity, auto.key = list(space = "right"))
> cloud(price ~ carat * table | clarity)

4.3 ggplot2

The ggplot2 package is versatile, and can produce many kinds of graphs, including grouped output similar
to lattice. It cannot, however, produce 3D plots at this time. Where ggplot2 differs is in its unique
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syntax, that exploits the “Grammar of Graphics” to break commands into different conceptual components
(aesthetics, geometries, scales, coordinates, options, etc.). This enables modifications to be easily made to
one aspect of the graph without affecting the rest. This is a bit difficult to understand in the abstract, so
let’s look at some examples, starting with a bar chart. Here aes specifies the data set and x-axis variable
and geom_bar tells ggplot2 to draw a bar chart. Options that affect one component are enclosed in the
parentheses for that part.

> ggplot(diamonds, aes(cut)) + geom_bar(position = "stack")
> ggplot(diamonds, aes(clarity)) + geom_bar(position = "stack")
> ggplot(diamonds, aes(clarity)) + facet_grid(. ~ cut) + geom_bar(position = "dodge")

Note the use of the facet_grid argument in the final example. And this example illustrates drawing a
regression line:

> print (ggplot (diamonds, aes(carat, price)) + geom_point() + geom_smooth(method = 1m))
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For a fully “tweaked” graph in ggplot2, see the following example. Note the new labs and opts parameters
being specified. Also, geom_point () is the way to specify a scatterplot in the general ggplot function.

> ggplot(diamonds, aes(carat, price)) + x1im(0, 3) + geom_point(colour = "steelblue",
+ pch = 3) + labs(x = "weight of diamond in carats", y = "price of diamond in dollars") +
+ opts(title = "Diamond Data")
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4.4 Exporting graphical output

Creating presentation-ready graphs for insertion into documents is really quite easy in R. While the default
graphical output is routed to the screen, it is simple to turn on a graphics device that routs output to a
file. Any graphics calls will then create file output until this feature is explicitly turned off. The files can
be PDF, PNG, JPG or other formats that can be easily inserted into documents. Also, if you are writing
documents using Sweave, you can automatically include graphics output. This document was written using
that capability in Sweave.

Here’s how you would create PDF output:

> pdf(file = "output.pdf")

> xyplot(price ~ carat | clarity)

> xyplot(price ~ carat | cut, groups = clarity, auto.key = list(space = "right"))
> cloud(price ~ carat * table | clarity)

> dev.off ()

X1lcairo
2

You will get a sometimes cryptic confirmation message that the graphics output device has been turned
off. Once you have executed the code, check your home directory to see the PDFs there. Note that ggplot2
also has an explicit ggsave function that can export a graphic in a single step.

That concludes this brief introduction to R graphics. Now let us turn to data manipulation techniques.

5 Data Manipulation

This section is all about getting data into R and transforming it so that it is suitable for analysis. As in
other sections, we will give illustrative examples, but often skim over some of the details of the code. Again,
the more detailed modules at the RutgersR Libguideprovide a lengthier explanation.

Let’s create a small practice dataset to get our feet wet. Base R has a bare bones data editor and viewer.
If you need more functionality in this area, some of the add-on GUIs and editors for R will let you do much
more (RCmdr, Deducer, RKWard). In Windows, you can use the Data Editor from the menu. Or, we can
start the data editor from the command line. To do this, we must first create the data object that we will
edit. Here’s how we do it:

> testdata <- data.frame()
> testdata

data frame with 0 columns and O rows

We are telling R to create an object called testdata. The arrow (composed by typing the less-than
sign and a hyphen) is the “assignment” operator and assigns to testdata the value of whatever comes after
the arrow. You can reverse the arrows direction, or use the equals sign. However, the arrow is preferred in
R because there are a few situations where the equals sign is syntactically ambiguous. The equals sign is
routinely used for setting parameter values in functions, as you can see from the above example. So, stick
with the <- arrow for assignment, unless you find it too troublesome. Here, we set up testdata as a data
frame.

By typing testdata at the end, we are actually issuing a command equivalent to print(testdata).
Rather than typing print (testdata), we just use the name as a shortcut.

