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DeepSphere:
a graph-based spherical CNN

Michaél Defferrard

Joint work with Martino Milani,
Frédérick Gusset, Nathanaél Perraudin.
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Problem: learning from spherical data

input z: S x --- — R?

intrinsic projection

output f(x)

classification  regression

GHCN-daiy, TMAX. 20140101
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Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.
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Solution: spherical neural networks
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Desideratum 1: equivariant to rotations

> Equrvarlance for dense tasks:
B = Rf(z) VR € SO(3)
. : > lnvarlance for global tasks:
= f(z) VR € SO(3)

Why exploit symmetries?
» reduced sample complexity
> generalization guarantee

= principled convolution (weight sharing)

i
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Desideratum 2: scalable

» Many inferences needed for training.

» Increasingly larger maps. (n =107 pixels is customary in cosmology.)

Figure from https://healpix.sourceforge.io.
8/20


https://healpix.sourceforge.io

Desideratum 3: flexible sampling

Partial and irregular sampling.

Some figures from Boomsma and Frellsen 2017 and https://climatereanalyzer.org.
9/20


https://climatereanalyzer.org

Method 1: 2D projections

Manifold is locally Euclidean!
Project on 2D tangent planes.

Desiderata

© Rotation equivariance: hard to properly glue
planes together.

- e @ Scalability: well developed NN architectures and

<- > implementations. Some wastes at boundaries.

P \/, © Flexibility: only handle compact subspaces.
vV v

Charting figure from https://en.wikipedia.org/wiki/manifold.
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https://en.wikipedia.org/wiki/manifold

Method 2: discretization of continuous domain

Discretize the continuous problem!
‘ Compute the spherical harmonic transform (SHT),
filter in the spectrum.

. O ‘ Desiderata
’ G o C) ‘ @ Rotation equivariance: well understood theory.
& SHT is expensive. Fast transforms exist for
Spectra| deCOmpOSition. some Samphngs

© Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.
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https://rodluger.github.io/starry

Our proposition: discrete domain

Domain set of pixels V
topology given by geodesic distances

XN | = Data functionz:V — R
R ZHKH seen as x € R”

Method in a nutshell (Defferrard et al. 2016)

Model the topology by a graph G = (V, &, A).
From it stems a Laplacian, e.g. L =D — A.

S | =
N\
= V==

The Fourier basis diagonalizes the Laplacian.

graph G = (V, &, A) with
Aij = exp(—d(zi, zj) /o)

Convolution is a multiplication in Fourier.

AR .

Spatial implementation for speed,
eg go(L)x =3, apLFz.
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Desideratum 1: equivariant to rotations

—— no32?
R —— no128? » Difficulty: set the edge weights.
\\\\ » Equivariance error:

E <||RL1‘— LRac||>2
Rx \ — 1.1
|| L]

rror B, ¢

Khasanova & Frossard, k=4
—— Perraudin et al., k=8

—— k-NN graph, k=8 neighbors
—— k-NN graph, k=20 neighbors

» Tradeoff between equivariance and
cost (number of vertices n and
edges kn)!

—— k-NN graph, k=40 neighbors

T
10! 102
spherical harmonic degree ¢
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Desideratum 1: it matters!

accuracy  time
Perraudin et al. 2019, 2D CNN baseline 54.2 104 ms
Perraudin et al. 2019, CNN variant, &k = 8 62.1 185 ms
Perraudin et al. 2019, FCN variant, &k = 8 83.8 185 ms
k = 8 neighbors, optimal ¢ 87.1 185ms
k = 20 neighbors, optimal ¢ 91.3 250 ms
k = 40 neighbors, optimal ¢ 92.5 363 ms

Lower equivariance error translates to higher performance.
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Tradeoff between cost
and accuracy.
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Desideratum 2: scalable

» Graph convolutions cost O(n).

> Spherical convolutions cost O(n?) in general, O(n’/?) for some samplings.
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Desideratum 2: it matters!

performance size speed
F1  mAP params inference training
Cohen et al. 2018 (b = 128) - 67.6 1400k  38.0ms 50h
Cohen et al. 2018 (simplified, b =64) 78.9 66.5 400k  12.0ms 32h
Esteves et al. 2018 (b = 64) 794 685 500k 9.8ms 3h
DeepSphere (equiangular, b = 64) 79.4  66.5 190 k 0.9 ms 50m
DeepSphere (HEALPix, Ng;qe = 32) 80.7 68.6 190 k 0.9ms 50 m

Classification of 3D shapes (SHREC'17): anisotropy is an unnecessary price to pay.
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01 graph of GHCN stations
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Application: discrimination of cosmological models

Model 1: Qp = 0.31 05 = 0.82 Z00m 10 x 10 deg

Classification of convergence maps created s,
from two sets of cosmological parameters. i T o

(2, 08) = (0.31,0.82) or (0.26,0.91)

Power Spectrum Density
noisel 3-arcmin smoothing, Nside=1024

1074

— )
0014 0029 003 004

Model 2: Q, = 0.26 05 = 0.91 200m 10 x 10 deg
smoothing 1 deg smoothing 5 arcmin

CpL-(L+1)/(2-n)

—— class 1, Qp, =0.31, 0 =0.82
—— class 2, Qy, =0.26, 0g =0.91

1077
102 103
£: spherical harmonic index _—
Qn, s, smoothing chosen to get identical PS. Maps with identical initial conditions.
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Application: climate event segmentation

CAM5 HAPPI20 run 1, TMQ, 2106-01-01

Segment extreme climate events: tropical cy-
clones (TC) and atmospheric rivers (AR).

» >1M spherical maps
» down-sampled to 10k pixels (original 900k)
» 0.1% TC, 2.2% AR, 97.7% background

» 16 channels (e.g., temperature, wind,
humidity, pressure)

—

0kg/m? 40 kg/m? 80 kg/m?
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DeepSphere, a spherical CNN that strikes a controllable balance between desiderata.

Poster https://iclr.cc/virtual/poster_B1e301StPB.html
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https://doi.org/10.5281/zenodo.3777976

Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR,
2020.

Defferrard, Perraudin, Kacprzak, Sgier, DeepSphere: towards an equivariant graph-based
spherical CNN, RLGM workshop at ICLR, 2019.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional
Neural Network with HEALPix sampling for cosmological applications, Astronomy and
Computing, 2019.

https://github.com/deepsphere
https://github.com/epfl-1ts2/pygsp
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