A data frame is a special data construct in R, and is the closest equivalent to the typical rectangular
dataset produced by SAS or SPSS typically used for social science data. In R, the columns are called vectors,
variables, or just columns, while the rows are cases, observations, or just rows. But in R, the data frame is
only one of many data types.

The class of an object describes its structure. A wvector is a one-dimensional list of entries of the same
mode, and can be of arbitrary length. R will automatically set the vector to the least restrictive mode.

14


http://libguides.rutgers.edu/content.php?pid=115296&sid=1208422

So, mytest<-c("M", 1, 3) has mode “character”. Other classes are list, a group of objects that can be of
different modes; matriz, an object of dimension dim(x,y) whose elements must be of the same mode; and
array, which is like a data frame but in higher dimensions. Now we can be more precise about a data frame
too. The data frame is an object of dimension dim(x,y), whose elements can be of different modes, but whose
rows all have the same length. Although this variety is initially a bit confusing, the ability to manipulate
many different kinds of data objects in the R workspace is another source of R’s power.

Let’s fill in our data frame in the editor. Just experiment with typing in data, then close the editor. If
you type testdata again, you will see the data you entered.

Essentially these data structures behave as you would expect, and R will gracefully handle many of the
details automatically. Unlike other software, R does not mask these complexities entirely, and you will need
to keep in mind that certain operations will only work with certain data structures. An understanding of
data structures will help you to design and debug your R programs.

5.1 Importing and Converting Data

If the only way to get data was to type it in manually, we wouldn’t get very far. Fortunately R provides
convenient ways of importing data in a variety of formats.

The read.table command is the Swiss army knife of file importing in R, and can handle any kind of
delimited file. In its simplest form, read.table needs only a filename as an argument. In the following
examples, we access some sample data files using a complete URL in the read command.

> importdata <- read.table("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/myfile.txt")

However, this will only work correctly if all of the default assumptions are met. R will correctly read
a tab or space delimited file that has variable names in the header row and a first line with a length one
shorter than subsequent lines (that is, a single blank cell in the upper left hand corner of the matrix). The
default representation for a missing value is NA, and R will not correctly read SAS or SPSS files that use
two consecutive tabs to represent a missing value.

We can enter parameters to the command to adjust for any unique characteristics of our data. For
example,

> importdata2 <- read.table("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/myfile2.txt",
+ header = TRUE, sep = ";", row.names = "id", na.strings = "..",
+ stringsAsFactors = FALSE)

This tells R to read a data file with a header row and semi-colon separated data. R will use the variable
named “id” as the identifier for the rows in the R data frame. R will convert the .. characters in the original
data to NA in R. We can also use parameters to force the reading of certain variables as characters or
integers. Here we tell R not to convert strings into factors. In general, that is a good idea for things like
names and addresses, where there is no real use for the “levels” that a factor representation of the variable
would generate.

There are also functions read.csv, read.delim, read.csv2 (for euro-style separators (; and . replacing
, in numbers) with reasonable default values for typical files in these formats. There is no difference between
these functions and read.table, except that using them saves the entry of several extra parameter options.
Also, note that you can access data placed on the clipboard with read.table("clipboard", header=T).

When you are ready to export data from your R environment, you can use write.table, write.csv,
and so on. These functions have all the same parameters as their read versions, but create delimited tables.

R also has a package called foreign which eases working with other data formats, such as SAS, SPSS,
and Stata.

Here is an example of importing a SAS file, then an SPSS file. The documentation| for foreign explains
further options. We are also detaching the package once we are finished using it, just to keep our workspace
tidy and avoid potential function conflicts. Note that for the SAS file, we have to do some things differently
in order to import the file correctly. This cannot be handled in one step. We use download.file to bring
the file into the local workspace, setting the parameter mode="wb", which indicates we are downloading a
binary file. There is a warning when importing the SPSS file, since not all of the attributes of an SPSS file
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are specified in the simplified example file used here. But the data is imported correctly. Note how the SPSS
import differs in structure from SAS and other formats.

library(foreign)

download.file("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/mydata.xpt",
"mydata.xpt', mode = "wb'")

importdata3 <- read.xport("mydata.xpt')

importdata4 <- read.spss("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/mydata.sav")

detach (package:foreign)

vV VvV + Vv Vv

For further examples, you can try using the foreign package on any ICPSR dataset of your choosing, or
try the Pew Foundations free SPSS data downloads|

Just as in the case of read.table and write.table, foreign allows you to write datasets in other
formats using the write.foreign command.

Finally, for working with Excel files, there are additional packages; x1sx for Excel 2007 and later formats
(XML-based .xlsx), and x1lsReadWrite for earlier formats (.xls). Note that due to software limitations,
x1sReadWrite is available for Windows only. The package gdata can import both .xlsx and .xls files, using
the command read.x1s for both file formats. The number in the read command refers to the sheet from
the Excel spreadsheet that will be read to create the data frame. See |"Reading Excel spreadsheets"| for
additional advice. The following example uses gdata to import two Excel files.

> library(gdata)

> importdatab <- read.xls("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/mydata.xlsx",
+ 1)

> importdata6 <- read.xls("http://www.rci.rutgers.edu/ rwomack/R/Spring2011/mydata.xls",
+ 1)

> detach(package:gdata)

5.2 A Few Data Manipulation Techniques

For these examples, we will use live data from the World Bank Open Datasite. For this workshop, we’ll treat
the initial download and processing of the data as a canned example and just execute the code. Again, consult
the R Libguide for step-by-step explanations. We will use two of these datasets, Gender Statistics and the
Millenium Development Indicators (MDI). In our example, we can think of a researcher who is interested in
isolating variables associated with fertility and gender differences and comparing them with indicators of the
availability of modern communications technology. For now, this researcher is only interested in the three
most populous countries in the world: China, India, and the United States. We will create a customized
data extract to meet these needs.

Note that for the World Development Indicators, there is a special R package, WDI, that simplifies the
process of extracting data from this source. We will, however, use the generic methods in R that will work
for any sort of data set.

download.file("http://databank.worldbank.org/databank/download/Gender_Stats_csv.zip",
"Gender.zip")

unzip ("Gender.zip")

genderstats <- read.csv("Gender_Stats_Data.csv")

download.file("http://databank.worldbank.org/databank/download/MDG_csv.zip",
"MDI.zip")

unzip("MDI.zip")

MDstats <- read.csv("MDG_Data.csv")

V V. + VvV VvV Vv + VvV

5.2.1 Subset and Select

In order to create a subset of our data, use the subset command. We will use the logical operator ==
to represent equality. The double equal distinguishes it from the use of = as an assignment in R, and
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is a persistent source of typos in code! Other logical operators are and (&), or (]), not(!), and the usual
>, <,>=,<=, and not equal to (!=). We’ll create a subset of the gender data and a subset of MDI data, and
assign those subsets to new objects as follows. The table command lets us check the results.

> gscountry <- subset(genderstats, Country_Name == "China" | Country_Name ==
+ "India" | Country_Name == "United States')

> MDcountry <- subset(MDstats, Country.Name == "China" | Country.Name ==

+ "India" | Country.Name == "United States")

> table(gscountry$Country_Name)

> table(MDcountry$Country.Name)

Notice that since all of the levels are inherited from the parent object, the names of all other countries
are still present, but with 0 data elements. In general, this won’t cause any harm.

Now we will further refine our subsets by selecting a few variables of interest, while at the same time
limiting the number of years that we want the data for. Using subset in combination with select allows
us to do both at once.

> myMDI <- subset(MDcountry, Series.Name == "Mobile cellular subscriptions (per 100 people)" |
+ Series.Name == "Internet users (per 100 people)", select = c(Country.Name,
+ Series.Name, X2000:X2008))
> myMDI

Country.Name Series.Name X2000
3458 China Mobile cellular subscriptions (per 100 people) 6.7524918
3511 India Mobile cellular subscriptions (per 100 people) 0.3521030
3628 United States Mobile cellular subscriptions (per 100 people) 38.7983329
3897 China Internet users (per 100 people) 1.7819736
3950 India Internet users (per 100 people) 0.5413796
4066 United States Internet users (per 100 people) 43.9448280

X2001 X2002 X2003 X2004 X2005 X2006 X2007

3458 11.3865629 16.089112 20.952576 25.833690 30.175652 35.167883 41.529116

3511 0.6334303 1.239700 3.165168 4.836434 8.235100 14.962005 20.770155

3628 45.0747504 49.269642 55.329868 63.068258 72.019557 80.979795 87.207374

3897 2.6496835 4.615745 6.170444 7.252667 8.579043 10.601042 16.130450

3950 0.6779836 1.581094 1.736192 2.037563 2.466693 2.901395 4.089663

4066 50.0989217 60.052769 63.100013 66.255455 69.573900 70.571101 73.520801
X2008

3458 48.407322

3511 30.429882

3628 88.870637

3897 22.496424

3950 4.539613

4066 75.771663

Let’s move on to the Gender data. We’ll choose a few more variables here, relating to fertility and
education. The technique is identical to the first statement.

> mygender <- subset(gscountry, Indicator_name == "Expected years of schooling, female" |
+ Indicator_name == "Expected years of schooling, male" | Indicator_name ==
+ "Adolescent fertility rate (births per 1,000 women ages 15-19)" |
+ Indicator_name == "Fertility rate, total (births per woman)",
+ select = c(Country_Name, Indicator_name, X2000:X2008))
> mygender
Country_Name
4312 China
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4313 China
4354 China
4364 China
10691 India
10692 India
10746 India
10756 India
24705 United States
24706 United States
24783 United States
24793 United States
Indicator_name

4312 Expected years of schooling, female
4313 Expected years of schooling, male
4354 Adolescent fertility rate (births per 1,000 women ages 15-19) 9
4364 Fertility rate, total (births per woman) 1
10691 Expected years of schooling, female 7
10692 Expected years of schooling, male 9
10746 Adolescent fertility rate (births per 1,000 women ages 15-19) 87.
10756 Fertility rate, total (births per woman) 3.
24705 Expected years of schooling, female 15.
24706 Expected years of schooling, male 14.
24783 Adolescent fertility rate (births per 1,000 women ages 15-19) 47.
24793 Fertility rate, total (births per woman) 2.

X2001 X2002 X2003 X2004 X2005 X2006 X2007
4312 NA NA 10.26641 NA NA 11.03888 11.34453 11.
4313 NA NA 10.37785 NA NA 10.77219 10.98305 11.
4354 9.88850 9.83150 9.79630 9.78290 9.76950 9.75610 9.74270
4364 1.76200 1.75900 1.75800 1.75900 1.75900 1.76100 1.76200
10691 7.34272 7.59879 8.54005 9.05620 9.32073 9.42251 9.79339
10692 9.35196 9.45295 9.71347 10.27065 10.50751 10.62709 10.85564
10746 84.48300 81.07300 78.24530 75.99990 73.75450 71.50910 69.26370 67.
10756 3.21000 3.14000 3.07000 3.00000 2.93000 2.86300 2.79800 2
24705 15.90585 16.00107 16.22459 16.24171 16.37938 16.37430 16.49133 16.
24706 14.86189 14.88676 14.99040 14.98156 14.95467 14.93431 15.02104 15.
24783 45.81900 43.99500 42.36290 40.92270 39.48250 38.04230 36.60210 34.
24793 2.03400 2.01300 NA 2.04500 2.05400 2.10000 2.11320 2
5.2.2 Merge

Now we’d like to combine the two datasets. To do this is quite simple. There are two functions, rbind (for
row bind) and cbind (for column bind), that allow you to quickly paste together data objects. R is generally
pretty good about matching observations and variables. Since we have similar variables in the columns, we

simply want to add together our observations.

There is also another way to combine data frames, using merge. The merge function does more robust
checking to make sure that data frames align, so it is preferable to rbind or cbind in more complex situations.
The all=TRUE option is necessary to include all observations from each data frame. Without this, merge
would select only observations whose variable values matched between the two data frames (an empty set
in this case). Here we reverse the order of the combination so that we can see the change in the output [not
displayed in the text]. Note that we have an additional names step to fix the issue with variable names that

do not quite match between our two data sets.

> names (mygender) <- c("Country.Name'", "Series.Name", "X2000",
"X2004",

+
+

"X2001",
"X2008")

"X2002",

"X2003",

"X2005",
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"X2006",

"X2007",

9.
1.

X2000
NA
NA

.94550
.76700
.29924
.38709

89300
28000
67437
76851
64300
05600
X2008
63204
156502
74330
76500

NA

NA
11510
. 73800
58228
14060
95750
.10000



> mydata <- merge(mygender, myMDI, all = TRUE)
> mydata

5.2.3 Split

Another useful technique is to split the data. Any grouping variable can be used to separate a data frame
into separate subframes. So, if we wanted to be able to easily access all of the data for one country, we could
do the following:

> mysplit <- split(mydata, mydata$Country.Name, drop = TRUE)
> mysplit$China

Country.Name Series.Name
1 China Adolescent fertility rate (births per 1,000 women ages 15-19)
2 China Expected years of schooling, female
3 China Expected years of schooling, male
4 China Fertility rate, total (births per woman)
5 China Internet users (per 100 people)
6 China Mobile cellular subscriptions (per 100 people)
X2000 X2001 X2002 X2003 X2004 X2005 X2006 X2007
1 9.945500 9.888500 9.831500 9.796300 9.782900 9.769500 9.75610 9.74270
2 NA NA NA 10.266410 NA NA 11.03888 11.34453
3 NA NA NA 10.377850 NA NA 10.77219 10.98305
4 1.767000 1.762000 1.759000 1.758000 1.759000 1.759000 1.76100 1.76200
5 1.781974 2.649684 4.615745 6.170444 7.252667 8.579043 10.60104 16.13045
6 6.752492 11.386563 16.089112 20.952576 25.833690 30.175652 35.16788 41.52912
X2008
1 9.74330
2 11.63204
3 11.15502
4 1.76500
5 22.49642
6 48.40732

The arguments to split are the data frame, the grouping variable or variables, and options. In this
case, we dropped all of the countries for which there are no data from the mysplit data frame using the
drop=TRUE argument.

5.3 Exporting output and saving the workspace

We have accomplished our goal of creating a useful extract from the World Bank data. We’ll export the
mydata file in .csv and SPSS format, using the obverse of the read functions used at the beginning:

> write.csv(mydata, "mydata.csv')

> library(foreign)

> write.foreign(mydata, datafile = "mydata.sav", codefile = "mydata.sps",
+ package = "SPSS")

And finally, save the workspace as an RData file. This stores all of the data structures that we have
created in this session.

> save.image("mydata.RData")

Now you can truly say that you can handle data in R!
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6 More R Exploration (GUIs, Editors, Integration, Reproducible
Research)

After this introduction to R, you can explore the links at theRutgers Libguide for R/ to find more R tutorials,
guides to finding packages, ways to get R help and news, and download books on R topics. Also, remember
that in the beginning, we downloaded the package Rcmdr. Rcmdr is a general purpose graphical user inter-
face. You can launch it by invoking library (Remdr). Other GUIs for R include JGR, RStudio, rattle,
Deducer, and more.

If you become a regular R user, you will probably find it beneficial to choose an editing environment that
supports your R programming. Many text editors will support syntax highlighting, and it is easy enough to
write and then cut and paste into your R session. On Linux systems, the ESS extension to Emacs is often
recommended (if you are willing to deal with Emacs). I have found RKWard works well as an R editing
environment on Linux. It is clean, easy, and does not require learning additional commands. On Windows
systems, Tinn-R fulfills the same function as a purpose-built R editor. Others may prefer incorporating R
into an environment they use for other programming, such as Eclipse (with StatET). RStudio is a newly
released R development environment, but is very slick and has become quite popular.

The beauty of R is that it is open source and open-ended, so you can choose any approach that gets
the job done for you. R has packages that integrate with websites, databases, and document publishing.
For example, these handouts and associated R scripts were prepared using Sweave. Sweave allows R code
to be inserted into a document. The code is then executed and evaluated, with results inserted into the
final document. This is a great time saver, and allows the incorporation of graphics and constantly updated
data into reports. Most importantly, it allows for reproducible research. The code needed to create the
statistical output is always present, and the data is always pulled directly from the source, eliminating any
typos or ambiguities. Sweave in fact requires that the code run without errors. And the fact that R is open
source means that any reader of a research paper can obtain the software necessary to run the analysis for
themselves.
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